
Yacc Meets C+ +

Stephen C. Johnson

Ardent Computer Corporation

ABSTRACT: The fundamçntal notion of attribute
grammars lKnuth 1978] is that values are associated
with the components of a grammar rule; these
values may be computed by synthesízing the values
of the left component from those of the right com-
ponents, or inheritíng the values of the right com-
ponents from those of the left component.

The Yacc parser generator, in use for over 15 years,
allows attributes to be synthesized; in fact, arbitrary
segments of code can be executed as parsing takes
place. For the last decade, Yacc has supported arbi-
ftary data types as synthesized values and per-
formed type-checking on these synthesized values.
It is natural to think of this synthesis as associating
a value of a particular type to a grammar symbol
when a grammar rule deriving that symbol is recog-
nized.

Languages such as C++ support abstract data types
that permit functions as well as values to be associ-
ated with objects of a given type. In this frame-
work, it appears natural to extend the idea of
computing a value at a grammar rule to that of
defining a function at a rule. The definition of the

Much of this work was done when the author was employed by AT&T Information
Systems. A previous version of this paper was presented at the April 1988 EUUG
meeting (London).

@ Computing Systems, Vol. I . No.2 . Spring 1988 159

function for a given object of a given type depends
on the rule used to construct that object.

In fact, this notion can be used to generalize both
inherited and synthesized attributes; unifying them
and allowing even more expressive power.

This paper explores these notions, and shows how
this rule-based definition of functions allows for
easier deflnitions and much more flexibility in some
cases. Several examples are given that are hard to
express using traditional techniques, but are natur-
ally expressed using this framework.

I. Introduction

ri/hen we write a grammar rule such as

expr : expr t+ t term ;

we frequently associate values with the components of the rule
and use these values to compute the values of other components.
For instance, in the above example we might wish to associate

integer values with the symbols expr and term, and include a rule
for generating the value of the left-hand expr from the value of the
right-hand expr and term. Yalues associated with the left side of a
rule that are computed from the values on the right are called syn-

thesized attributes.
In other cases, we wish to use values associated with the left

side of the rule to compute values of components on the right side

of the rule. These values are known as inherited attributes. One

importairt example of inherited attributes involves passing symbol
table information into expressions and statements.

Allowing inherited and synthesized attributes to be specified

without restriction makes it difficult to generate parsers auto-
matically from the rule descriptions. For example, it is very

160 Stephen C. Johnson

difficult even to decide whether the defrnitions are potentially cir-
cular lJazayeri et al. 19751. Nevertheless, attribute grammars are
very expressive, making them attractive both as a basis for editors
and compilers [Reps 1984] and as a platform for more extensive
computational and database systems [Horowitz & Teitelbaum
I e8s l.

In a parallel development, languages such as AdarM [United
19831, Modula-2 lWirth 1983], and C++ [Stroustrup 1986] have
explored ways of extending traditional program language type
structures in much the same fashion. In Ada and C++, the type
concept is extended to include not just the values and the data but
also the actions that may be performed on these values. The key
idea is that an abstract model of the dafatype, and the operations
provided on it, is presented to the programmer; the details of the
implementation are hidden.

Yacc is a parser generator that has been available under UNIX
since the early 1970s. The original versions of Yacc permitted
only one attribute, of integer type, for each grammar symbol.
Later versions allowed other types, including structures, to be
computed. However, because the parsing method is bottom up
(LALR(I)), and the actions are executed as the rules are recog-
nized, only synthesized attributes can be handled directly. More
complex translations must be done by building a parse tree, and
then walking this tree doing the desired actions.

In Yacc, a unique datatype may be associated with each non-
terminal symbol. In this case, every rule deriving that nontermi-
nal must return a value of the defined type. Each token may also
have a defined type; in this case, the values are computed by the
lexical analyzer. An action computes the value associated with
the left side of a rule; this action depends on the particular rule
and the values of the components on the right of the rule.

In trying to extend Yacc to handle C++, these two streams
naturally came together in a prototype tool called y++. Since
there was already an association of types with nonterminals, it
became natural to ask whether functions could be defrned on these
types as well, and what meaning this might have. Some examples
proved compelling.

