
Abel Gordon1 Muli Ben-Yehuda1,2 Dennis Filimonov2 Mahor Dahan2

1 IBM Research – Haifa
2 Technion – Israel Institute of Technology

VAMOS: Virtualization Aware Middleware

�

VAMOS – WIOV 2011

VAMOS: Virtualization Aware Middleware

� Virtualization overhead is still high due to the transitions between the guest and the hypervisor

� Motivation: potential optimizations at the application layer have been ignored

– Software is still built based on models that apply to non-virtual systems

– Applications are not being adapted for the underlying “virtual” platform

– No cooperation between the application and the hypervisor

– Adapting the middleware such as Databases, Web Servers, Application Servers to
virtualized platforms we can indirectly adapt many applications and regain lost
performance

�

VAMOS – WIOV 2011

I/O virtualization with KVM, a long way down….

����

�����	

�	
����

��������	�
�

�����
���

�
����������������

��������	�
�

�������
���

�
����
���������

�

��������
���������������	 �
��

�����
�

����
� ��� �� ����

�����

�
��
�����

�����

��
�����

� ����
��

�
��

������������

Explored

Unexplored

�

VAMOS – WIOV 2011

VAMOS Goals

� Reduce virtualization overhead by adding virtualization awareness to the
middleware

� Avoid changes in the guest operating system

� Re-use/re-factor existent code by exploiting modularity

� Avoid software re-write/re-design

�

VAMOS – WIOV 2011

�����!���

�
���

Application

Middleware

OS

Physical Hardware

Virtual Hardware
Emulation

Physical Hardware
Manager

VMM

Traditional
Architecture

VAMOS
Architecture

Module A Module B Module C

�����!���

�
���

Application

Middleware

OS

Physical Hardware

Virtual Hardware
Emulation

Physical Hardware
Manager

VMM

Module A Module B

Middleware

Module C

�

VAMOS – WIOV 2011

Middleware Adaptation

1. Modules which interact directly with system resources, generating many transitions to the
hypervisor context and requiring emulation of virtual hardware

2. Modules which can be easily re-factored into a client side running in the guest and a server
side running in the host

3. Modules which do not share state with other components, avoiding data sharing and
synchronization between the guest and the hypervisor.

4. