
An Unorthodox Approach to
Under gr aduat e S oftw ar e

Engine ering I nstruction
Robert A. Morris

The University of Massachusetts at Boston

ABSTRACT: Software engineering principles can be
taught to inexperienced undergraduates by substi-
tuting code reading, maintenance, and enhancement
for the more usual beginning-to-end team project.
The study of mail reading systems of intermediate
size proves a suitable environment for the study of
complex systems.

1. Introduction

Traditionally, software engineering teaches the skills which are

widely regarded in professional circles as enhancing software pro-
ductivity. These include study of the software life cycle, princi-
ples of specification, design, implementation and maintenance,
rapid prototyping, team programming, and documentation. The
approach in such courses is almost always to divide the class into

This work supported in part by NSF Grant IRI 87-15960.

@ Computing Systems, Vol. I 'No. 4'Fall 1988 405



teams to work on a major piece of software from conception
through implementation. Sometimes the teams compete, some-
times they cooperate, and sometimes they work on altogether
different projects, depending on the resources available and size of
the class. Perhaps due to the influence of the ACM Curriculum 78

[Austing et al. 19791, which suggests such an approach for a course
in Software Design and Development, virtually every recent meet-
ing of the ACM Special Interest Group on Computer Science Edu-
cation contains papers on experiences in such a course (see, for
example, Bullard 1988, Carver 1985, and Collofello 1985).

This paper describes an unorthodox way of teaching undergra-
duate software engineering which the author utilized during the
Spring semester, 1988 at the University of Massachusetts at Bos-
ton (UMB).

The standard course at UMB is similar to the Curriculum 78

course mentioned above. Although it does not have substantially
more pre-requisites than we describe below, it seemed to the
author that the traditional approach depends for its success on the
students already being skilled programmers and, in particular,
already having some exposure to large software systems. At UMB,
such exposure is offered in several elective courses which are
widely regarded as demanding. These include Operating Systems,
Artificial Intelligence, and Graphics, in each of which there is sub-
stantial focus on system issues. Each course makes heavy
demands on the programming skills of the students and those who
complete the courses usually emerge from them quite strong.
However, a number of students are not able to survive in those
coutrses, which accelerate quite quickly and assume the students
are already reasonably proficient in the relevant language (usually
C or Lisp, as appropriate). It was felt that students whose back-
ground or ability excludes them from those courses nevertheless
need a course which strengthens their skills in design and coding.

The target students also have little exposure either to big sys-

tems or to system development tools such as source level
debuggers, cross reference programs, or system compilation tools
such as the UNIX make utility. Thus, to this author, the relevant
question seemed to be what approach would offer students
without the traditional expected background a course different
from a low level "UNIX systems programming course," which so

406 Robert A. Morris



often reduces just to practice using utilities. An answer was to
focus on an existing large system which the students would debug,
modify, and enhance. This also was deemed to be somewhat real-
istic, in that new professionals are typically assigned tasks in code
maintenance, if only to familiarize them with the system at hand.

Although study of an existing large system does not give a
"beginning-to-end" experience, it allows the possibility of showing
real accomplishment in a short time. This might not happen if
inexperienced students are thrown into the design waters to sink
or swim, even with the aid of the instructor. One drawback is
that it becomes more difficult to discuss design issues in a global
way, since the design is already in place. On the other hand, dis-
cussion can be focused on the success or failure of the design of
the studied system, especially with regard to its robustness in the
face of enhancement requirements.

Code reading as a method of study is not novel (see Deimel
1985 for the arguments, an extensive bibliography, and an appen-
dix on the subjective measurement of program reading
comprehension). Our approach certainly is consistent with a pro-
gram reading approach, since reading code is manifestly the prin-
cipal tool in program enhancement. However, we go well beyond
that to include design and coding of new capability, an approach
that does not appear to be very common. A survey of undergra-
duate Software Engineering courses [Mynatt 1987] foundthat 40o/o

of such courses gave only limited attention to maintenance and
modification, 180/o gave none at all, and only 120/o rcported in-
depth attention to these issues.

2. Choice of the System to Study

After careful consideration of some alternatives, including editors,
compilers, CASE tools, and window systems, a decision was made
to study electronic mail systems. Electronic mail is a rather broad
topic, and several components of mail systems can be dis-
tinguished, although, in practice, some components may be imple-
mented in a single program. We can divide mail tasks by func-
tion: writing, transport, and reading. In many environments the
writing and reading functions are executed by a single program

An Unorthodox Approach to (Indergraduate Software Engineering Instruction 407



which contains facilities for editing outgoing messages, filing
incoming messages, automatically constructing reply addresses in
fesponse to incoming mail, and handling similar matters of con-

venience. A transport agent, however, may be thought of as hav-

ing the responsibility of accepting mail from writers or other tran-
sport agents and delivering it in a form obtainable by readers,

passing it to other transport agents, or arranging for notification of
its inability to dispose of a message.

