
SplitX: Split Guest/Hypervisor Execution on
Multi-Core

Alex Landau? Muli Ben-Yehuda†? Abel Gordon?

?IBM Research—Haifa

†Technion—Israel Institute of Technology

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 1 / 15

Background: machine virtualization

Running multiple different unmodified operating systems
Each in an isolated virtual machine
Simultaneously
On the x86 architecture
Live migration, record & replay, testing, security, . . .
Foundation of IaaS cloud computing
Used nearly everywhere

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 2 / 15

The problem is performance

Machine virtualization can reduce performance by tens of
percents to orders of magnitude
[Adams06,Santos08,Ram09,Ben-Yehuda10,Amit11,. . .]
Overhead limits use of virtualization in many scenarios
We would like to make it possible to use virtualization everywhere
Where does the overhead come from?

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 3 / 15

The origin of overhead

Popek and Goldberg’s virtualization model [Popek74]: Trap and
emulate
Privileged instructions trap to the hypervisor
Hypervisor emulates their behavior
Traps cause an exit. An exit has:

A direct cost for the world switch to the hypervisor and back
An indirect cost incurred by the hypervisor and the guest sharing
the same core
A synchronous cost for handling the exit at the hypervisor

How bad can it be?

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 4 / 15

Cost × frequency

Drop in application IPC (red) due to a single null exit at t = 940

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 2000 4000 6000 8000 10000

IP
C

Cycles

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 5 / 15

Cost × frequency

Overhead per exit for selected exit types

Exit Type Number of Exits Cycle Cost/Exit
External interrupt 8,961,000 363,000
I/O instruction 10,042,000 85,000
APIC access 691,249,000 18,000
EPT violation 645,000 12,000

netperf client run on 1GbE with para-virtualized NIC
Total run: ~7.1× 1010 cycles vs. ~5.2× 1010 cycles for bare-metal
35.73% slow-down due to the guest and hypervisor sharing the
same core

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 6 / 15

SplitX: dedicated cores for guest and hypervisor

Exit notificationGuest code 1

Exit

Entry

Hypervisor –
handle exit

Guest code 2

Ti
m

e Cache pollution

Guest code 3

Guest code 1

Guest code 2

Guest code 3

Hypervisor –
handle exit

Entry notification

Trap-and-emulate SplitX

Shared core Guest core Hypervisor core

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 7 / 15

SplitX benefits

The direct cost is replaced by an
inter-core message (2,000 cycles
vs. 550 cycles: 3.5x improvement)
Indirect cost is eliminated completely
Synchronous cost can be eliminated
for some exit types
Well suited for specialized cores and
non-coherent architectures
Our analysis shows that
virtualization with SplitX should
reach the holy grail: bare-metal
performance with zero overhead!

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 8 / 15

Architectural support for SplitX

Cheap directed inter-core signals
Extends existing inter-processor-interrupt (IPI) mechanism
Guest⇒ hypervisor: guest core sends message indicating an exit,
hypervisor core calls software handler
Hypervisor⇒ guest: hypervisor sends completion message, guest
core handles the message without interrupting the guest

Manage resources of other cores
Hypervisor needs to change the internal state of guest core
For example, set cr0 to a specific value

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 9 / 15

Architectural support: implementing exits

Three categories of exits:
Non-exits (e.g., HLT) do not need to be handled at all
Synchronous exits (e.g., INVLPG): guest is paused until reply
received
Asynchronous exits (e.g., PIO): guest continues running until a
synchronization point is reached

Interrupt injections and EOIs do not interrupt guest execution
Interrupts: hypervisor sends an IPI to the guest
EOIs become guest to hypervisor messages like other exits

Category Exit reasons
Non-exits HLT, MWAIT, PAUSE
Sync. exits TASK SWITCH, INVD, INVLPG, CR-WRITE, DR-ACCESS, EPT

VIOLATION, INVEPT
Asyncėxits PIO, WBINVD, CPUID, RDTSC, RDPMC, CR-READ, RDMSR,

VM* except VMLAUNCH/VMRESUME

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 10 / 15

Approximating SplitX on current hardware

Hardware approximation via hardware exploitation where
possible, minimal guest para-virtualization where not
Guest⇒ hypervisor: give guest direct access to APIC. Guest can
now send IPIs to hypervisor and signal EOIs without exits.
Hypervisor⇒ guest: hypervisor sends the guest an NMI; NMI is
an exception and does not cause an exit
Managing guest core resources: hypervisor runs a minimal trusted
stub in the guest context to approximate hardware operation

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 11 / 15

Potential savings

netperf client run on 1GbE with para-virtualized NIC
Total run: ~7.1× 1010 cycles vs. ~5.2× 1010 cycles for bare-metal:
35.73% slow-down for traditional guest
Estimated the total cycles a SplitX guest core would consume

Sync exits: discounted direct and indirect costs
Async exits: also discounted synchronous cost
Added 250 cycles per exit: inter-core msgs and data movement

SplitX guest: ~5.200187× 1010 cycles vs. ~5.2× 1010 cycles for
bare-metal: difference of 0.0036%

Exit Type Sync? # Exits Cost/Exit Total Direct? Indirect? Async? Comm?
External intr. A. 8961 363 3253726 17922 8961 3253727 2240.25
IO instruction A 10042 85 848646 20084 10042 848647 2510.5
APIC access A 691249 18 12469663 1382498 691249 12469663 172812.25
EPT violation S 645 12 7782 1290 645 0.0 161.25

Table: Savings/overhead per exit type (selected exits) in 1K cycles

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 12 / 15

Related work

Offload computation to a dedicated core or set of cores:
Sidecore [Kumar07,Gavrilovka09]
VPE [Liu09]
IsoStack [Shalev10]
System call offload [Nellans10,Soares10]
vIOMMU [Amit11]

The Barrelfish [Baumann09a,Baumann09b] multikernel is
operating system for non-cache-coherent architectures where
each functional unit runs on its own core
SplitX applies the same core idea of spatial division of cores to
machine virtualization for unmodified operating systems

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 13 / 15

Conclusions

Exits are the biggest cause of performance loss
SplitX: a novel approach for eliminating exits by splitting the guest
and the hypervisor into different cores
Needs modest new hardware enhancements; can be
approximated on current hardware
What would happen if virtualization was free from overhead?

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 14 / 15

Questions?

Landau et al. (IBM Research) SplitX WIOV ’11, June 2011 15 / 15

