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ABSTRACT; make is the standard UNIX utility for
maintaining programs. It has been used by UNIX
programmers for almost l0 years and many UNIX
programs nowadays are maintained by it. The
strength of make is that it allows the user to specify
how to compile program components, and that the
system, after an update, is regenerated according to
the speciflcation and with minimum number of
recompilations. With the appearance of multiple
processor systems, the time needed to "make" a
program, or target, can be reduced effectively.
Although the hardware provides parallelism, few
tools are able to exploit this parallelism. The intro-
duction of parallelism to make is the subject of this
paper. We describe a parallel make and give an
analysis of its performance.
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l. Introduction

Large programs are often written as collections of small files rather
than as one big file so that changes to one source flle only require
recompilation of that file. A large C [Kernighan & Ritchie 1978]

program, for example, may be split up over tens, or even hun-
dreds of files. Code which is common to a set of source frles is

often placed in a single file, which is included (using a C prepro-

cessor #inctude line) in each ofthe source files. A consequence of
the inclusion of source code is that if we change an included frle,

we have to recompile all files that include the file. Instead of
recompiling all program components, we limit ourselves to recom-
piling the affected source code only. This efficiency, however,
imposes a strict discipline on the programmer, who has to
remenrber which frles depend on (i.e. "include") other files, and
which commands are used to regenerate components.

make [Feldman 1979] is a program that keeps track of which
object files are up to date and which must be regenerated by com-
piling their corresponding sources. Apart from the concept of effi-

ciently regenerating components, we can achieve more efficiency

by speeding up the commands that make executes, and adapting
make itself. With the advent of parallel processor systems, it has

become possible to speed up the operation of make by doing com-
pilations in paraliel. Parallelizing make, however, is not at all
straightforward; there are numerous problems and pitfalls. These
problems, their solutions, and various optimizations form the
body of this paper. We also discuss the performance of our paral-

lel make and compare it to work elsewhere.
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2. Speedins Up the Make Process

Apart from parallelism, there are several methods in decreasing
make's response time. On the one hand, it is possible to speed up
single compilations, which does not affect make itself. On the
other hand, we can optimize make, by, for example, eliminating
drivers, optimizing command invocation and task scheduling, and
compiling description files.

2.1 Concurrent Compilations

Much work has been done in the area of concurrent compilation.
A short overview of the work is given in [Seshadri et al. 1987].
Strategies for concurrently compiling a single program are, among
others, pipelining [Huen et al. 1977, Tanenbaum et al. 1983, Miller
& LeBlanc 19821, source-code splitting ISeshadri et al. 1987], and
parallel evaluation of attribute gtammars [Boehm & Zwaenepoel
19861. The main purpose of running a single compilation con-
currently is to decrease the response time. We can indeed speed
up the make process by invoking concurrent compilers, but, in
practice, few concurrent compilers exist yet. Moreover, make is
routinely used to invoke - besides compilers - generators (ø.g.,
yacc [Johnson 1978] and lex [Lesk 1978]), linkers, text formatters,
and many other tools. To effectively exploit parallelism inside
tools, we need concurrent tools, which still are rare. There are,
however, a few compilers available, which are able to do (part oÐ
the work concurrently. A compilation in ACK [Tanenbaum et al.
19831, for example, is done by passing the code through several
compiler components. make can exploit pipelining techniques by
efficiently scheduling the compiler components among the avail-
able processing power.

2.2 Eliminate Compiler Drivers

One possible improvement to make's responòe time is to replace
compiler "drivers," such as cc, by supplying rules to call the com-
piler phases explicitly. Instead of having the rule
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$(cc) $(cFLAGS) -c $*.c

we can introduce the rules

.c.i:
/t ib/cpp $(cFLAcs) $*.c )$*. i

. i.s:
/[ ib/ccom $(cFLAGS) $*. i $*.s

.s.o:
/bin/as $*.s $*.o

This is not normally done since the traditional make is unable to
use implicit rules transitively. More important, compiler drivers
introduce some means of compatibility, since, for example, calling
cc is portable among UNIX systems, while the invocation of the
compiler phases might differ.

2.3 Optimize Command Invocation

A considerable speed-up, which is already available (or easy to
implement) in existing makes, is optimizing the invocation of
commands by shunting out the shell whenever possible. If a com-
mand line contains no shell-specifrc constructs (such as ;, &&, &,

(, [, $, etc.) and commands (cd, for, if, case, etc.), make can place
the arguments in an argument array easily and invoke execve

itself, instead of calling a shell to parse and execute the command
line. Another strategy is to have a shell running as co-process to
make, and write command lines to the shell via a pipe. The latter
approach was adopted in nmake IFowler 1985].

2.4 Compile Description Files

Compiling description files instead of interpreting them introduces
some additional speed-up. Rather than reading and parsing the
description file at each invocation, make compiles it into a binary
format, and uses the binary description frle in subsequent invoca-
tions. The binary description frle may consist of make's internal
data structures, built when parsing the description frle. make has
to recompile the description file, if it is more recent than its com-
piled binary version. The method of compiling description files is
used in, for example, nmake.
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Another strategy is to translate the description file into a com-
pilable language, such as C, and compile the resulting program.
Instead of calling make to update a system, we, or the make com-
mand itself, can invoke the generated program. Both compiled
description files and generated make programs offer a constant
decrease in response time as only the make overhead is reduced.
However, since most of the execution time comes from executing
the commands, rather than from make interpreting the rules, the
gain here is small.

2.5 Exploit Parallelism

If multiple processors are available to execute commands for
make, a potentially large speed-up is possible by running com-
mands in parallel. We can get an optimum speed-up if we
schedule the commands cleverly. Consider the rule

prog: main.o utit.o prog.o

Assume that each of the compilations of main c and util.c into
main.o and util.o, respectively, takes / seconds, and the compila-
lion of prog.c into prog.o takes 2t seconds. If there are 2 proces-
sors available, main.o and util.o are made in parallel. The compi-
lation of prog.o is postponed until one of the processors frnishes,
which is (at least) at time l. From this moment on, it still takes 2t
seconds to make prog.o. The make process totally takes -3r

seconds. If, on the other hand, we let one processor make prog.c,
and let the other processor make main.o and util.o, as if the rule
were

prog: prog.o main.o uti[.o
then the make only takes 2/ seconds.

The problem of running r independent tasks, with known exe-
cution times, oî m similar processors with minimal response, or
finishíng, time, is studied by the theory of deterministic sequenc-
ing and scheduling [Lawler et al. t98l ], and is known as the
P I I C-u* problem. Since the problem is NP-complete, we are
dependent on heuristics. [Garey et al. 1978] gives an easy-to-read
introduction into various techniques involved with optimizing
scheduling algorithms.
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Known heuristics for a feasible schedule with minimum flnish-
ing time, often called the independent task-scheduling problem, ate
the list-scheduling algorithm, the LPT (Largest Processing Time)
algorithm, and the MULTIFIT algorithm. List scheduling treats
the tasks in the given order, and assigns each task in turn to a pro-

cessor which is free if there are free processors, or which is the
first one to finish a task if all processors are busy. A better
scheduling, with lower flnishing time, is LPT, which sorts the
given jobs according to decreasing execution time, and applies list
scheduling to the reordered list of jobs. MULTIFIZ [Coffman et
al. 19781 is the best scheduling algorithm (for our model) yet
found. The idea is to find a minimum value for the deadline, the
time all tasks need to have finished. The tasks are again assigned

in decreasing order of execution time, each to the lowest indexed
processor, if the total execution time on that processor does not
exceed the deadline. Otherwise, the next processor is taken. (This
strategy is called the first fit decreasing method.) For any values of
the deadline, the division among the processors either succeeds or
fails, according to which we adapt the deadline. MULTIFIT uses

binary search to flnd a minimum value for the deadline.
Should make itself reorder the dependency list, or does the

user have to specify the order himselfl The former approach
requires make to have knowledge of the time needed to execute a
command block, whereas the latter forces the user to estimate
times, which may differ among various environments. It is
difficult to come up with a set of heuristics for make to estimate
the execution time (such as "compilation time is proportional to
the length of the source"), since make has no idea of what a com-
mand does. One solution is to keep track of execution times of
command blocks in make runs, and use the results in future
makes. Possible implementations are to let make keep the timing
results in a global state file, or to enable make to reorder the
dependency lists and overwrite a description file, or output a new

description file.
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3. Parallelism and Distribution

Before discussing the techniques and problems of implementing a
parallel ma.ke, we consider the relation between parallelism and
distribution. Experiments IBaalbergen 1986] have shown that
running several compilations in parallel on a single processor in
general does not result in a significant speed-up, since compila-
tions are usually CPU-bound. At best, while one process is doing
I/O, another one can compute.

Several practical problems arise when running compilations in
parallel on a single-processor UNIX system. First, processes com-
pete for a frxed number of CPU cycles. The more processes there
are, the fewer cycles each one gets. Moreover, time needed for
swapping or paging increases as the number of processes grows.
The net result is that processes running in parallel slow down each
other. Second, each UNIX user is allowed to have only a limited
number (commonly 20 or 25) of processes running at a time. This
limit reduces the number of simultaneous compilations because
each one may need several processes.

If multiple processors are available, we can achieve a speed-up
by running each compilation on a different processor. The trick is
to arrange for this parallelism without burdening the programmer
with all the details. Several approaches are discussed in [Baalber-
gen 19861. In what follows we will assume that the mechanics of
forking off processes to remote CPUs is handled by the operating
system. Our concern is what should be run in parallel, not how
parallel execution is achieved. We assume that the underlying
operating system has a smart processor allocation strategy; that
multiple processors (say, at least 8) are available; and that com-
mands can be executed on any processor in the network without
losing efficiency. A distributed operating system that serves our
needs is Amoeba IMullender 1985, Tanenbaum & Mullender 1986,

Tanenbaum et al. 19861.
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4. Parallelizing Description Files

In this section we consider various naive approaches in making
make run commands in parallel by adapting description files.
Apart from the conclusion that correct parallelization of make is
not achieved by naively altering the description frles, and that it is
impossible to maintain compatibility with existing makes and
description frles, there are a few basic problems we have to solve
in designing a parullel make.

A first approach in making make run commands in parallel is
enveloping each command line in parentheses, and appending an
ampersand to it. The shell runs the command line in the back-
ground, and returns immediately. This simple and naive
approach will not work in practice due to the following problems:

l. The commands in a command block must execute in
sequence, since a command may use the result of a previous
command within the same command block.

2. Starting a job in the background via a shell causes the shell
to return immediately, and make to believe that the com-
mand has frnished. Moreover, make has no facility to wait
for the background process to frnish, nor can it tell whether
the command succeeded. It may decide to activate a rule's
command block, while its dependencies still are absent or
out of date.

3. make does not keep track of how many child processes are
still alive. The system may refuse to execute commands due
to the UNIX per-user process quantity. Letting make con-
tinuously try to fork off a process after a failure does not
solve the problem either. If, for example, cc is unable to
fork off a pass, it does not try again; it just reports back
failure.

4. There are commands which cannot run in parallel with each
other, because they use fixed file names. yacc is a standard
example.

Executing the commands in a command block sequentially,
and the command block as a whole in the background, solves
problem l. This is achieved by surrounding the command block
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by parenthèses, appending an ampersand to the closing paren-
thesis, and using a single shell to execute the command block as a
whole. Problems 2,3 and 4, however, still exist. Worse yet, the
latter mechanism introduces another problem:

5. Traditional make executes each command line of a com-
mand block in a separate shell. This means that a cd,
"change directory," command has effect only within a single
command line, not in the succeeding commands within the
same block. To get the same behavior if the command
block is executed in a single shell, we have to adapt the
command block in the description file.

Problems I and 5 are solved by the mechanism of surrounding
each command line by parentheses (i.e., execute it in a separate
shell); placing parentheses around the command block as a whole;
and appending an ampersand to it. This still leaves problems 2, 3
and 4 unsolved, and introduces a lot more, almost dummy, shells.

The next section discusses an approach which solves all five
problems.

5. Design of Parallel make

In order to design and develop our parallel make, which we have
called pmake, there are a few issues in making it easy to use.