The functionality described above is exemplified in the UMB

Computing Laboratory, which has a fairly typical local network

based mostly on the 4BSD Berkeley versions of UNIX running on

Sun and VAX systems. As in most such networks, there are a

number of reader/writer programs available, but a single locus of
transport on each host, the sendmail program, which is invoked

by writers but never by users in normal circumstances. For the

frnal delivery of mail to a user's mailbox, the sendmail ptogtam

on the addressed host will invoke a somewhat primitive integrated

reader/writer/transport program to write the message. This pro-

gram, known simply as mail is the original and only mail facility
provided in early versions of UNIX, although a more sophisticated

version, Mail, is more often used as the reader/writer in Berkeley

UNIX systems [Shoens 1986]. Although not normally invoked by

users, an undocumented option to mail permits the direct delivery

of mail to the addressee's mailbox, and it is this facility which

sendmail uses. Under normal use, mail itself also requests tran-
sport service of sendmail. ln addition sendmail, operating as a

daemon, exchanges mail with sendmail programs on other hosts

on the network and with other transport agents, notably agents for
dealing with Internet mail via a telephone connection to a CSNET

relay machine, and dealing with uNlx uucp mall on telephone

and serial line connections. (For a brief description of Internet
domain-based addressing and of uucp mail, see Quarterman &
Hoskins 1986. That article contains an extensive bibliography and

gives substantial insight into the problems of the transport of mail
and other data across networks.) The programs visible to users

are integrated reader/writers (we will call them simply "readers"),

ranging from simple line-oriented programs to screen-oriented

software invoking (or sometimes invoked under) sophisticated

editors.

408 Robert A. Morris



In trying to narrow the focus of study, it became clear that
studying mail transport agents would present a consequential
difficulty in an environment not devoted entirely to the develop-
ers: installing and testing modified software can not be done
without impact on the other users. (Indeed, debugging code in
sendmail provided an entry point for the infamous Internet virus
in November 1988.) Mail readers, however, have several advan-
tages not all enjoyed by some of the other systems considered.

First, every student would already have had extensive personal
experience as a user of mail systems. The pre-requisites to the
course essentially imply that the students would be junior or
senior Computer Science majors, with at least 4 semesters of pro-
gramming in Pascal, a data structures course, and a yearJong lab
course in low level computer system architecture. Some would
have had a Scheme-based course in Programming Languages in
which they would have studied the structure of programs but not
large systems. They would have had extensive experience with at
least two mail systems, typically VAX VMS and UNIX mailers.
Thus, there would be a common body of experience to serve as a
focus for criticism of system design.

Second, a large variety of mail readers would be available on
our UNIX systems, almost all of them in source form and all with
extensive documentation. This would make the comparison of
systems feasible, especially as to user interface and feature sets.
Of course, since source code is available, enhancements would be
limited only by the design of the target system. This limitation
itself was an area of study in the course.

A third advantage would be that mail readers are not self-
contained. Since they must interact with a wide range of other
software, from editors to mail transport systems, opportunities
would arise to discuss external interfaces and even, in some cases,

international standards. This benefrt also applies to mail tran-
sport systems, but modifrcations to the local mail transport would
impact all system users, not just the developers, and so would not
be easily tested in an environment shared with other users. Of
particular importance is that messages constructed using any
enhancements to a given system not break other systems.

A fourth benefit emerged only after the course was underway -
one which may be unique to mail systems - namely, that there is

An Unorthodox Approach to (lndergraduate Software Engineering Instruction 409



a non-computer version of the system, the global paper mail sys-

tem, which is familiar to all and which can serve as a sounding
board for design questions. For better or worse, most existing
electronic mail systems are easily modeled by the paper mail sys-

tem; it shares with electronic mail properties of local variation
combined with the requirement that local variants be able to
exchange messages. In one course exercise, the addition to the
mail reader of a "return receipt" facility, examining the
differences and similarities between electronic and paper mail
proved particularly useful for design and requirement
specification.

