SplitX: Split Guest/Hypervisor Execution on

Multi-Core

Alex Landau* Muli Ben-Yehuda®™* Abel Gordon*

*1BM Research—Haifa

TTechnion—Israel Institute of Technology

« Portland, OR
I-llln U 3rd Wurkshop on IID Virtuallzauun

9

Landau et al. (IBM Research) SplitX WIQV ’11, June 2011 1/15

Background: machine virtualization

Running multiple different unmodified operating systems
Each in an isolated virtual machine

Simultaneously

Live migration, record & replay, testing, security, . . .
Foundation of laaS cloud computing
Used nearly everywhere

°
°
°
@ On the x86 architecture
)
)
°

OUR SERVERS ARE USING
TOO MUCH ELECTRICITY.
LJE NEED TO VIRTUALIZE.

Landau et al. (IBM Research)

scottadams Baol.com

www.dilbert.com

1 DID MY PART BY
READING ABOUT
VIRTUALIZATION IN
A TRADE JOURNAL. NOW!
YOU DO THE SOFTWARE
PART.

3208 ©2008Scott Adams. Inc./Dist. by UFS, Inc.

WHY IS YOUR PART
TAKING S0 LONG?

Splitx

WIQV ’11, June 2011

2

IOLanes

2/15

The problem is performance

@ Machine virtualization can reduce performance by tens of
percents to orders of magnitude
[Adams06,Santos08,Ram09,Ben-Yehuda10,Amit11,...]

@ Overhead limits use of virtualization in many scenarios
@ We would like to make it possible to use virtualization everywhere
@ Where does the overhead come from?

b

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 3/15

The origin of overhead

@ Popek and Goldberg’s virtualization model [Popek74]: Trap and
emulate
@ Privileged instructions trap to the hypervisor
@ Hypervisor emulates their behavior
@ Traps cause an exit. An exit has:
o A direct cost for the world switch to the hypervisor and back
e An indirect cost incurred by the hypervisor and the guest sharing
the same core
@ A synchronous cost for handling the exit at the hypervisor

@ How bad can it be?

/_ guest

virtualization |-+ ooeeee A I _
hypervisor

()
(t) — single core D\

IOLanes

Landau et al. (IBM Research) SplitX WIQV ’11, June 2011 4/15

Cost x frequency

Drop in application IPC (red) due to a single null exit at t = 940

2.2

2

1.8

1.6

1.4

IPC

1.2

1

0.8

0.6

0.4

0.2 1 1 1 1 1
o 2000 4000 6000 8000 10000 .

Cycles D\

IOLanes

Landau et al. (IBM Research) SplitX WIQV ’11, June 2011 5/15

Cost x frequency

Overhead per exit for selected exit types

Exit Type Number of Exits | Cycle Cost/Exit
External interrupt 8,961,000 363,000
I/O instruction 10,042,000 85,000
APIC access 691,249,000 18,000
EPT violation 645,000 12,000

@ netperf client run on 1GbE with para-virtualized NIC
@ Total run: ~7.1 x 10'° cycles vs. ~5.2 x 10" cycles for bare-metal

@ 35.73% slow-down due to the guest and hypervisor sharing the
same core

||||||

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 6/15

SplitX: dedicated cores for guest and hypervisor

Shared core Guest core Hypervisor core
—
Guest code 1 Guest code 1 L
Exit notification
—_—
Exit
Guest code 2 el
. handle exit
Hypervisor —
handle exit Entry notification
Guest code 3
2| Cache pollution
E
Entry
Guest code 2
Guest code 3 ..\
Trap-and-emulate SplitX @um

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 7/15

SplitX benefits

@ The direct cost is replaced by an
inter-core message (2,000 cycles
vs. 550 cycles: 3.5x improvement)

@ Indirect cost is eliminated completely

@ Synchronous cost can be eliminated
for some exit types

@ Well suited for specialized cores and
non-coherent architectures

@ Our analysis shows that
virtualization with SplitX should
reach the holy grail: bare-metal

performance with zero overhead! ,

2

IOLanes

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 8/15

Architectural support for SplitX

@ Cheap directed inter-core signals

e Extends existing inter-processor-interrupt (IPl) mechanism
o Guest = hypervisor: guest core sends message indicating an exit,
hypervisor core calls software handler

e Hypervisor = guest: hypervisor sends completion message, guest
core handles the message without interrupting the guest
@ Manage resources of other cores

e Hypervisor needs to change the internal state of guest core
e For example, set cr0 to a specific value

Guest core

Guest code 1

Guest code 2

Guest code 3

Landau et al. (IBM Research)

Hypervisor core

Directed message
—_

Access to core HyperVISOI’ =
-—
handle exit

Directed message
-

o
0

SplitX WIQV ’11, June 2011 9/15

Architectural support: implementing exits

@ Three categories of exits:
o Non-exits (e.g., HLT) do not need to be handled at all
e Synchronous exits (e.g., INVLPG): guest is paused until reply

received
@ Asynchronous exits (e.g., P10): guest continues running until a

synchronization point is reached

@ Interrupt injections and EOIs do not interrupt guest execution

e Interrupts: hypervisor sends an IPI to the guest
o EOIs become guest to hypervisor messages like other exits

Category Exit reasons

Non-exits HLT, MWAIT, PAUSE

Sync. exits | TASK SWITCH, INVD, INVLPG, CR-WRITE, DR-ACCESS, EPT
VIOLATION, INVEPT

Asyncéxits | P10, WBINVD, CPUID, RDTSC, RDPMC, CR-READ, RDMSR,
VM* except VMLAUNCH/VMRESUME

Landau et al. (IBM Research) SplitX WIOV 11, June 2011

o
0

10/15

Approximating SplitX on current hardware

@ Hardware approximation via hardware exploitation where
possible, minimal guest para-virtualization where not

@ Guest = hypervisor: give guest direct access to APIC. Guest can
now send IPIs to hypervisor and signal EQOls without exits.

@ Hypervisor = guest: hypervisor sends the guest an NMI; NMI is
an exception and does not cause an exit

@ Managing guest core resources: hypervisor runs a minimal trusted
stub in the guest context to approximate hardware operation

o
0

Landau et al. (IBM Research) SplitX WIOV 11, June 2011 11/15

Potential savings

@ netperf client run on 1GbE with para-virtualized NIC
@ Total run: ~7.1 x 10'% cycles vs. ~5.2 x 10'° cycles for bare-metal:
35.73% slow-down for traditional guest
@ Estimated the total cycles a SplitX guest core would consume
e Sync exits: discounted direct and indirect costs
@ Async exits: also discounted synchronous cost
o Added 250 cycles per exit: inter-core msgs and data movement
@ SplitX guest: ~5.200187 x 100 cycles vs. ~5.2 x 10'9 cycles for
bare-metal: difference of 0.0036%

Exit Type Sync? # Exits Cost/Exit Total Direct? Indirect? Async? Comm?
External intr. A. 8961 363 3253726 17922 8961 3253727 2240.25
10 instruction A 10042 85 848646 20084 10042 848647 2510.5
APIC access A 691249 18 12469663 | 1382498 691249 | 12469663 172812.25
EPT violation S 645 12 7782 1290 645 0.0 161.25

Table: Savings/overhead per exit type (selected exits) in 1K cycles b\

IOLanes

Landau et al. (IBM Research) SplitX WIOV 11, June 2011 12/15

Related work

@ Offload computation to a dedicated core or set of cores:

Sidecore [Kumar07,Gavrilovka09]

e VPE [Liu09]

o IsoStack [Shalev10]

System call offload [Nellans10,Soares10]

o VIOMMU [Amit11]

@ The Barrelfish [Baumann09a,Baumann09b] multikernel is
operating system for non-cache-coherent architectures where
each functional unit runs on its own core

@ SplitX applies the same core idea of spatial division of cores to
machine virtualization for unmodified operating systems

b

Landau et al. (IBM Research) SplitX WIOV 11, June 2011 13/15

Conclusions

@ Exits are the biggest cause of performance loss

@ SplitX: a novel approach for eliminating exits by splitting the guest
and the hypervisor into different cores

@ Needs modest new hardware enhancements; can be
approximated on current hardware

@ What would happen if virtualization was free from overhead?

b

Landau et al. (IBM Research) SplitX WIOV 11, June 2011 14/15

Questions?

IOLanes

Landau et al. (IBM Research) SplitX WIOV '11, June 2011 15/15

