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(depending on the specifrc computer).
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l. Introduction

Passwords and encryption schemes are used to prevent unauthor-
ized access to files and data as well as to deter break-ins to com-
puter systems. The Numerical Aerodynamic Simulator project at
NASA's Ames Research Center administers approximately 40

UNIX-based computers on a local area network which is con-
nected to both long-haul networks and telephone lines. Password
security is of paramount importance at this site since, with
knowledge of a secret password, unknown parties can gain access

to individual accounts and to the system as a whole.
For these reasons, it is desirable to have a password checking

program to examine encrypted passwords and determine whether
they can be guessed.l Such a program obtains a list ofpotential
passwords, such as a list of words, the user's names, initials, login
name, and so forth, and encrypts each one using additional infor-
mation (called "the salt") associated with the user whose password
is being tested. If the result matches the encrypted password
(called a "hit"), the password has been compromised and the user
is requested to change it.

On the surface, the UNIX password scheme appears to be
quite secure [Morris & Thompson 1979]. It uses a variant of the
Data Encryption Standard IFIPS 19771to provide a one-way
encryption function. This function depends both on the password
and on a two-character salt, so in effect there are 4096 different

1. It would be even more desirable to do rigorous password checking when the user sets
his or her password. Unfortunately, to implement this would require changing
vendor-supplied software, and add to the maintenance burdens. Also, when the new
password programs were installed, everyone would have to change his or her pass-
word to ensure that it meets the new (presumably more rigorous) standards; forcing
users to do this would cause serious problems.
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possible encryption functions. This is intended to discourage
attacks in which the dictionary is encrypted and compared to a
list of passwords; if a list of 100 passwords each have a different
salt, it would take about 220 days to test a dictionary of 25,000

words against the list. Of course, only encrypted passwords and
their salts are stored on line; when the user types his or her pass-

word, it is encrypted using the salt associated with that user, and
compared to the on line encrypted password. Validation occurs if
there is a match.

Properties of the DES have been discussed in detail [Konheim
1981;Meyer & Matyas 19821, for example. Much analysis has

been done to determine how best to implement the DES, both in
hardware [Davio et al. 1984; Hoornaert et al. 1984] and software

[Davio et al. 1984]. In these papers, and in some studies of the
DES algorithm itself [Davies 1987; Davio et al. 1983], a number of
useful transformations, all of which show various strengths and
weaknesses of the algorithm, are discussed from the point of view
of speeding up implementations.

In this paper, we describe these earlier results using mathemat-
ical notation. After that, we shall discuss some practical hints for
implenientors, and then analyze the UNIX password algorithm to
see how using the salt and the repeated application of the DES

algorithm affects the analysis. More implementation hints will be
given, and frnally some timings of routines that embody the hits
will be discussed.

A word about notation. In both the theoretical and applica-
tion sections of this paper, certain operations occur very often. In
all sections, - means "bitwise negation," ¿ means "bitwise and,o' I

means "bitwise (inclusive) or," and O means "bitwise exclusive
or.tt

2. Analysis of the DES Algorithm

The DES algorithm consists of a series of expansions, permuta-
tions, and substitutions. In this section, n will represent an expan-
sion (or contraction), zr â permutation, and o a substitution. The
DES function uses a series of tables to indicate how the operation
is to take place; a subscript will indicate which table is used by the
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operation. Some tables, such as the PC-l table, indicate both an
expansion (in this case, a contraction) and a permutation. Strictly
speaking, such a table should be a subscript on the product ofan
expansion and a permutation, that is (trq)pç.i but this is confusing,
so we shall just represent this as II". r.

2.1 Derivation of the Key Schedule

The DES frrst computes a "key schedule" of 16 elements from a 56

bit key. Let the key be K. (Actually, K is 64 bits, but the first
permutation discards 8 parity bits.) Thetr [pc-r is applied:

¡(o) = flrc-tK (l)

The next two steps are applied 16 times, the output of the first
being the input of the next set; i is the iteration number, begin-
ning with g. ¡¡(;) is divided into two halves, each half is shifted
left as indicated by the table LSH. (This is really a permutation,
so we shall write it as o¿5¡¡.) Thus,

KG) = r7s¡.Kf-r) for j: 1,...,16 (2)

These intermediate keys are transformed by nrr, to generate a

new element of the key schedule k¡:

k¡:nrr-rK(i) fori=1,...,16 (3)

So, there are 16 elements kr, . . . ,k6 of the key schedule.
Now consider equatioî (2). By iterating the recurrence and

substituting (1), we have

Y(i) = 
".'LSH 

Ko = rLsnnrr-,K (4)

and so bv (¡) and (4),

k¡ = Ilpç-2rLsu K0 = npc zoitsnfirc-,K (5)

Defining G¡ by G¡ -- IIpç.2rfu¡¡ fI".r, (5) may be rewritten

ki = G¡K (6)

We shall refer to the set of G¡ as G; that is,

G = {G¡li=1,...,16}

224 Matt Bishop



2.2 Encryption of the Message

Now let m = flrt. . . tvtaqbe the message to be encrypted. First an
initial permutation is applied:

To: tt. . . teq: Trpm (7)

Divide the 64 bits of 7¡ into two halves, lo = tt . . . t32 ?îd
rt = t3.. .tøq. Then, the next 16 steps are the same, the output of
each being used as the input to its successor. For rounds
i = 0,...,15,

l¡*t. = r¡ (Sa)

fi+t = l¡Dtrpos(r¡sr¡Ak) (Sb)

Finally, the halves of the result T6 = 1616 are exchanged and
the inverse of the initial permutation is applied:

x = rti Qrcltò (9)

Now, consider equations (Sa) and (8b). Since both /¿ and r¡ are
32 bit vectors, apply 4¿ to both sides:

qtL*t = nør¡ (10a)

rty ri+t = 4¿ (l¡@trp os (,tt¿ r¡Ak)) (lOb)

As O is a homomorphism from the group of bit vectors in the
range of 4¿ to itself, the O may be taken outside the expansion,
yielding

qEri+t = qrl¡Aqnrpos(ttør¡Ak) (11)

Now define Li = r¡s l¡ and R¡ = nø r¡. By (10a) and (t l),

L¡*t: R¡

A¡*r : L¡AWz'p os(rR¡Oþ)

These imply

L¡*z = L¡Aqprpos(R¡Ak¡¡ (lza)

R¡*z : R¡Aqa rp os(R¡*10k¡)

R¡Aqt rp os(L¡Ar¡¿ rp os(R¡Ak¡)Ok;*r) 02b)
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R¡*z : R¡0rtn rp os(L¡*20k¡*1)

Define Fz: ,tprp ús. Then (l2a) and (13) become

L¡*z: LiAF2(RiOk)

( 13)

(1aa)

(14b)R¡*z = RiAF2(Li+z0k¡*ù

Now consider (7). (l4a) and (1ab) require that rTBls aîd q616

be found, so define nzr to be the expansion of a 64 bit vector to a
96 bit vector by splitting the vector in half and applying 4¿ to each
half. Then to obtain 16 and Rs, define T' : I¡R¡; and

f, = 496r¡pnt

Deûning Ft = qnz zr¡p, this becomes

T' : Ftm (15)

Finally, look at (9). Exchanging the halves 16 artd 116 may be
treated as a permutation zr¡. Also, note that by definition ¿r and
R; are in the range of nn, so both q¡t L¡ and a;lR¡ exist and are
unique. Let nEL(LrøR16) represent the result of concatenating
qnt Lrc and r¡¡t R16. (This is actually the inverse of the ,rr¿ dis-
cussed above.) Combining all this with (9), we have

x = rlloxnnL(IroRro)

Defining Ft: "lì rxqEL, this becomes

x = F3(L6R6)

3. Applicütion of the Analysis

With this analysis, we are ready to implement a fast version of the
DES algorithm. We will consider several aspects of the mathemat-
ics. The frrst is representation. How are the functions and bit
strings to be stored?

The simplest representation of the data used in the DES algo-
rithm is tõ store one bit in each storage location (byte or word);
for example, since the message to be encrypted or decrypted is 64

bits long, it would occupy 64 storage units, each being 0 or l.
This representation requires no bit operations to permute the
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data. Unfortunately it is quite inefficient in terms of space and
time; in space, because (usually) at least 8 bits can be stored in a
single storage unit, and in time, because it forces the argorithm to
operate on bits one by one. As an example of the effects of this
restriction, the substitution function o5, ÍÌnd hence the function
F2, us€s 8 sets of 6 adjacent bits from the representation of R¡.
There are 16 rounds in which this is done, and obtaining those
sets of bits from the representation requires 4g memory accesses,
five left shifts and five logical ors, for a total of
(48+5+5)x8x 16 : 7424 operations. vy'ere each set of 6 bits stored
in a single storage unit, obtaining those sets would require one
memory access per set, for a total of l xSx 16 = l}g operations.
vy'ere z4 bits stored per storage unit, obtaining those sets would
require one memory access and one bit freld extraction per set, for
a total of (l+l)x8x 16 = 256 operations.

For reasons that will shortly become clear, we chose to store
bits as multiples of 24. So, in a 32 bit per word machine, we store
the 48 bit quantities r¡ and R¡ in two words with 24 bits each; in a
64 bit per word machine, we store them in one word with ¿t bits
each.

Using the mathematical analysis in the previous section, we
rearranged the key schedule computation and message transforma-
tion so that there are four sets of combinations of permutations,
expansions, and substitutions. We used these four functions
rather than q5, Tpt ltrp, and ø5 given in the tables in Appendix A.

Appendix A represents each of the permutations as a vector of
numbers; the number in the i th position is the number of the bit
of the input that will occupy that position in the output. Hence,
it seems natural to represent the functionsf'¡, i:1,2,3 and G in
the same manner. However, since F2 begins with a substitution,
we shall for the moment only combine zrp and r¡6, call this FuNr,
and include the ø5 later. The functions in Appendix B may be
used to compute Ft, Fuwr, F3, and G; the corresponding bit tables
are in Appendix c. Remember, the precomputation of G will pro-
duce 16 permutations, each of which is applied to the key to get
the key schedule.

Once this is done, another optimization becomes obvious.
Since a permutation is simply a function with inputs from a
known domain, those functions can be precomputed and stored in
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aî aÍfay. Then computing the function during the running of the
algorithm requires as many affay indexing operations as there are

arguments to the function. For example, .F'1 takes as input the 64

bit message and returns as output 96 bits, so ideally F1 should be
precomputed and stored as an array of 26a elements of 96 bits.

This would probably use too much space and time on most
computers. So, we broke up the 64bit message into 8 sets of 8

bits, and considered ,F'1 to be a function of two arguments, the frrst
being 8 bits from the message, and the second being the position
of the flrst argument within the 64 bit message. \il'e thus stored f'1

as an array of 8 arrays, one per position, of 28 words of 90 bits;
given a machine with ¡ bits per word, this uses

. oÁ fttgZwor¿sifB=32
8x2Ex$ñx24 words = 

l+olo words ir B : 64

This requires that the eight 96 bit vectors, each corresponding to a
byte in the first through eighth position, must be combined:

outPut := 0;
for i := 1 to 8 do

output := output or fsubltiltinputtilJ;

To precompute F3, note that the input is a 96 bit vector and
the output is 64 bits. In most implementations, this will be

represented as eight 8 bit characters. So, splitting f'¡'s input into
16 sets of 6 bits, the total storage required is

l6x26x9 
"huruters 

: 8192 characters
E

Precomputing F2 is a bit more complicated because the input
of 48 bits is run through a substitution. This function, ø5, is really
eight substitution functions o$), . . . ,o$8), ø$) operating on the first 6
bits of the input, ol2) operating on the second 6 bits of the input,
and so on. These substitution functions are defrned independently
of each other, so to precompute F2, vãr! the input to one of the

"$)and 
keep the input for all the others as 0. Apply that o$)to all

26 inputs, and then apply F2¡¡¡7 to the result. Hence, .F2 will have
to be stored as an array of 8 arrays of 26 words of 48 bits; this
requires
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8x26x E#F"words : I,i?:;ïi: ;T", 
=21

Note this is really a rather small storage requirement.
Alas, the same is not true for the precomputation of G. The

key is divided into eight 8 bit groups, and one permutation per
element of the key schedule is needed; in short, G is really a set of
16 permutations. The output of each of these 16 permutations is a
word with 48 bits. So the storage required is

r ø xt xzs x ¡ffi+words = [i],,l1lî:lÍ: ;i', 
= 

11

For some machines, this is so large that the increase in system
time due to accessing the elements offsets the gain in user process-
ing time. In such a case it is better to precompltte rrr.,, which
requires

^ çÁ [+090 wor¿s if B = 32txzox$fifi 
xz+ 

words : 
lzo+t words if B : 64

atld rrr-r, which requires

u' * 
'fi¡ 

*2awords = [lz;zî:lå: ;i"" 
= 

21

and do the left shifts as one operation if possible. To do this,
recall that if the 56 bit K(j) is stored in one word, the following
operations split K(;l into two 28 bit halves, shifts each half left one
bit, and recombines them to give çQ+t)'

¡ç(i+r) _ 111¡<{i)æ_0xg0000008000000)<<1) I

11v{i)>>27)&0x10000001))&0xffffffffffffff

(where << and >> are left and right shifts, respectively). Shifting
two bits to the left, and rearranging this to work on a 32 bit word
machine, is left as an exercise to the reader.