3. The Projects

The Mail program provided with the Berkeley versions of uNtx
was selected as the reader to study. Because the students were
unfamiliar with development tools, the course began with a bug
deliberately introduced into Mail. Mail determines whether text
in the user's system mailbox is a legitimate mail message by pars-
ing the date field in the first line of its header. If all the dates in
the system mail box are invalid, Mail will assert that there is no
mail for the user.

The date parser in Mail was modified so that it always
required a two digit date, instead of two or, optionally a blank fol-
lowed by one digit. Seeing only its behavior, and given access to
the entire, buggy, source code set, the students were expected to
find and correct the bug. By a happy coincidence ofschedule, the
assignment was given on the lst of the month and could then be
made due one week later, on the 8th. This gave the students one
day of grace before the bug would lie fallow for another 20 days,
undetectable until so far beyond the assignment due date that no
credit would be given!

This bug has several pedagogical advantages typical ofreal
bugs and worthy of study. First, its manifestation, the fraudulent
"no mail" message, appears in the thread of control at a fairly
great distance from the erroneous code. This means that some
tracing of the logic is necessary. Second, it is easily ascertained to
be a bug. This means that no time need be spent capturing

410 Robert A. Morris



instances of the bug, a subtle and difficult problem for many real
world bugs but beyond the ability of students whose first exposure
this is to source code debuggers. Third, the bug manifests itself
on mail produced both with the modified Mail and with all other
mail producers, both on and off the local network the students
use. Since other mail writers can induce the bug, this suggests

that the problem can be isolated to the received mail processing
parts of Mail, potentially limiting the scope of debugging. A final
"advantage" tugged too much at the teaching sensibilities (or
perhaps the sympathies) of the author to be allowed to stand:
some conditional debugging code lay commented out of the distri-
buted sources. This code, when turned on, should lead the bug
tracker more quickly to the relevant source frle. However, when it
was turned on, the code proved not to signal the bug! In fact, the
code could never have worked as distributed because it was test-
ing a boolean variable which was never set, and the students were
given code with this corrected, so that the bug manifestation then
gave them substantial information, namely that the header was
faulty.

The main aim of this exercise was to expose the students to
elementary software tools such as source debuggers (they were
required to use gdb, the C source debugger from the Free Software
Foundation IStallman 1987(l)]), cross reference tools and tools for
finding occurrences of particular identifiers or strings, the UNIX
make utility for rebuildiùg systems after changes, etc. The useful-
ness of these tools apparently was evident to the students, as they
continued to use them throughout the course without further
prompting. The exercise also familiarized the students with the
Mail source set, which comprises about 10,000 lines in 27 frles.

The next exercise in the course was to add a capability to the
(flxed!) Mail program. It was decided to add a "return receipt"
facility which would function much like that provided by paper
postal services: ifthe sender requests such a receipt, the reader is
not permitted to read the mail without generating a receipt.

Two realities became apparent in settling the specifrcation with
the class. Both provoked worthwhile discussion, as well as an
introduction to the nature of Internet mail and security. The first
was that, in most UNIX systems, file system access privilege is a
linchpin (or, one might say, "lynchpin") of system security and

An Unorthodox Approach to Undergraduate Software Engineering Instruction 4l I



almost always is delicate and obtrusive. In the case of Mail, each

user's system mail box is readable by that user, although by no

one else except privileged processes. This means that any require-

ment that mail be unreadable without generating a receipt can be

easily circumvented, for example, by simply invoking an editor on

the mailbox. Many mail systems have this kind of resource read-

able only by the mail system itself, but making such a change on

our network would be potentially disruptive to other users, since

shaking out the consequence of permission changes in UNIX sys-

tems typically is a time consuming and often frustrating task. The

second reality was that, no matter how security issues were

resolved locally, every mail reading system (of which there are at

least 6 on our own network), including those on any host to which

mail could be sent globally, would have to obey the same require-

ments.
In the face of these security issues, it was decided to have the

students solve the problem only for the Berkeley Mail program.

This was thus an exercise in exploring what the design, user inter-
face, and implementation issues might be. Since the security

issues probably do not have an appropriate solution, the exercise

is somewhat academic, but this did not seem objectionable in
view of the fact that the problem was easy to state and so

presented a suitable vehicle for discussion of the nature of
speciflcation.