5.1 Design Goals

An important issue is to maintain upwards compatibility; existing
description frles still should be accepted and interpreted properly,
and pmake description files should be acceptedby make. A
second important issue is to hide the parallelism completely from
the description file writer. Programmers and pmake invokers
should not be confronted with the use of complicated constructs
to exploit parallelism. Unfortunately, there are several serious
obstacles which prevent our goals of compatibility and tran-
sparency from being achieved completely in parallel make. The
problems and possible solutions are discussed in the remainder of
this section.
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5.2 Virtual Processors

To overcome the problems discussed in the previous section, we
introduce virtual processors as the basis of parallel make. For
each command block to be executed, pmake creates a child pro-
cess, which we call a virtual processor. pmake does not wait for
the virtual processor to finish, but continues processing the list of
dependencies in which the target appeared, which caused the com-
mand block's execution. The virtual processor controls the execu-

tion of the command lines in the command block. The strategy is

depicted globally below:

nake(target) 
=let R be the rule

ta.rget : dependency-list

command-block
for each dependent in dependency-list do nake(dependent)
if al. l. makes succeed and
any dependenl is newe¡ than target then

a[ [ocate virtuaI processor
(i.e. check number of chi [d processes)
fork chil.d: (* this is the virtuaI processor *)

repor t execute ( command-block)
return (* dontt wait for virtuaI processor to finish *)

execu te ( command-block) 
=for each command in command-block do

execute command via a shel'1.
wait for the shetL to finish
if command fai Led then reporl faße

report true

The algorithm shows that synchronization among the update com-
mands is driven by the dependency graph.

A virtual processor runs the command lines one after another,
each in a separate shell environment. This mechanism solves
problems I and 5. As soon as one of the commands fails, the vir-
tual processor exits with status false. If all commands succeed,

then the virtual processor stops with statns true.
When the target, which is the command block's result, is

needed, (i.e., when all dependencies of the parent rule are

checked), pmake waits for all virtual processors dealing with the
dependencies to finish, before deciding whether to make the
parent target. This strategy solves the synchronization problem 2.
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To avoid problem 3, the number of available virtual proces-

sors within a single pmake run is limited. If pmake has to allocate

a virtual processor while the maximum number of virtual proces-

sors is running, it has to wait until at least one of them is ready.

The number of available virtual processors must be carefully

chosen, since each one can also fork offprocesses. The user can

explicitly specify how many virtual processors may be used by

using the -pnnum command-line option. otherwise, a default

number is chosen, and it is up to the system administrator to

select an efficient number, depending on the numþer of available

physical processors. The virtual processor mechanism introduces

à minor overhead because an extra process is introduced for each

virtual processor to control the execution of the command block.

It is not possible to solve problem 4 in a transparent way,

since pmake cannot deduce which commands may not run in
parallel in the same directory. Concurrent make, ot cmake

[Cmelik 1986], provides a facility to specify which command

blocks should execute mutually exclusively, i.e., only one com-

mand block in a certain group of command blocks may run at a

time. To do so, one has to defrne a mutex on the group of com-

mand blocks, by declaring a rule having tatgel name 'MUTEX,
with the targets of the command blocks as dependents. The /ex

example becomes:

prog: a.o b.o
.MUTEX: a.c b.c
a.c: a.I

Iex a. I
sed's/YY/aYYlgr lex'YY'c > a'c

b.c: b.l.
Lex b. t
sed ts/YYlbYYlst lex'YY'c ) b'c

To force cmake to run only one command at a time (i'e', to

behave llke make), the description file should contain the rule

.I.IUTEX:

we adaptedthe.MUTEX mechanism in pmøke. Although it is
certainly not transparent to the user, it is a convenient way to

solve problem 4. In practice, there is hardly ever a need to define

a mutex.
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Note that a description file with a mutex is still compatible
with the traditional make.

5.2.1 Command Failures

Since the dependents of atarget are checked and possibly updated
in parallel, we cannot prevent a dependent from being made if
one of its predecessors in the dependency list has failed. This
behavior is similar to make with the -k flag, which indicates that
the make process should continue even if a command fails. One
way to get rid of the -k behavior is to stop checking the depen-
dency list as soon as possible. This leaves us in a situation where
a nondeterministic number of dependencies has already been
made. To prevent the nondeterminism as much as possible, we
do not examine the success or failure of making a dependent until
we need the results; this results in -k behavior.