Yacc Meets C++ 16l

1.1 Examples

Given a rule

expr : expr r+r expr ;

we might choose to define a function print) , on the
nonterminal/type expr. ln the context of this particular rule,
print) might be defined as

print() { $1.print(); putchar('+r) ; $3.print(); }
(As with Yacc, we will use $1, $2, etc. to refer to the components
of the right side of the rule, and $$ to refer to the left side).

We might also choose to defrne another function, type, oî
expr, and this might have a totally different definition:

type() { return(exprtypel'+', $1.type(),
$3.type()));)

Since tokens are only created by the lexical analyzer (and

never by rules), functions such as print and expr can be called
implicitly as part of a particular rule, and need no special
definition mechanism.

By allowing these rule-defined functions to have arguments
and return values, we get many of the effects of inherited attri-
butes:

type(TYPE t) t $1.type(t) ; $3.type(t) ;)
In C+ +, a function that is defined as a member of a class can
obtain access to the values in an instance ofthat class; the key-
word this allows such values to be explicitly manipulated. In
y++, when a function/is defrned on a nonterminal/type X, not
only the value, but also the function defrnition itself depends on
the rule used to define the instance of x.

A nice example is given by the rule:

expr : expr r+r expr ;

on which we define two functions, polísh and revpolish:

pol.ish() { putchar(r+') ; $1.poLish() i
$3.pot ish() , l

162 Sæphen C. Johnson

revpotish() t $1.revpol.ish() i $3.revpot.ish() ì
putchar(r+1) ;)

These two functions can be similarly defrned for other expressions.
Two input line types can be defined as well:

I ine : ilpREr expr
I i ne : ttpoSTil expr

and a function, print) , that is defrned as

print() t $2.pol.ish() ;)
on the first rule, and

print() t $2.revpoIish() ;]
on the second. Then, after a line hasbeen recognized, print will
print the expression in either prefrx or postfrx Polish form,
depending on the initial keyword of the line.

The attribute grammar approach to this would require generat-
ing and storing both the prefix and postflx translations, and many
intermediate translations as well. The above technique saves both
space and time.

To summarize this section: we associate datatypes (C++
classes) with nonterminal symbols and tokens. In addition to
values, these types have functions associated with them whose
defrnition depends on the rule used to recognize a particular
instance of the type. This mechanism generalizes both inherited
and synthesized attributes; later sections discuss implementation
and other applications.

2. Implementation

We have prototyped a tool, y++, to explore the semantic and syn-
tactic implications of these ideas. Some features of y++ are:

1. Every grammar symbol, token and nonterminal alike, is
associated with a C++ class.

2. Every class has 0 or more values, and 0 or more functions,
deflned on it.

Yacc Meets C++ 163

3. Every grammar rule may have associated with it 0 or more
functions that may be invoked to access and change the
values accessible to that rule. These functions may access

and change values of the result (left side) of the rule, and
the components (right side) of the rule, and invoke other
functions defined on the components of the rule.

In practice, y** specifications are transformed to C++ pro-
grams and compiled. yyparse returns a value that is, in effect, a
pointer to the parse tree. After calling yyparse (which causes some

input to be read and parsed), the returned value is used to access

the functions that are defined on the start symbol; presumably,

these cause transformations and output to be done.
When yyparse is called, it creates a data structure that

represents the parse tree. For tokens, it creates space large enough

to hold the values, if any, included in the token. For nontermi-
nals, the space created depends on the rule used to create the par-

ticular instance of the nonterminal. The rule'

A:BCD;

would cause space to be allocated as follows:

integer ruIe number
space for the A vatues
pointer to the B vatue
pointer to the C value
pointer to the D vatue

In the case of simple actions, not depending on the rule, we sim-
ply index past the value to obtain the components. In the case

where the actions depend on the rule number, we generate a con-

ditional based on the stored rule number. In the case where B, C,
or D is a token, the value returned from the lexical analyzer is

saved instead of a pointer.
There are a number of scope issues not yet resolved. If there

are two calls to yyparse, for example, does the second parse tree

overwrite the first, or do both remain active? The issue of default
actions and values is also tricky. There is little point in wasting

space on characters and literal keywords returned by the lexical
analyzt when these are implicitly known from the rule number;
the question is how to recognize this and exploit it.