Initially, no guidance was offered students about what is a

specifrcation. They were given a week in which they were

required to discuss the problem with each other personally and

online. All of the online discussion was recorded in a bulletin
board facility available to all the students and especially suited to

dialogue. At the first subsequent class, the students were quite

surprised at the author's observation that they had thoroughly

mingled implementation, user interface, and specification issues in
their dialogue. They came to the class expecting to settle a com-

plicated specification and left after hammering out a three line
definition of how a Return Receipt Requested (RRR) object is to

be recognized and disposed of. The class decided that RRR mail

should have a header freld named X-Return-Receipt-Requested,
conforming to the RFC822 [Crocker 1982] recommendation for
the addition of "unofficial" header fields in Internet mail, and that

412 Robert A. Morris



a mail reading program should not display the message, nor
include it in any other message, without generating a receipt.
Further, a subsequent invocation of the same program should not
defeat the specification.

By intent (of the author), the simple specification did not
address any user interface issues, which were to be discussed later.
The specification could be met by a program which silently gen-

erated receipts for all RRR mail or, indeed, for all mail whatso-

ever. It had the virtue, however, of separating user interface from
object specification design. This, the author contended to the
class, is a goal whose successful pursuit can make software more
flexible and longer lived. The next week was spent specifying the
user visible behavior of RRR mail and implementation issues.

The author acted as moderator in the online and class discussion,
attempting to keep distinguishable issues separate from one

another. About a dozen issues were isolated, ranging from the
nature of message identifiers to questions of preventing "RRR
loops" in which automatic receipts to RRR mail were themselves
generated as RRR mail.

It is interesting to note that the Return Receipt of the U.S.
Postal Service is not mail from the original target, but is actually
mail from the postal service itself, which addresses certain kinds
of loop, security, and authentication issues. It is also interesting
to note that the U.S. Postal Service will accept Return Receipt
Requested mail for any domestic addressee, but only mail des-

tined for particular foreign countries can get such service. This
corresponds to the fact that other electronic mail services need not
recognize unofficial header flelds and still remain in compliance
with RFC822. ln all, the narrow focus on the RRR facility proved
to be an excellent forum in miniature for many of the same issues

which would arise in designing a complete system, and the Postal
Service provision of this capability had a number of properties
worthy of examination.

In part due to the author's interests, and in part because so

much of the RRR design centered on user interface issues, the
final project in the course explicitly centered on user interface
design with particular emphasis on the effect on the user interface
of other design choices in the system. Several weeks were spent
examining, comparing and critiquing other mail readers. These

An Unorthodox Approach to Undergraduate Software Engineering Instruction 413



included two widely available screen-oriented readers - ELM

[Taylor 1986] and the Emacs mail reader RMAIL [Stallman
1987(2)1, and MH, an alternative mailer circulated with the Berke-
ley UNIX distribution [Rose & Romine 1984]. No code was

examined, but there was some discussion of the impact of these

systems'behavior on projects such as the RRR one. For example,
RMAIL permits the editing of all frelds in the message header,
including the message id field, and makes mail forgery substan-
tially easier to commit than do other mail readers; ELM has a
"bounce" facility which permits the mail reader to appear as part
of the transport system, forwarding mail with little indication that
there was intermediate examination.

The final project for students was to attempt to add an X-
windows Systems interface to MaiL A similar approach is taken
in the Mailtool provided on Suns for the obsolescent SunView

ISun Microsystems 1986, Ch. 6], and also in xmh, an X-windows
version of Mu in the contributed software in the Xl1 distribution.
There were two goals in this assignment. First, few of the stu-
dents had exposure to window systems and none had exposure to
window system programming. The X paradigm of the client-
server model was entirely new to all the students and none had
done any event-based programming. In addition, although not
strictly object oriented, the C library interface to X [Scheifler et al.

19381 is clearly influenced by object-oriented programming. It was

decided to use this interface instead of the higher level toolkit dis-
tributed with Xl I mostly because fewer abstractions needed to be

discussed. Although this decision warrants more consideration,
the author's present opinion is that simple low-level programming
is an appropriate prelude to the more productive toolkit approach.
It may also reveal more of the generalities of window systems.

The second goal was to examine the extent to which the radically
different X model of VO could be imposed on the UNIX stream
oriented "standard I/O" package heavily embedded in Mail in a
way that involved minimum disruption to the Mail intetnals.

The students were frrst given a small project to familiarize
themselves with X programming. This was a file reading program
analogous to screen-based readers that pause after a screenful of
text and give the user a chance to read the text before continuing
at the user's request. Most of the subtle X issues can be dealt with

414 Robert A. Morris



by borrowing code from the excellent example distributed with
Xl I entitled "Hello world" [Rosenthal 1988].

The major problem was to design and implement an X inter-
face to Mail. Since only about three weeks remained in the
course, it was left as an option to do mouse-based input. Only the
very strongest students attempted mouse-based command process-

ing, but it is in fact not very deep, at least for argument-less Mail
commands, since windows are a cheap resource in X. For this
reason, it is straightforward to associate with each mail command
a "button" comprising a separate window. When a mouse button
is clicked on such a software button, the system executes the com-
mand as though ordinary keyboard input were given to Mail.
However, the specification on which the class settled required only
a separation of output based on semantics: mail headers were to
go in one window, message text in another, system interaction in a
third, and a fourth was to contain a help facility consisting simply
of a list of the commands available to the user. Mail provides a

brief keyboard command interface, and the simple implemen-
tation merely took this input in the system window.

The fundamental issue to be addressed is when to intercept
Mail's output to direct it to the appropriate window. The
interesting part of this problem, and a similar one at the input
side, is that Mail is a sublime example of UNIX stream-based I/O.
On the one hand, good engineering practices have insured that all
of the I/O is funneled through a very few routines. On the other
hand, by the time those routines are invoked, it is difficult to
determine whether the output is destined for a terminal, a file, or
another program. This is, arguably, not a useful paradigm in sim-
ple window programming, where windows are radically different
entities from other things modeled by streams.

Since the aim is to interfere with Mail source as little possible,
decisions have to be made about how far into the thread of con-
trol (or, equivalently, in what generality) the output should be
intercepted and re-targeted to window system requests. This
problem is complicated (in rather realistic ways) by some intru-
sion in naming of the original programmer's unstated model of
Mail's tasks. For example, one important routine named send)
might reasonably be assumed to deal with sending mail messages.

Actually, it is concerned with sending text to various streams,

An Unorthodox Approach to [Jndergraduate Software Engineering Instruction 415



which makes it much more important in our context than its
name might suggest (recall that the goal is to avoid interference
with components that actually deal with mail, and only to modify
VO). In other cases, there are certain tasks which one might
expect to be dealt with at a logical level sufficiently high that they
are not encountered in this problem. But some of these proved to
be scattered at various levels of the thread of control, sometimes
necessitating special case treatment where one not would expect to
confront these tasks at all. One such instance had to do with the
output treatment of parts of the header information, which,
because it is so voluminous, can be selectively suppressed by the
user. In some cases the "kludges" we stumbled on seemed to
have the scent of afterthought, which presented a good forum for
discussion of how to write code that survives addition of func-
tionality.

With the author's encouragement, there was substantial mutual
help even though there were no formal teams. As in any course,
this brings the risk of the strong students carrying the weak, but in
the current instance the enrollment was small enough and there
was a highly qualified and experienced graduate student assistant,
so that a close eye could be kept on the students who were strug-
gling.

Finally, it should be mentioned that, besides the programming
focus, there was a series of readings on related topics (see Reading
List). The readings were to provide the students evidence that
they were not alone in facing the issues we dealt with in class.

Except for scattered random discussion, no class time was devoted
to this, but a final exam attempted to measure whether the stu-
dents had extracted from the papers the elements common to
their own experiences in the course and generally they had. Also,
two guest speakers from industry addressed the class on large sys-

tems - one about the building of a large expert system and the
other about portability issues revealed in a large document pro-
duction system.

4t6 Robert A. Morris



4. Summary and Evaluation

The principal omissions from a traditional course are the absence

of team programming and the absence of a start-to-finish system

building experience. Also, the utility of rapid prototying to test

design is fundamentally absent in a setting where the design has

been done by the original architects. In exchange for this, there is

time for the inexperienced programmer to learn how to use tools

and to discuss and experience typical issues in the design, imple-

mentation, and maintenance of a large software system. The dis-

cussion of design principles becomes threaded throughout the

course as the design decisions ofthe system authors are seen to
influence the modification enterprise.

No attempt was made to evaluate the success of such an

approach compared to that of a traditional course, nor are we pro-

posing that our method be a substitute for a full-blown design and

implementation experience, which we would urge as a successor to
our course. Instead, we suggest that students without sufficient
programming experience to invent designs can nevertheless absorb

important principles of system design and engineering when they

are cast as enhancements to existing systems. Subjectively, one

may take as a measure of success the fact that the students were

able to make a somewhat useful graphical interface to a mail
reader in three weeks, despite the fact that none had had any

experience with window systems before the project started. Also,

those students looking for employment after the course quickly

found good jobs. It is difficult, of course, to say whether this was

directly influenced by the course or the fact that exposure to X
windows programming made one especially hirable in the spring

of tggs.
The only evaluation instrument applied to the course at all

was a standardized student evaluation questionairre which is
administered in all courses. The commentary on those forms

made it clear that the students recognize that they knew more

tools than when they started and that they were exposed to an

important window system, but the fact that they also enhanced

their craft is probably not entirely visible to them because its

consequence is not verY concrete.

An (Jnorthodox Approach to Undergraduate Software Engineering InsÍruction 417



Acknowledgements

The author wishes to thank C. H. Morris and the anonymous
referees for suggesting substantial improvements in exposition and
to one referee for correcting an important factual error about
UNIX mail headers.

Reading List

Geoff Collyer and Henry Spencer, "News Need Not Be Slow," Proc.
1988 Winter USENIX Conference, pages l8l-190.

Barry W. Boehm, "Improving Software Productivity," IEEE Computer,
September, 1987, pages 43-57.

Richard J. Meyers and Jeff W. Parish, "The Macintosh Programmer's
Workshop," IEEE Software, May, 1988, pages 59-66.

Richard M. Stallman, "EMACS, the Extensible Customizable, Self-
Documenting Display Editor," in Interactive Programming Environ-
ments, David R. Barstow, Howard E. Shrobe, and Erik Sandewall,
editors, McGraw-Hill, New York, 1984.

References

Richard H. Austing, Bruce H. Barnes, Della T. Bonnette, Gerald L.
Engel, and Gordon Stokes, editors, "Curriculum'78, Recommenda-
tions for the Undergraduate Program in Computer Science," Comm.
ACM,22(#3), March 1979, pages 147-166.

Catherine L. Bullard, lnez Caldwell, James Harrell, Cis Hinkle and A.
Jefferson Offutt, "Anatomy of a Software Engineering Project,"
Nineteenth SIGSCE Technical Symposium on Computer Science Edu-
cation, ACM SIGSCE Bulletin, 20(#l),1988, pages 129-133.

Doris L. Carver, "Comparison of Techniques in Project Based Courses,"
Sixteenth SIGSCE Technical Symposium on Computer Science Edu-
cation, ACM SIGSCE Bulletin, l7(#l),1985, pages 9-12.

James S. Collofello, "Monitoring and Evaluating Individual Team
Members in a Software Engineering Course," Sixteenth SIGSCE
Technical Symposium on Computer Science Education, ACM SIGSCE
Bulletin, l7(#l), 1985, pages 6-8.

David H. Crocker, Standard for the Format of ARPA Internet Text Mes-
sages, RFC 822, August 1982.

41 I Robert A. Morris



Lionel E. Deimel, Jr.,"The Uses of Program Reading," ACM SIGSCE Bul-
letin, l2(#2), 1985, pages 5-14.

John S. Quarterman and Josiah C. Hoskins, "Notable Computer Net-
works," Comm. ACM,29(#10), October 1986, pages 932-971.

David S. Rosenthal, A Simple Client Program, or How hard can it really
be to write "Hello, World"?, distributed with xll release 2, 1988.

Marshall T. Rose, John L. Romine, The Rand MH Message Handling
System: (Jser's Manual, Uu/uCB Version,l984, distributed with
Berkeley LINIX documentation.

Robert W. Scheifler, James Gettys, and Ron Newman, X Window Sys-

tem, C Library and Protocol Reference, Digital Equipment Corp.,
I 988.

Kurt Shoens, revised by Craig Leres, "Mail Reference Manual, Version
5.2, April 1986," in UNIX User's Supplementary Documents, 4.3

B erkeley S oftw ar e D is tributio n, University of California, Berkeley,
l 986.

Richard M. Stallman, GDB Manual,The GNU Source Level Debugger,
Free Software Foundation, Cambridge, MA, 1987.

Richard M. Stallman, GNU Emacs Mønual, Free Software Foundation,
Cambridge, MA. 1987.

Sun Microsystems, Mail and Messages: Beginners Guide, Part No: 800-

1288-03, Revision A of 17 February 1986.

Dave Taylor, ELM User Guide, provided with ELM software. Copyright
1986, 1987 by Dave Taylor, Hewlett-Packard Laboratories, l50l Page

Mill Road, Palo Alto, CA94304.

Isubmitted Aug. 25, 1988; revised Nov. 21, 1988; accepted Dec. 16, 19881

An Unorthodox Approach to (Jndergraduate Software Engineering Instruction 4I9