Incidentally, the way the functions were precomputed deter-
mined the choice of the data representation. Because we had to
access bits in groups of 6 while iterating, and in groups of 8 when
applying F3, the data representation had to be a multiple of
lcm(6,8) :24bits per word.
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Now let us look in detail at the formulae we have derived.
Using the conventional formulation (8), l6 iterations are needed
to computo 116 and R16. Equation (la) requires only 8 iterations.
This cuts the time required approximately in half; so, we should
use the formulation in (1a)) to computo 216 ând R16.

As a second point, we described how to precompute the func-
tion F2 as an array. Recall that the L¡a2Ok¡¡1and Rrok, are split
into 8 groups of 6 bits, each group being the input to one "$). 

By
combining the groups of bits and o$), substantial speed can be
gained. The penalty is that more space is needed; if, for example,
t2 bits is used rather than 6 bits, there are 4 groups of 12 bits, and
the number of words required is

4 x2,2 x E#_words = [lzlj;zi:::: ;:'" =21

So, when we precomputed F2, wc used as wide a data path as was

feasible.
We can eliminate the cost of using some temporary storage if

we exclusive-or F2into Lr*2 directly. Suppose a and å were two
bit numbers. Then the first bit of aab depends only on the first
bit of a and the first bit of b, and the second bit of a0å depends
only on the second bit of a and the second bit of ó. Hence, o
operates on bits independently of one another. Combined with
the associativity of o, this means that F2 can be directly Oed into
L¡ or R¡ without a temporary variable; r'2 need not be saved in an
intermediate variable, and then Oed into L¡ or R¡.

Now that we have dealt with the message-handling part of the
formulation, rather than computing a key schedule and testing at
each iteration whether to use the nth element or the (16-n )th ele-

ment, we shall compute the key schedule for one direction, and
reverse the elements at the end of the computation if going in the
other.

The key schedule {kili : l, . . . ,16} is used to encrypt and
decrypt. To encrypt, the k¡s are used in the order kr, . . . , k6 and
to decrypt, they are used in the order krc, . .. , k1. The key
schedule should be in the proper order before the message is
encrypted or decrypted to avoid 16 comparisons and (possibly) 16

subtractions when transforming the message. Let us compare the
cost in time T6s¡¡ of storing the key schedule in the proper order
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as it is generated and the cost in time T6¡¡p of storing the key
schedule in encrypting order as it is generated and then reversing
it at the end.

Let the probability that an encryption is to be done be Pnxc.
Let the cost of a comparison operation be 'c', the cost of an index-
ing operation be 'i', and the cost of an assignment be 'a'. Then
assigning the keys in the proper order costs

Tc¿x : (16c + L6i+ l6a)Pp + (16c + 16i + l6a)(l - Pa)

= (l6c+l6i+16a)

Assigning the keys in encryption order and exchanging them after
all have been computed requires

Tnuo: Qc+l6a)PB + (lc+ 161+32a)(l-Pø)

: lc + l6i+ 32a- (16i + l6a)(l - P¿)

(No indexing for P¿ is required since the indices are constants,
and the addresses are therefore computed at compile time.) If
P¿ -- t/2, then

Tn¡¡p = 0.5c+8i+24a

which - assuming c : â : i - means that TB¡¡¡ 1 TG1N,so if the
probability of encryption and decryption are the same, it is better
to reorder the key schedule at the end.

We will later have occasion to run the DES algorithm when the
probability of encryption is 1. In this case,

TcnN : (l6c+l6i+l6a) > (1c+l6a) = 7u*,

So it is very definitely desirable to reorder after the key schedule
has been computed.

Finally, we can take advantage of several features of the com-
piler and underlying machine architecture. For example, we can
unroll iterative loops whenever possible, replacing a conditional
test, an increment or decrement, and several memory accesses,
since replacing the loop variable with constants in the body of the
loop allows the use of "quick" or "immediate" mode, where the
constant is stored in the instruction. Such an access is consider-
ably faster than accessing a memory location. When it is too
messy to eliminate an iterative loop, rather than incrementing the
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counter, we will count down to 0. Most computers have an
instruction which decrements a counter and compares the result to
0 in one operation. Taking advantage of this instruction decreases
the number of memory accesses substantially, as well as the
number of instructions to be executed.. Using pointers or con-
stants instead of indexing into an array also speeds up the compu-
tation; even though an array access is semantically equivalent to
the use of a pointer, using pointers to access ru elements of an
array sequentially results in one index computation to initialize
the pointer and n- I additions, rather than n index computations.
Finally, the specific code generated by the compiler for the target
machine offers several possibilities. Some machines have slow bit
freld extraction operations; on these machines, using shifting and
masking to extract bit frelds may be faster. Other compilers use
autoincrement address mode if available. If so, it should be used
to step through a sequence of arrays by incrementing the pointer
containing the base address of each element. If not, use constants
for the bases of the arrays; this will save an addition. (In fact, the
arrays storing the F21¡¡7's are "fsub2-11641,..., fsub2-8[64]" rather
than in one array "fsub2[8][641,..., fsub2-8[64]." This way, if
autoincremenf. mode is used, the bases "fsub2-l,...,fsub2-8" are
saved in another array and a pointer used to access the bases. If
autoincrement mode is not used, the bases themselves replace the
pointers.)

4. Analysis of the
UNIX crypt(3) Algorithm

The UNIX password encryption algorithm is based on the DES

algorithm described in [CSRG l936]. A password, chosen from
strings of one to eight characters with characters from an alphabet
consisting of the upper and lower case letters, the digits, o/', and
'.', is used as a key to encrypt the message 0 (that is, the message

of eight ASCII NULs). However, the DES algorithm is repeated 25

times and the expansion a6 is altered.
Associated with each password is a two-charactq "salt," with

characters chosen from the same alphabet aé the password charac-
ters. This allows a possible 64x64 : 4096 = 2r2 salts. The two
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character salt is used to compute a number 0 <s < 4096; then, if
the ith bit of that number is set, elements i and i+24 of the table
for r¡¿ are exchanged. Let this new permutationbe nn,.

Let w -- w1 . . wtzbe a32 bit vector; applying as to ít gives a
48 bit vector v = rt'" v4s, and applyin9qn, to it gives another 48

bit vector v' : r'L' ' 'v'48. Let s1 . . .srz be the binary representa-
tion of s. From the way a¿, is derived from 4¿, it is clear that for
k = 1,...,12, if s¿ = 0,vk = v'¡ andrk+24: v'k*24, and if S/. : l,
vk = !'k*24 and v¡*2a = v'k. Ottr goal is to find a way of transform-
ing v into v'given s and nothing else.

Split v into two parts, v(. . .24) and u1zs . . .oa¡, where
vl...2a) - v1 'v2aandves...4g= v25 "'v¿8. Similarly, split u'

into two parts, v'6...24) and vizs...+a¡, where vlr.. .24¡ = v'1. . . v'24

and v'ps...4s) : v'25' ' u'as. Define a 24 bit vector rfl = tltt' ' ' l4tzq
where

Now, notice that v1r ...2a¡&m: (y'r. ..v'2a¡&(s1.. .Jrz0' . . 0) has
those bits of vç...2a) which would be exchanged with the
corresponding elements of v1zs. . .as¡, ând all other bits are 0. Simi-
larly, v1r . ..za¡&-m has those bits of vg. . .za) which are not to be
exchanged, and all other bits are 0. So, to compute r'given v and
s, first construct ¡ø as indicated and then:

v'11. . .24): (vtr . . .z+¡&-m) l(vtzs. . . qt\&m) (lla)
v'es... qs) = Qps... +t¡&-m)l(u1r.. . tz'¡&m) (l7b)

Robert Baldwin [Baldwin 1987] has derived an equivalent
expression for v' in terms of u by noting that if bits v¡ and v¡*24

differ, exchanging them is the same as Oing them with 1. So, he
suggests computing a mask ,SS to be Oed with v1r ...2+¡ ãîd
ves. . . aa¡ to achieve the effect of the salting:

55 = (v1r...zq0vps...+t)&m (18a)

Then,

v'ç...24): Y(r ...za¡O,SS (18b)

fru: O if i<t2
m*:þt =t ifi>tz
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v'12s.'.4Ð = vQs..'+s¡OS'S (18c)

A more formal proof showing this is equivalent to (17) uses the

following two lemmas:

LEMMA: aD@&c):(a&-c)

PRooF: By definition of O,

a A @ &c ) 
: (a 6-1a &c )) | (- a &(a &c ))

Now, as & is associative, -a&(a&c)=(-a&a)&c, which is always false'

Moreover, as -(a&¿):(-a)l(-c), by distributivity of & over I we

have a&-(a&c)=(a&-a) I (a&-c):q&¿-c as claimed. QED.

LEMMA: aD(aDb)ac):((a&-c)l (b &c))

PRooF: As & distributes over O,

au((aDb)ec) : aA(@ &c )a(b &c))

Since O is associative, this becomes

: @a@&c))A(bec)

But by the previous lemma,

: (a&-c)A(b &c)

as claimed. QED.

We can now show

THEOREM: (17) and (1S) are equivalent.

PRooF: Substitute a = v1r...2+¡,b :ve5...ca¡, âttd c = m inthe
preceding lemma. qno.

5. Application of the AnalYsis

Given this analysis, there are a few simpliflcations that can be

used to speed up the computation. First, recall that the UNIX
password encryption scheme calls the DES algorifhm 25 times

sequentially. Notice thaf F1 = ¡'x Flr, so the left and right halves

of the result of the iteration must be swapped, but then can be

immediately put back into the iteration. This saves 48
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permutations. Following this train of thought, we do not need to
precompute F1, since the value returned by ,F'r does not depend on
the key schedule, and hence not at all on the key (password); just
on the message being encrypted. This message is 0. Therefore,
FrO : 0, so start the first iteration with the 96 bit vector with all
bits clear. Finally, the exchange of halves (that is, the permuta-
tion ø¡) may be completely eliminated by unrolling a loop. This
requires that the 25 iterations be done in 12 sets of 2, and one
more, and that in the second set the L¡ and R, be interchanged.

Two more changes are possible, but they only help under cer-
tain conditions. First, suppose you will be encrypting p passwords
all with the same salt. Using (18), each of the S loops will take 4

extra instructions to process the salt; these loops are repeated 25

times, so for each password to be encrypted, handling the salt
requires 800 extra instructions. Precomputing Fu Fz, and .F3 using
a¿, would eliminate this overhead.

Now suppose these routines are being used to compare p pass-

words to w suspected cleartext passwords. If F3 is applied in the
encryption routine, it must be applied w times; ff F¡t is applied
to the list of encrypted passwords, it need only be applied p times
(actually, there is some extra overhead that is negligible). Presum-
ably, both f'3 and F¡t are precomputed and so take equally long
to apply. Thus, if w <p, apply r';r to the list of encrypted pass-

words, and omit the application of r'3 at the end of the encryp-
tion.

6. An Experiment

In order to substantiate our claim that the suggested optimizations
provided substantial increase in speed, we implernented four ver-
sions of the faster DES algorithm, and four versions of the faster
UNIX password algorithm:

o one without G and with a 6 bit data pathto F2

r o1r0 with c and with a 6 bit data pathto F2

r olr€ without G and with a l2bit data pathto F2

. one with C and with a l2bit datapathto F2
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The routines were timed on several different architectures, and the
results collected below. As a control, the standard UNIX imple-
mentation, which stores one bit per storage unit (byte) and uses a
straightforward translation of the algorithm into C, was also
timed.

Table I summarizes the machines and their relevant charac-
teristics. (More detailed information is in Appendix D.) In par-
ticular, note the clock rates; with all except the Cray 2, the rou-
tines were expected to execute much faster than the clock tick.
The usual way to make timings is to start the clock, run the rou-
tine, stop the clock, and determine the elapsed time. However,
since this would be on the order of one tick, the results gleaned

this way would be highly suspect. So, what was done instead was
to start the clock and execute a loop for approximately 10 seconds
(virtual time). A counter in this loop was incremented every time
the routine completed execution. When the time was up, the next
return ended the loop, and the clock was stopped and the elapsed
time computed. Another loop, just like the first but without the
call to the routine, was executed for the same number of itera-
tions; the time to complete this loop was then subtracted from the
elapsed time. This way, the total time was subject to an error of
at most two clock ticks. This procedure was repeated ten times,
and the times and ratios computed by averaging over the ten
results. (The tables in Appendix E give the actual timings.)

computer
timer intervals bits

(per sec) (per word) manufacturer

Amdahl 5880 60

Convex I (32) 100

Convex I (64) 100

Cray 2 243902439

IBM PC/RT IOO

IRIS 25OOT 60

Sequent 21000 100

Sun 3/50 60

vAX lll780 100

vAX l1l785 100

Amdahl Corp.
Convex Computer Corp.
Convex Computer Corp.
Cray Research Inc.
IBM Corp.
Silicon Graphics Inc.
Sequent Computer Systems

Sun Microsystems, Inc.
Digital Equipment Corp.
Digital Equipment Corp.