164 Stephen C. Johnson

A similar issue is the treatment of default functions. If a func-
tion is called for a rule that contains no defrnition for that func-
tion, should a default definition be assumed? We currently
consider this a semantic error and produce a message, semantic
error, by analogy with the syntax error message of Yacc.

Another issue is error handling. There is a premium in being
able to return a sensible structure for any input, even those in
error, to allow the user to craft special functions that give particu-
larly good error messages. The exact mechanism by which these
error rules might be constructed is still open.

Finally, given a data structure representing a parse tree, it is
very nice to be able to rewrite it; y+ + should probably provide
such operations through a user interface.

2.1 A Simple Example

This section sketches how y+ + can be used to make a preproces-
sor that translates extensions into a base language. We begin with
a function ident, defined on every nonterminal symbol of the base
language grammar; this function, when called, produces a literal
text representation of the rule. For example, for the rule:

stat : expr r; I

we might define ident as

ident() t $2.ident() ; putchar(';') ;)
This grammar can quickly be extended to a preprocessor by sim-
ply adding rules for the new constructions, and defining ident on
the new rules to translate into the base definition. For example,
suppose we wish to augment C with the forever statement. After
recognizing the keyword in the lexical analyzer, we add the rule:

stat : Itforevertt stat ;

and the associated defrnition of ident:

ident() { printf("whi Ie(1)") ; $2. ident() ;]
Clearly, translators that required symbol tables, etc., would be

Yacc Meets C++ 165

harder, but one could envision a standard C grammar and lexical
analyzer being far more reusable in y+ + than in Yacc.

2.2 Impressive Example

Giegerich and Wilhelm have discussed the difficulty of generating
"short-circuit" evaluation of Boolean expressions using the usual
forms of syntax-directed translations (see also Aho et al. [1985]).
This becomes relatively straightforward in y++. A function,
bool-gen(t, f n /, is defined on the rules involving the short-
circuited operators. / is the label to go to if the expression is true,
/the label for false, and n has the "preferred" label, either t or f.
The rule

expr : expr 0R expr

for example would defrne bool-gen as

boot-gen(t, f, n)
{

int x = get_nebr_Label.();
$1.boot-gen(t, x, x);
define-[abel.(x);
$3.bool.-gen(t, f, n);

)

and similarly for AND and NOT. The definition for those expres-
sions not involving short-circuit operations would look like:

boo[-gen(t, f, n)
{

. /* get the vatue of the expression */
if(t == n)

t . . l* branch if fal.se to [abe['Ít */]
eIse

t . . /* branch if true to [abe['tt */]
)

3. Conclusion

This paper describes a simple extension of parser generators to
handle abstract data types; in this way, some translations can be
specifred easily that would be more difficult to describe with con-
ventional attribute grammars.

166 Srcphen C. Johnson

Moreover, the notions seem to generalize attribute grammars,
while at the same time allowing the ideas of Yacc to be brought to
bear on the concepts in C++, or perhaps vice versa.

References

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools, Addison-Wesley, New York, 1985.

Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley,
Reading, MA, 1986.

R. Giegerich and R. Wilhelm, Counter-one-pass features in one-pass
compilation: a formalization using attribute grammars, Information
Processing Letters 7(6) pages 279-284.

S. Horowitz and T. Teitelbaum, Relations and Attributes: A symbiotic
basis for editing environments, Proceedings of SrcrteN 85 Sympo-
sium on Language Issues in Programming Environments, Seattle,
Vy'A, pages 93-106, June 1985.

M. Jazayeri, W. F. Ogden and W. C. Rounds, The intrinsic exponential
complexity of the circularity problem for attribute grammars, Com-
munications of the ACM 1S(12) pages 697-706, t975.

D. E. Knuth, Semantics of context-free languages, Math. Syst. Theory,
5(l) pages 95-96,March 1971.

T. Reps, Generating Language-Based EnvironmenÍs, MIT Press, Cam-
bridge, MA, 1984.

United States Department of Defense, Reference Manual for the Ada Pro-
gr amming Language, ANSI/MIL-STD- I 8 I 5A- I 983, Feb. I 983,
Springer-Verlag, New York.

N. Wirth, Programming in MODULA-2, Springer-Verlag, New York, 1983.

lsubmitted April 16, 1988; accepted May 23, I98Sl

Yøcc Meets C++ 167

