s E == g ‘ Technion

VAMOS: Virtualization Aware Middleware

Abel Gordon! Muli Ben-Yehuda'l-? Dennis Filimonov2 Mahor Dahan?

1IBM Research — Haifa
2Technion — Israel Institute of Technology

]
uIIUU]] June 14, 2011 = Portland, OR
3rd Workshop on I/0 Virtualization

VAMOS - WIOV 2011

g | Technion

= Virtualization overhead is still high due to the transitions between the guest and the hypervisor

= Motivation: potential optimizations at the application layer have been ignored
— Software is still built based on models that apply to non-virtual systems
— Applications are not being adapted for the underlying “virtual” platform

— No cooperation between the application and the hypervisor

— Adapting the middleware such as Databases, Web Servers, Application Servers to
virtualized platforms we can indirectly adapt many applications and regain lost
performance

VAMOS - WIOV 2011 ¥ ‘Technlon

/O virtualization with KVM, a long way down....

Guest user-space

oeaee
/=
QEMU \// Guest kernel-space \

system
v o emulated
emulator device

virtual-queue N virtual-queue
(back-end) —— (front-end) Host

— - .|. A‘x _———— - _//: _—— - - _usi-sice. > Explored

Notifications Host

Native kernel-space
ivr

Host (Linux kernel + KVM module)

Unexplored

VAMOS - WIOV 2011 g Technion

= Reduce virtualization overhead by adding virtualization awareness to the
middleware

= Avoid changes in the guest operating system
» Re-use/re-factor existent code by exploiting modularity

= Avoid software re-write/re-design

VAMOS - WIOV 2011

.g ?Technion

Guest Guest
Application Application
A g A
\4 E \4
Middleware Middleware
Module A Module B Module C Module A Module B)
3 3
0S 0S
H . Yy H . v
ervisor : ervisor
P > VMM : P > VMM
Virtual Hardware | Virtual Hardware | v
Emulation) Emulation iRkl @
Physical Hardware | : Physical Hardware | > Module C <
Manager Manager
A : A
Physical Hardware Physical Hardware
Traditional VAMOS
Architecture Architecture

VAMOS - WIOV 2011

g ?Technion

Middleware

Module A Module B Module C

. Modules which interact directly with system resources, generating many transitions to the
hypervisor context and requiring emulation of virtual hardware

2. Modules which can be easily re-factored into a client side running in the guest and a server
side running in the host

3. Modules which do not share state with other components, avoiding data sharing and
synchronization between the guest and the hypervisor.

4. Modules that do not require persisted state at the hypervisor level (do not require special
handling for live-migration, checkpoint/restore)

VAMOS — WIOV 2011 g ?Technion

1. A runtime environment:
= |solated
= At the hypervisor level
= Executing middieware code
= With access to physical resources, such as network devices or disk drives

— Most hypervisors have a general purpose OS
2. A communication channel between:
» the middleware running in the guest
= the middleware running in the host

= the hypervisor

— Para-virtualization channels are commonly used

‘Technion

o]
[HLH]
il
=

VAMOS - WIOV 2011

Looking for the right balance

Para-Virtualization

Low Performance | * * * * * 4 * * ‘' * ! High Performance
Loose Coupling L Tight Coupling

SR-I0V
|/O Pass-through

Unmodified
Guests

VAMOS - WIOV 2011

‘ Technion

MySQL Software Architecture

I Connectors
Mative C API, JDBC, ODBC, .NET, PHP, Python, Perl, Ruby, VB

A 4 4
‘- -

MySQL Server

Connection Pool
Authentication -Thread Reuse - Connection Limits = Check Memory - Caches E

SQL Interface Parser Optimizer Caches & Buffers

DML, DDL, Query Translation, Access Paths, Gl_ﬂbal anc! .
Stored Procedures Object Privilege Statistics Engine Specific
Views, Triggers, etc. Caches & Buffers

-

Pluggable Storage Engines
Memory, Index & Storage Management

AAamAaAAn

Cluster Archive Merge Memory Partner Community Custom

File System Files & Logs
NTFS - NFS Redo, Undo, Data, Index, Binary,
SAN - NAS Error, Query, and Slow

VAMOS - WIOV 2011

VAMOS for MySQL

g ‘Technion

Guest
MySQL server Kernel
Storage Engine .
front-end < Virtio <
ront-en front-end
(client side)
Host
QEMU user-space process Kernel
Storage Engine —
back-end 41 Virtio <
acikcen back-end
(server side)
] R Host
| File System

10

VAMOS - WIQOV 2011 E;;‘:‘—:: ngechnion

500
e e e | :
400 [1 e 1 EEEEEE (EET TP 1 e s

D 350 e : 10 (EEEEEE (EETETTEPE 3) EEERREEE s

9

o300 bl b e e .

2 250 I 1 o S R -

S 200 { { { R R -

S 150 { I | TR 0 .
100 - 1 1 1 ! .
50 - 1 1 1 S A PR -
0

(/Zl (/IZA O!Z (/Z! ¢ L

q/f/L “ ’Y/z’?/L Ty T, ’?\4’?\4
O O (#)
%}Z Ib % ”f“f% % U dg s, gy %(7"65‘[%
¢, T v, v v
Vf ‘*‘f 6‘5"/ 6‘5"/ 6‘5"/
(‘/)' (‘/}' (‘/)/ (‘/)/ (2
AKB 8KB 16KB 32KB 64KB

Experimental setup for different row sizes
» Guest cycles: still the same
» Host cycles: significantly reduced

11

VAMOS - WIOV 2011

|
=

‘ Technion

Runtime Improvement

12

Runtime Improvement (%)

35%

30%

25%

20%

15%

10%

5%

0%

B VirtlO
00 VA-MySql

[] VA-MySQL-batch

4KB

8KB

16KB 32KB 64KB

Tradeoff between amount of data and number of switches:
* VAMOS: number of switches depends on the request type
« Virtio: number of switches depends on the amount of data

VAMOS - WIOV 2011

g Technion

= Virtual Interface
— Xen [Barham03]
— HPC [Gavrilovska08]
— Virtio [Rusell08]

= OS Interface
— VirtFS [Jujjuri10]
— Libra [Ammons07]

= Hardware Interface
— SR-IOV [Dong08, Liu10]

= VAMOS takes virtualization awareness up into userspace (Middleware)

13

VAMOS - WIOV 2011

g | Technion

= Virtualization overhead is still high due to the transitions between the guest and the hypervisor

= Running part of the middleware at the hypervisor level, VAMOS reduces the overall number of
guest/hypervisor switches and improves |/O performance

= Exploiting existing modular designs and abstraction layers, middleware can be adapted to run
at the hypervisor level with modest cost

= VAMOS presents a new design point to be considered in the [transparency vs. performance]
trade-off spectrum

= Next Steps:
— Apply VAMOS to other middleware
— Explore additional areas such as memory over-commit
— Analyze feasibility of building a common infrastructure shared across different middleware
— Improve middleware isolation and security
— Guest/Host communication optimizations
— What can we do if we re-think the middleware from scratch ?

14

VAMOS - WIOV 2011

g ‘Technion

15

Questions ?