5.2.2 Multiplelarget Rules

make lacks a means of specifying that a command block produces
multiple files. However, it seems able to deal with multiple-
output-frles commands, through nothing but a coincidence. We
erroneously take the rule

y.tab.c y.tab.h: grammar.y
yacc grammar.y

as a specifrcation of how to produce both y.tab.c and y.tab.h, using
a single yacc command. make, however, considers the rule to be a
short-hand specification of

y. tab. c: grammar.y
yacc grammar.y

y.tab.h: grammar.y
yacc grammar.y

In practice, we can hardly tell the diference, since if one of
y.tab.c and y.tab.h appears as dependent and is updated, the other
one is created at the same time as well. If the latter file appears as
a dependency, then the frle already exists and make decides nei-
ther to create nor to update the flle. Worse, programmers some-
times tacitly assume that y.tab.h is created when using the rule
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y. tab. c: grammar.y
yacc grammar.y

which indeed produces y.tab.h, although make does not note that
it has been created. The programmer must take care that y.tøb.c

is created before any other ûle is made that depends on y.tab.h.

ln pmake, however, neither the y.tab.c y.tab.h rule nor the y.tab.c

rule will always work correctly. For example, the construct

prog: y.tab.o Iex.o
$(cc) -o prog y.tab.o lex.o

Iex.o: y.tab.h
y.tab.o: y.tab.c
y.tab.c y.tab.h: parse.y

yacc parse.y

is treated correctly by any sequential make. pmake, however, tries
to "make" lex.o and y.tab.o in parallel, independentþ from each

other. Both actions require the last rule to be applied, resulting in
two yacc processes running in parallel, both writing output to the
same flles, y.tab.c and y.tab.h. As soon as one of the commands
has finished, the result is used in creating lex.o or y.tab.o, while
the other yacc process still may be busy writing output to y.tab.c

and y.tab.h. which frles are supposed to be complete. Omitting
ylabh from the last rule's target list is correctly dealt with in
sequential make, but pmøke may complain about y.tab.h's
absence. pmake does not know that y.tab.h is created as a side

effect in creating y.tab.c. Therefore, care must be taken that at
least each file that is created appears as a target. Furthermore, to
prevent simultaneous execution of the yøcc commands, we can

define a mutex on y.tab.c and y.tab.h, or, even better, on lex.o and
y.tab.o. The former mutex does not prevent yacc being invoked
twice, while the latter does.

A better solution, without changing make, is to introduce an
intermediate target, which is an empty file, and which is newer
than the other frles created by the commands in the command
block. The following code shows the use of an intermediate
target, called yacc-done.

prog: y.tab.o Iex.o
$(cc) -o prog y.tab.o tex.o

Iex.o: y.tab.h
y.tab.o: y.tab.c
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y.tab.h y.tab.c: yacc-done
yacc-done: parse.y

yacc parse.y
touch yacc-done

The touch command creates or updates frle yacc-done, and ensures

that it becomes more recent than any of the flles produced by the
preceding yøcc command.

6. Implementation of Parallel make

Instead of building a parallel make from scratch in order to get

experience with the use of parallel make, we developed a module
which implements parallelism and which can be plugged into trad-
itional makes. The module uses the command block (i.e. the
sequence of commands belonging to a rule) as the basic unit of
execution. The idea is to collect the commands of a command
block and keep administration of the target which causes the rule
to be selected. As soon as the last command of a command block
is encountered, the make process forks off a virtual processor,

which executes the commands in sequence.
We equipped the UNIX System V Release 2 make [AT&T

1982] with the parallel module, and ran the result on the Amoeba
distributed operating system. The configuration consisted of a
processor pool, a disk, and a terminal (actually a window on a
SUN), connected by a 10 Mbps Ethernet.

6.1 Implementation Problems in pmake

Apart from implementation problems such as the absence of expli-
cit dependencies in the internal data structure of implicit rules,
signal handling (signal propagation to virtual processors), and syn-
chronization (the modification time of a target which is being
created), there is the problem of multiplexing diagnostic output.

The diagnostic output from the commands is multiplexed arbi-
trarily, leaving the user with an incoherent collection of messages

or, even worse, characters. If the commands produce output on
standard output, and especially ifthe characters are not buffered,
the resulting list of diagnostics may look messy. One solution is
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to gather output from commands via pipes and present them to
the user, or an "intelligent" editor (e.g., emacs), in an ordered
manner. Since make may read several directories at a time, using
file descriptors, we have to be careful with using file descriptors
for pipes. A better approach is to redirect the output from com-
mands into frles, and present the contents of the files, preceded

with an indication of the source.

6.2 Problems in the Test Environment

Amoeba is still under development and undergoing changes. We
made use of a beta version of Amoeba, which suffers from various
problems. Amoeba lacks load balancing among the processors in
the pool. Processes are assigned to physical processors at random.
The chance that some processors are overloaded while other pro-
cessors are idle is non-negligible. The random selection takes
place if either a new program is loaded into memory using the
exec system call, or if a process forks itself, using fork, and the
current processor does not have enough space for creating a copy
ofthe process.

Another problem is the inefficient use of memory, because
Amoeba lacks a shared text facility. Forking a process causes the
kernel to copy both text and data space in memory, which results
in both time-expensive forks and waste of memory. There is only
need to copy data space when forking in shared text environ-
ments.

V/e take care of the influence of "random" processor assign-
ment by Amoeba by taking the minimum of the experimental
results; we believe that load balancing in Amoeba will eventually
result in optimal distribution of processes among physical
processors.

6.3 Timing Results

The timing test consists of compiling a large set (several tens) of C
source files into corresponding object code, using the ACK [Tanen-
baum et al. 1983] C compiler running on Amoeba. We use the
real time, measured under perfect conditions, which means single
user, no background processes. Furthermore, we deliberately do
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not include the link ld phase in the measurements, since it cannot
be done in parallel. Finally, we manually reordered the depen-
dency lists according to the LPT algorithm.

Table I shows the speed-up factor acquired when using the
indicated number of virtual processors. During the test, Amoeba
ran on a pool of ten 68020 processors running at 16 lll}Jz with a
file server and a directory server.

number
of virtual
processors speed-up

I 1.00
2 1.85

3 2.53
4 3.18
5 3.60
6 3.74
7 3.97
8 3.86
9 3.74

l0 3.8 r

Table I

The table shows that the speed-up is far below linear. This is
not surprising since we have to deal with some overhead in start-
ing a compilation. pmake runs its compilations in parallel but has
to start them sequentially. Consider H+C the response of time of
a compilation, where Ë1 indicates the time needed to start the
compilation (i.e. to fork off the compiler driver), and C the time
needed for executing the compilation. If pmake has to run ,l/
compilations, we cannot expect it to fork them off simultaneously.
In the ideal case, when processors are available when needed, the
N-th compilation is started after N- I compilations have been
started. pmake's minimum response time then becomes N*H+C,
which is much more than the response time with linear speed-
up fI+ C. If the number of compilations exceeds the number of
processors, then pmake has to wait from time to time until a pro-
cessor becomes available, in which case the total response time
increases and the speed-up decreases.
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7. ComParison with other

Parallel Makes and Discussion

This section gives a short overview of how several makes supply

parallelism. Besides compatibility and transparency issues' we

compare each make with Pmake

7.1 nmake

nmake [Fowler 1985], or New Make or 4-th generation make,was

developed at AT&T Bell Laboratories. nmake executes the update

commands by sending the command blocks to the shell s/¿, which

runs as co-process. As a consequence of sending complete com-

mand blocks to the shell, a cd command, or the introduction of a

shell variable, remains effective during execution of the command

block, as opposed to Feldman's make and pmake' If the user

takes no special action, each command is executed by the shell'

denoted u. tt. foreground shell. If, however, the user specifres

that updat" .orrr-unds may execute in parallel, the foreground

shell starts a subshell, called lhe bøckground shell, for each update

commandblocktoberun.Inpmake,commandsarealwaysexe-
cuted in a background shell. Parallelism in nmake is activated by