32

32

64

64

32

32

32

32

32

32

Table 1: The Computers
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We should also note that the timings are not meaningful when
comparing among many machines, because the loads were very
different. On the assumption that none of the loads changed
dramatically during the testing (an assumption that in fact held),
the ratios express the amount of speedup quite accurately; this is
why we use them in this section, rather than the times.

compurer *nn"t ltåo"lÏ,'n o *nnå3,0ä 
oIIn o iliiiJi

Amdahl 5880

Convex I (32)

Convex I (64)

Cray 2

IBM PC/RT
IRIS 25OOT

Sequent 21000

Sun 3/50

vAX 1ll780
vAX 1ll78s

7.18

4.29

4.85

9.50

7.88

8.37

8.89

7.33

6.t2
6.78

7.19

4.26

4.84

9.51

7.89

8.32

8.67

7.21

s.88
6.82

7.97

5.09

5.62

r0.28
8.67

r0.98

9.74

9.4s

6.1 5

7.56

8.00 1.00

5.04 1.00

5.60 1.00

10.30 1.00

8.74 1.00

10.95 1.00

9.77 1.00

9.29 1.00

6.00 1.00

7.77 1.00

Table 2: Ratio of Mean Execution Times:
DES Encryption Routines
UNIX Interface

Table 2 gives the ratio of the mean execution time of the DES
encryption routines to the UNIX standard DES encryption rou-
tines. The interface is the same; the standard UNIX routines sel-
key and encrypt (see øypt(3) in [CSRG 1986] or crypt(3C) ín
[AT&T 1984]) can be replaced by these simply by naming a library
to the linking loader. In all cases, there is a substantial speedup,
from a factor of +.3 for the Convex running with 32 bits per word
and using the 6 bit path version not using G, to 11.0 on the IRIS
2500T running the 12 bit path version.

Based on these figures, we suspect that a good portion of the
time involved is bit packing; the interface packs 64 bits, each ini-
tially in its own byte, into 8 bytes. So, if we eliminate this pack-
ing, we should see the new routines speed up. In fact this is what
happened. As evidence of this claim, consider Table 3. Except
for the last column, all counts are from calling the routines
directly, without the UNIX interface; so, there is no bit packing
done. In all cases, the new routines are substantially faster than
the standard UNIX functions, with the improvement ranging from
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computer
6 bit path 12 bit path standard

withoutG withG withoutG withG function

Amdahl 5880

Convex I (32)

Convex I (64)

Cray 2
IBM PC/RT
IRIS 25OOT

Sequent 21000

Sui ¡rso
vAX I l/780
vAX I l/785

t4.46 14.80 1.00

7.52 7.31 1.00

8.64 8.59 1.00

2r.60 21.66 1.00

15.39 15.69 1.00

20.69 20.66 1.00

20.97 21.27 1.00

17.36 16.71 1.00

tt.4l 11.69 1.00

17.65 20.07 1.00

tt.99
5.85

6.99

18.51

t3.t4
12.99

17.14

tt.29
12.24

1s.66

r2.04

5.87

7.00

18.55

t3.24
t2.96
t7.22
1 1.07

t1.44

I 4.55

Table 3: Ratio of Mean Execution Times:
DES Encryption Routines

a factor of 5.9 for the Convex using 32 bits per word and running
the 6 bit path version without G to 21.7 on the Cray 2 running the
12 bit path version without G.

The increase in speed of the UNIX password encryption rou-
tine is far more dramatic; Table 4 documents them. Although the
password encryption algorithm is essentially 25 iterations of the
DES encryption routine, all .F 1 and all but one of the F3 are omit-
ted; hence, we expect the ratios to be more dramatic than those in
Table 3. Table 4 shows our expectations are fulfilled. The factors

computer *nnouul'åou1l,rn o *noå'r,oä 
ollfln o itr"ÎäÎ

Amdahl 5880 17.25

Convex I (32) 10.56

Convex I (64) 13.15

Cray 2 42.09

IBM PC/RT 19.25

rRrs 2500T 16.66

Sequent 21000 23.62

Sun 3/50 14.70

vAX 11/780 17.01

vAX 1ll785 19.71

Table 4: Ratio of Mean Execution Times:
Password Encryption Routines
UNIX Interface

16.82

10.5 5

13.01

41.99

18.93

16.87

23.39

14.88

t5.67
17.89

19.52

16.29

19.60

59.35

24.12

30.55

29.96

26.00

16.57

24.r0

19.50 1.00

16.I l 1.00

19.67 1.00

59.92 1.00

23.96 1.00

3t.47 1.00

29.41 1.00

26.49 1.00

15.90 1.00

22.36 1.00
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of improvement range from a low of 10.6 for the Convex using 32

bits per word and running the 6 bit path version (with or without
G) to a high of 60.0 for the IRIS 2500T running the 12 bit path ver-
sion using G.

Finally consider the speedup mentioned in the previous sec-

tion, namely omitting the transformation F3. How much this
affects the speed depends quite a bit on the architecture of the
machine; if it can handle bytes well, there should be little effect,

but if it is optimized to work with words the omission may
improve things substantially. Table 5 bears this out; the increase

for byte-oriented machines is typically I or 2 more iterations than
when ,F3 is included, but for machines such as the Cray 2, the
speedup is far more substantial (on the order of 1l iterations when
a 12 bit data path is used).

These timings demonstrate that there is a substantial perfor-
mance gain by using the suggested techniques to speed up the DES

routines and the UNIX algorithm. In fact, the speedup is so sub-

stantial that trying each word in a dictionary to see if it matches a
user's encrypted password becomes feasible. (One of the goals of
salting was to avoid this attack [Morris & Thompson 1979].) Say

an on-line dictionary contains 25,000 words. Using the standard
password encryption function on a VAX Il/780, it would take
17,730.5 seconds (about 5 hours) to check a particular encrypted
password; to check a collection of too passwords, it would take

6 bit path 12 bit path standard
computer without G with G without G with G function

Amdahl 5880 t8.24

Convex I (32) ll.l3
Convex 1 (64) l4.ll
Cray 2 47.40

IBM PC/RT 22.77

IRIS 2500T 17.33

Sequent 21000 25.04

suN 3/50 15.26

vAX 1ll780 18.87

vAX 11/785 20.42

17.89

10.99

14.03

47.06

22.17

17.58

24.t2
15.38

t5.4t
t9.97

21.56

17.55

22.08

7 t.55
28.00

32.82

32.63

27.71

17.74

27.6r

21.58 1.00

t'7.38 1.00

21.91 1.00

71.26 1.00

27.66 1.00

33.78 1.00

31.97 1.00

28.12 1.00

17.06 1.00

25.11 1.00

Table 5: Ratio of Mean Execution Times:
Password Encryption Routines
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1,773,049.6 seconds (about 20.5 days) if each used a different salt.
But using this method, it would take 1002 seconds (about 17

minutes) to check a particular encrypted password, and 100,200.0

seconds (about 28 hours) to check 100 encrypted passwords each

with a different salt. This shows the danger of relying on a
routine's computing something slowly to provide protection; it
also demonstrates the old adage that making a cipher more com-
plex does not make it more secure.

7. Conclusion

The results of the previous section demonstrate that the UNIX
password routines can be made significantly faster. In fact, even
if the salt were z4 bits rather than 12, the algorithm would still be
amenable to the same type of attack. The problem is that the
method used to perturb q6 cãrr be implemented as a bit operation
rather than forcing it to be a permutation of tables.

There is one area not touched upon in this discussion, and
that is the role of assembly language coding. It has been the
author's experience that coding in assembly language can cut
speed by up to 40o/o. We did not do this because there are too
many different machine languages and architectures involved. To
implement fhat part properly would require a special postprocess-

ing pass different for each computer. That would conflict with the
goal of a very portable package. (Currently the user must set two
compile-time flags properly, and may set two others that improve
performance on some machines should he or she so desire.)

We intend to use this version to test passwords, and see if the
characteristics noted in [Morris & Thompson 1979] hold for our
site. If so, we will try to change user habits. This version of the
encryption routine is a great step forward in realizing our goal of a
system where no passwords can be found by using a dictionary, or
a list of words, to compromise passwords.

240 Mafi Bishop



Acknawledgements

Thanks to Bob Van Cleef, who frrst suggested the project that led
to this \ilorlç and to David Balenson, who pointed me to many of
the papers that led me to think of this mathematical representa-

tion of the DES. Thanks also to Robert Baldwin, who made the
observation (referred to in section 4) that the salt could be com-
puted in four instructions per iteration; and I am grateful for his
very clear exposition, Finally, I am grateful to Peter Salus for the
valuable comments and suggestions on earlier drafts of this papel;

his comments materially improved its clarity.

An Applicatíon of a Fast Data EneryBtíon Standard ImBlententøtíon 241



Appendix A:
The DES Tables

The permutations, expansions, and substitutions are controlled by
the following tables. For permutations and expansions, the
number in the i th position is the number of the input bit to be
output at that position; for the substitution, the first and last bits
indicate the row number, the middle four bits the column
number, and the position of the 6 bits within the 48 bit data the
number of the table used. Read left to right, starting at the top
row; so with the table for IP, the first twenty bits of the output
will be bits 58, 50, 42, 34,26, lg, 10, 2, 60, 52, 44, 36,29,20, 12, 4,

62,54,46, and 38 ofthe input.
The following are the tables used for encrypting and decrypt-

ing the message.

Table for zr¡p

58 50 42 34 26 t8 t0 2 60 52 44 36 28 20 12 4
62 s4 46 38 30 22 t4 6 64 56 48 40 32 24 t6 I
57 49 4t 33 25 t7 9 t 59 5t 43 35 27 19 ll 3

61 53 45 37 29 2l t3 5 63 55 47 39 3t 23 t5 7

Table for zrf
40 8 48 t6 56 24 64 32 39 7 47 t5 55 23 63 3l
38 6 46 14 54 22 62 30 37 5 45 t3 53 2t 6t 29
3644412522060283534311 51 19 s927
34 2 42 l0 50 18 58 26 33 I 4t 9 49 l7 57 25

Table for 4¿,

2345456789
l0 rt t2 t3 12 t3 t4 15 16 t7
l8 19 20 2t 20 21 22 23 24 25
262728292829303132 I

Table for zrp

7 2021 29 1228 t7 | t5 2326 5 18 31 10

824143227 3 919 1330 62211 42s

32 I
89

16 l7
24 25

t6
2

242 Matt Bishop



Table for o$)

14 4t3r 21511 8 310 612 5 90 7

015 74t4 2t3 110 6L2ll 9 53 8

4 tt48t3 6 2tr15t2 9 7 3105 0

ts12 82 4 9 t 7 511 31410 0613

Table for ofz)

15 1 814 611 3 4 97 213r20 510
313 4 7t5 2 814120 110 69tr 5

014 7llI0 413 1 5812 6 93 215
t3 810 1 315 4 2lr6 712 0514 9

Table for ø$)

10 0 914 6 315 5 t1312 711 4 2 8

13 7 0 93 4 6r0 2 8 5t4t2llt5 I
13 6 4 9815 3 011 1 2t2 51014 7

11013 06 9 8 7 4t514 311 5 212

Table for ø$+)

7t3t43 0 6 910 r28 5trt2 415
L3 8115 615 0 3 472t2 11014 9

l0 6 90t2ll 7t315t314 5 2 8 4

315 0610 113 8 945tt12 7 21.4

Table for o$)

2t2 4 t 7r0tr 6 8 5 31513014 9

t4tt 212 4 713 I 5 01510 39 8 6

4 2 1111013 7 815 912 5 63 014
11 812 7 tt4 213 615 0 9104 5 3

Table for o$o)

t2 tt0t59 2 6 8 013 3 4\4 7 5rr
1015 4 2712 9 5 6 t1314 011 3 I
91415 52 812 3 7 0 410 11311 6

4 3 21.29 515 10tr14 L 7 6 0 813

Tabte for oS)

4tt 2t415 0 813 3129 7 5106 1

13 011 7 49 11014 3512 2158 6

t 4ttt3r23 714 10156 8 0 59 2

61113 8 1410 7 9 501514 2312
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Table for 
"$)13 2 84 61511 110 9 3t4 5 At2 7

11513810 3 7 412 5 611 014 I 2
vLt 4t 9t214 2 0 61013ls 3 5 I
2 lL47 410 8131512 9 0 3 5 6lt

The following are the tables for the functions to generate the
key schedule.

Table fot rp".,
57 49 41 33 25 L7 9 I 58 s0 42 34 26 t8
l0 2 59 51 43 35 27 19 tt 3 60 52 44 36
63 55 47 39 31 23 15 7 62 54 46 38 30 22
14 661534537292113 5282012 4

Table far rrç,
t4t7tr24 I 5 328t5 62110
231912 426 816 7272Aß 2
41 52 3t 37 47 55 30 40 sl 45 33 48
44 49 39 56 34 53 46 42 50 36 29 32

Schedule of left shifts for key schedule computation
1122222212222221
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Appendix B:
Precomputation of
F ,' F rr*T' F 3' and G

The following program precomputes F1, F2twr, and .F3 in the
arrays fsubl , ßubzmr, and fsub3, respectively.

var pisublP: arrayll..64] of integer; (*, zr¡p as an array *)
etasubE: array[1..48] ofinteger; (* 4¿ as an array *)
etasubEinv: arrayll..32l of integer; (* a;l as an array *)
sigmasubs: array[..8][1..64] of integer; (* øs as an array *)
pisubP: arrayll..32l of integer; (* zrp as an array *)
pisublPinv: anayll..64l of integer; (* "ti as an array *)

fsub1: array[..96] of integer; (* for r'1 *)
fsub2INT: arayll..32l of integer; (* for F2¡7¡7 as an array *)
fsub3: arrayll..64l of integer; (* for ,F3 x)

tmp: array[1..64] of integer; (* used to store q¡L *)

(* compute the left half of r'1 as an array *)
fori:= 1to48do

fsubl [i] = pisublP[etasubEli]l;
(* compute the right half of F1 as an array *)
for i := 49 to 96 do

fsub I [i] = pisublP[etasubE[i- 471 + 321;
(x combine the permutations in Fzt¡,tr x)
fori::1to48do

fsub2lNT[i] = pisubP[etasubEli]l;
(x compute TxqErE and put it in tmp *)
fori::lto32do

tmp[i] : etasubEinv[i] + 48;
for i := 33 to 64 do

tmp[i] = etasubEinv[i-32];
(x compute f 3 as al array *)
fori:= 1to64do

fsub3[i] = tmplpisublPinvlill;

The following shows how to compute G; its values are stored in
the anay g.

var pisubPCl: array[1..56] of integer; (x rrr-, as an array x)

pisublSH: array[1..16] of integer; (* ozsn as an array *)
pisubPC2: array[1..48] of integer; (* or"-t as an array *)
g: array[1..16]t1..481 ofinteger; (* for G x)
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tmp: integer; (* used to exchange elements *)

(* compute g as an array *)
for i:: I to 16 do begin

(* compute the elements of r1$¡¡rpç-¡ âS 41t array *)
for j := I to pisubl.SH[i] do begin

tmp:: pcl[1];
fork:=2to28da

pclLi-11 :- pcl[il;
pcl[2S] := tmpi
tmp := pcl[29];
for k ;= 30 to 56 do

pcl[i-l] := pclfil;
pc1[56] := tmpi

end;
(1 now apply zra, *)
forj:=lto48do

s[ilLj] = pisubPCl [pisubPC2[i]l;
end;
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Appendix C:
The Functions
F ,' F rr*r' F 3' and G

The following are tables of bit permutations in the same format as

those tables in Appendix A. Note that these ate not used directly
in the fast implementation, but are used to compute bit vectors

which are.
The meaning and nature of each function is discusses in sec-

tions 2 and 3.

F1

8 58 50 42 34 26 34 26 18 t0 2 60

2 60 52 44 36 28 36 28 20 t2 4 62

4 62 54 46 38 30 38 30 22 14 6 64

6 64 56 48 40 32 40 32 24 16 8 58

7 57 49 4t 33 25 33 25 t7 9 I 59

1 59 51 43 35 27 3s 27 t9 1l 3 6l
3 61 53 45 37 29 37 29 2t 13 5 63

5 63 55 47 39 3t 39 31 23 15 7 57

Fztnr
t6 720212921291228t7 I
tt52326 526 5183ll0 2

2 8241432143227 3 919
191330 622 622tr 425 1.6

F3

tt 59 23 71 35 83 47 95

L0 58 22 70 34 82 46 94
957216933814593
856206832804492
553176529774189
452166428764088
351156327753987
250t46226743886

25
t7
l0

9
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Go

1051346049173357 2 9t942 3352625
44 58 59 t 36 27 t8 4t 22 28 39 54 37 4 47 30
5 53 23 29 6t 21 38 63 t5 20 45 t4 t3 62 55 3t

Gr
243265241 9254959 tt|346027 1817

36 50 51 58 57 19 10 33 t4 20 3t 46 29 63 39 22
2845152153 133055 71237 6 5544723

G2

5127 10362558 93343 5060184411 2t
49 34 35 42 4t 3 59 t7 6t 4 15 30 13 47 23 6
t2 29 62 5 37 28 14 39 54 63 2t s3 20 38 3t 7

G3

35115949 9425817273444 25760 5150
33 18 19 262s 52 43 I 45 55 62 1428 31 7 53
63 13 46 20 2t 12 6L 23 38 47 5 37 4 22 t5 54

Ga

19 60 43 33 s8 26 42 I 11 18 57 5t 4t 44 35 34
t7 2 3r0 93627502939466112t55437
472830 4 56345 7223t202t55 66238

G5

34427t7421A26 5060 24t352557 1918
r 5t 52 59 58 49 tr 34 t3 23 30 45 63 62 38 2r

3112145520472954 615 4 539534622

G6

5257tt t2659 1034445125t9 941 32
50 35 36 43 42 33 60 18 28 7 14 29 47 46 22 5

15 63 6t 39 4 3t L3 38 53 62 55 20 23 37 30 6

G7

3641 6050104359185735 9 358255251
34 19 49 27 26 t7 44 2 12 5461 13 31 30 6 20
62474523 55152822374639 4 7211453
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Gs

57 33 52 42 2 35 5l t0 49 27 I 60 50 t7 44 43

261r411918 93659 44653 5232261t2
54 39 37'rs 47 7 20 t4 29 38 31 63 62 13 6 45

Gs

4t t7 3626 51 19 35 59 33 11 50 4434 I s7 27

10602s 3 2584943 55303720 7 64563
38 23 2L 62 3L 54 4 6t 13 22 t5 47 46 28 53 29

Gro

25 1491035 3194317603457 18504tll
59 44 9 52 5t 42 33 27 39 t4 2t 4 54 53 29 47

22 7 546 1538554528 6623130123713

Gt
95033591952 327 t441841 2342560

43 57 58 36 35 26 t7 lt 23 6t 5 55 38 37 t3 3l
6 54 20 30 62 22 39 29 t2 53 46 15 14 63 2t 28

Gn
s8341743 33652 115057 2255t18 944
27414249 1910 160 745203922212815
5338 4t446 62313633730626147 512

Gß
4218 r275249366034415t 935 25857
rr252633 35950445429 423 6 51262
37 2255 61 30 53 7 28 47 2l 14 46 45 3L 20 63

Gø
26 2 50 11 36 33 49 44 L8 25 35 58 19 5L 42 4t
60 9 r0 17 52 43 3457 38 13 55 7 53 20 63 46

2t 6 39 45 14 37 54 t2 31 5 61 30 29 15 4 47

Gs
t8 59 42 3 57 25 4t 36 r0 17 27 50 rr 43 34 33

52 1 2 94435264930 547624512 5538
t36t3t37 62946 42328532221 76339
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Appendix D:
Detailed Information
about the Computers

Amdahl 5880

MANUFACTURER: Amdahl Corp.
OPERATING SYSTEM: UTS 580 VETSiON I.1.3
vERSIoN oF c coMpIrrR: (Version.c) 1.27.1.1

TIMER ACCURACY (INTERVALS/SECOND): 60

BITS PER WORD: 32

Convex C-1

MANUFACTURER: Convex Computer Corp.
OPERATING SYSTEM: Convex UNIX v6.1.33.22
VERSION OF C COMPILER: v2.O.O.I

TrMER ACCURACY (TNTERVALS/SECOND): 100

BITS PER WORD: 32 Or 64

The vectorizing abilities of this machine were not used.

Cray 2

MANUFACTURER: Cray Research Inc.
OPERATING SYSTEM: UNICOS 3.0

TrMER ACCURACY (TNTERVALS/SECOND): 243902439
BITS PER V/ORD: 64

The vectorizing abilities of this machine were not used.

IBM PC/RT
MANUFACTURER: IBM COTP.

OPERATING SYSTEM: 4.3 BSD UNIX (NORTHSTAR)
TrMER ACCURACY (TNTERVALS/SECOND): 100

BITS PER V/ORD: 32

IRIS 25OOT

MANUFACTURER: Silicon Graphics Inc.
OPERATING SYSTEM: GL2-V/3.6
TIMER ACCURACY (INTERVALS/SECOND): 60
BITS PER WORD: 32
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Sequent Balance 21000
MANUFACTUnen: Sequent Computer Systems
OPERATING SYSTEM: DYNIXTM v3.0.4 NFS
PRocESSoR: National Semiconductor 32032
TrMER ACCURACY (TNTERVALS/SECOND): 100
BITS PER V/ORD: 32

Sun 3
MANUFACTURER: Sun Microsystems, Inc.
OPERATING SYSTEM: Sun UNIX 4.2 Release 3.4
PRocEssoR: Motorola Corporation 68020
TrMER ACCURACY (INTERVALSISECOND): 60
BITS PER'WORD: 32

vAX 11/780

MANUFACTURER: Digital Equipment Corp.
OPERATING SYSTEM: 4.3 BSD UNIX
TIMER ACCURACY (INTERVALS/SECOND): 100
BITS PER V/ORD: 32

vAX l11785

MANUFAcTURER: Digital Equipment Corp.
OPERATING SYSTEM: 4.3 BSD UNIX
TrMER ACCURACY (TNTERVALS/SECOND): 100
BITS PER WORD: 32
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Appendix E:
Timings þr the DES and Password

Encryption Routines

The tables below indicate the mean time per call to the routines.

These tables were used to derive the tables in section 6.

computer
6 bit path

without G with G
12 bit path standard

withoutG withG function

Amdahl5880 2.829e-04 2.823e-04

Convex I (32) 1.789e-03 1.800e-03

Convex I (64) 1.572e-03 1.578e-03

Cray 2 5.398e-04 5.391e-04

IBM PC/RT 1.035e-03 1.034e-03

IRIS 2s00T 2.023e-03 2.035e-03

Sequent 21000 5.687e-03 5.837e-03

Sun 3/50 1.983e-03 2.017e-03

vAX I l/780 4.556e-03 4.741e-03

vAX 11/785 3.194e-03 3.176e-03

2.547e-04 2.539e-04 2.031e-03

1.506e-03 1.523e-03 7.670e-03

1.358e-03 1.363e-03 7.632e-03

4.989e-04 4.977e-04 5.126e-03

9.417e-04 9.343e-04 8.163e-03

l.54le-03 1.545e-03 1.692e-02

5.192e-03 5.179e-03 5.058e-02

1.538e-03 1.565e-03 1.454e-02

4.536e-03 4.649e-03 2.788e-02

2.867e-03 2.788e-03 2.166e-02

Execution Time Per Call (seconds):

DES Encryption Routines
UNIX Interface

computef
6 bit path 12 bit Path

without G with G without G with G

Amdahl 5880

Convex I (32)

Convex I (64)

Cray 2

IBM PC/RT

IRIS 25OOT

Sequent 21000

Sun 3/50

vAX l11780

vAX 11/785

1.694e-04

l.3l2e-03
1.092e-03

2.769e-04
6.214e-04
1.303e-03

2.951e-03

1.288e-03

2.277e-03
1.384e-03

1.688e-04

1.308e-03

1.090e-03

2.764e-04

6.166e-04

1.305e-03

2.938e-03

1.3 l4e-03
2.436e-03

1.489e-03

1.404e-04

1.020e-03

8.829e-04

2.373e-04

5.303e-04

8. I 80e-04

2.412e-03

8.373e-04

2.443e-03

1.227e-03

1.373e-04

1.049e-03

8.889e-04

2.367e-04

5.204e-04
8.192e-04
2.378e-03

8.701e-04

2.386e-03

1.079e-03

Execution Time Per Call (seconds):

DES Encryption Routines
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computer
6 bit path

without G with G
12 bit path standard

withoutG withG function

Amdahl 5880

Convex I (32)

Convex I (64)

Cray 2

IBM PC/RT

IRIS 25OOT

Sequent 21000

Sun 3/50

vAX l l/780
vAX l l/785

3.055e-03

1.854e-02

1.488e-02

3.1 5 1e-03

l.09le-02
2.616e-02

5.499e-02

2.518e-02
4.1 8 1e-02

2.815e-02

3. I 33e-03

1.856e-02

1.504e-02

3. I 58e-03

l. I l0e-02
2.584e-02

5.553e-02

2.489e-02

4.538e-02

3.102e-02

2.699e-03

1.202e-02

9.984e-03

2.234e-03

8.712e-03

1.427e-02

4.335e-02

1.424e-02

4.291e-02

2.304e-02

2.701e-03
l.2l5e-02
9.949e-03

2.213e-03

8.770e-03

1.385e-02

4.416e-02
1.398e-02

4.474e-02
2.483e-02

5.268e-O2

1.957e-01

1.957e-01

1.326e-0 I
2.l0le-01
4.360e-01

1.299

3.702e-01

7.l1le-01
5.551e-01

computer

Execution Time Per Call (seconds):
Password Encryption Routines
UNIX Interface

6 bit path
without G with G

12 bit path
without G with G

standard
function

Amdahl 5880

Convex I (32)

Convex I (64)

Cray 2

IBM PC/RT

IRIS 25OOT

Sequent 21000

Sun 3/50

vAX 1ll780

vAX ltl785

2.888e-03 2.945e-03

1.758e-02 l.78le-02
1.387e-02 1.395e-02

2.798e-03 2.818e-03

9.226e-03 9.229e-03

2.516e-02 2.481e-02
5.187e-02 5.385e-02

2.426e-02 2.407e-02
3.768e-02 4.614e-02
2.719e-02 2.780e-02

2.443e-03 2.442e-03
l.1l5e-02 l.l27e-02
8.860e-03 8.929e-03
1.854e-03 1.861e-03

7.504e-03 7.596e-03

1.328e-02 l.29le-02
3.980e-02 4.062e-02
1.336e-02 l.3l6e-02
4.008e-02 4.169e-02
2.010e-02 2.2lle-02

5.268e-02

1.957e-01

1.957e-01

1.326e-01

2.101e-01

4.360e-01

r.299

3.702e-01

7.1I le-01

5.551e-01

Execution Time Per Call (seconds):
Password Encryption Routines
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