specifying -in (or - j) as command line option, which means that

* ,o ¡¿ (áefault 3) background shells may be active at a time'

tlte in pmake,the dependency graph is used for synchronizing

the jobs.
3pecifying .FOREGRO(1ND, ot its synonym 'WAIT' in the

Oep.t ¿errcy úst of a target, causes the update command block of

the target to execute in the foreground shell, which in turn causes

nmaki to block until the commands have finished'

nmake does not provide an explicit facility to prevent certain

commands from being executed mutually exclusively. It is possi-

ble,however,torunthecriticalcommandsintheforeground
shell, thus imposing sequential execution'
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7.2 Concurrent Make

Concurrent Make ICmelik 1986], or cmake, was developed pri-
marily to reduce the time needed to run a make process, not to
increase make's functionality. It is written in Concurrent C
[Gehani & Roome 1986], and is based on the Version g UNIX
make. The latter requires the user to indicate explicitly which
commands can execute in parallel, whereas cmake runs the update
commands in parallel by default. Furthermore, the explicit indi-
cation in version 8 make introduces a non-portable construct in a
description flle.

The main difference between cmake and other parallel makes,
including pmake and version B make, is that cmake takes care of
distribution among several processors. The major assumption is
that executing a command remotely has the same result as execut-
ing it locally. The rule

.LOCAL:. ttarget ...7

forces cmake to run the update commands for the targets appear-
ing in its dependency list on the local machine. An empty depen-
dency list in a .LOCAL rule forces cmake to run all update com-
mands locally. pmake and other parallel makes do not take distri-
bution into account. They silently assume that the underlying
operating system provides efficient parallel execution among the
available processors.

To prevent certain command blocks from executing in parallel,
the rule

.MUTEX: Í.target ...f

causes the update commands of the targets, which appear as
dependency, to execute mutuàlly exclusively. parallelism can be
suppressed by specifying a .MUTEX rule with an empty depen-
dency list. The .MUTEX mechanism has also been adopted in
pmake.

cmake description frles, like that of pmake, are silently
accepted by Version Z-compatible makes. The compatibility
results from the use of make's syntax to specify parallel constructs
and options. make interprets, for example, a .MLITEX rule as a
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rule to be applied when creating atarget 'MUTEX' instead of a

special command.

7.3 mk

mkl1rtmel987],lTkenmake,isanenhancedversionoftheorigi-
nal make. rrr. ,ro*t.i oi jo¡, run in parallel is user-settable by

defining the macro SNPRO¿' The number of concurrent jobs is 1

tt ããrt*rr, which implies serial execution of the commands'

Unlike nmake, t*Ãíli"i pmake' mkhas no provision for the

mutualþ exclusive executión of commands' although commands

can be executed one after another, using serial execution- To use

parallelism and to deal with, for exampie' several yøcc commands

in a single mk ntt, the programmer has to take care of name

clashes explicitly. 
'¡.i-iüprlit rule for creating a linkable object

file out of a yacc speciñcation file is

%-oz %.Y
mkdir/tmp/$nproc;cp$stem'y/tmp/$nproc
( cd /tmp/'$nproc ; Yagc $stem ' y; mv y'tab ' c $stem ' c )

$cc Scri¡es -c /tmp/$nproc/$stem'c
rm -rf /tmP/$nProc

Although the implicit rule is artificial' there is now no-need to

prevent several y'oi' 
"o^^ands 

from running in parallel with each

other.

7.4 Parmake

pørmake[Roberts&Ellis1987]isanextensionofthetraditional
make,and provides concurrent execution of the operations which

havenomutualdependencies.parmakehasbeenimplementedat
DEC'sSystemResearchCenteronalocalareanetworkofshared-
memory multiprocessot Fireflyworkstations' The processing

power of idle *;kJ;,i""s is supplied by a distant process facility

dp. parmaL" itt.fi ãtders indepãndent jobs by topologically sort-

ing the ¿.p.n¿rity gt"ptt in the.description file' The description

file is compatibl; iiît it. traditional make' although a syntactic

mechanism i, ini'ãJ"ted to force teft-to-right evaluation of the

dependencies.
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A set of heuristics, controlled by parameters which reflect the
relative cost of the operations, is used to balance the local load,
while dp schedules the distant processes, based on machine-load
statistics.

Experiments in using parmake in recompiling a large set of
Modula-2+ files have shown a maximum speed-up or i.z,using
the 5 local processors only, and 13.5, using z0 concurrent local and
distant processes. An important observation is that the speed-up
strongly depends on the nature of the jobs being executed; the per-
formance advantage increases along wittr ttre rJio of computation
to I/o. A much smaller and faster compiler (for exampre, a c
compiler) turned out to be limited by the disk speed. using 20 0r
more local and distant processes showed u ,p..d-,rp of only s.s.

7.5 DYNIX make

DYNIX make IDYNIX l9g7] provides a mechanism to activate
parallelism explicitly. If the string which separates a target from
its dependencies is :& or ::&, then the command blocks to make
the dependents can execute simultaneously. If two dependents are
separated by &, those two can be created in parallel. The rule

tai-get : depl dep2 dep3

causes make to update depl, dep¿, and dep3 sequentially. The
rule

target :& depl depZ dep3

implies that depl, dep2 and dep3 may be updated in parallel to
each other. The construct

target : depl & dep2 dep3

updates depl and dep2 in paralrel, and then updates dep3. The
number of simultaneously active commands is controlled by the
-pnum command-line argument. By default, three commands can
run in parallel.

only the last command line of a multi-line command block is
eligible for asynchronous execution, while the other commands are
executed sequentially. In contrast with pmake. we have to com_
bine multiple command lines into a single command line
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explicitly (by appending backslashes to all but the last lines), to
force the command block as a whole being run asynchronously.

To preserve compatibility with makes in other systems, vari-
able expansion is done before the parsing for parallel constructs.
This allows rules to be written as

target :$(PAR) depl dep2 dep3

which is accepted by any make if $(pAR) is not defined, and
which is accepted and interpreted as a parallel construct if we
invoke DYNIX make by specifying

make rlPAR=r&r1r

DYNIX make uses the technique of preceding the error mes-
sages from asynchronously executing commands with process
identifiers, thus enabling the programmer to find the source of
errors.

8" Conclusions

We believe that pmake satisfies our requirements in that it shows
a considerable speed-up, its description files are compatible with
Feldman's make, and parallelism and the problems that come
with parallelism are almost transparent to the user.

The experiments have shown a considerable speed-up in using
pmake on a multiprocessor environment. We believe that it is
hardly possible to achieve linear speed-up even when we disregard
the shortcomings in our test environment as discussed in section
6.2. First, bookkeeping and the virtual processor mechanism
introduce a minor overhead in pmake. Second, it is hard to deter-
mine an optimal distribution of tasks among the virtual proces-
sors. Applying the LPT algorithm, discussed in section 2.4, might
help but requires external information. pmake does not imple-
ment the LPT algorithm, but we observed a minor speed-up when
we manually reordered dependency lists. Third, we have to deal
with "bottle necks'o in practice. Compiling a multi-source-file pro-
gram, for example, requires a link phase, which does not run in
parallel with any of the compiling phases, although it could be
made to run incrementally (so it would finish soon after the last
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object came in). Fourth, if any of the available processors are

multiprogrammed, we have to deal with processes competing for
CPU cycles. The ideal situation is to have multiple monopro-
grammed processors.

The syntactic compatibility with make description files is

maintained. pmake description files are accepted and interpreted
correctly by make. make description frles, however, need revision
if commands, like lex and yacc, should run mutually exclusively.

Either we have to take care of non-clashing file names, by running
commands in separate directories or by forcing the commands to
use non-standard file names, or we need to defrne a .MUTEX on a
group of commands. In practice, we have not yet encountered a

legal make description flle which is treated incorrectly by pmake.

cmake and parmake description files, too, are compatible with
make description files, but a major disadvantage is the explicit
treatment of distribution. pmake assumes the underþing operat-

ing systems supplies efficient parallel processing on multiple pro-

cessors, while cmake has to distribute the commands itself.
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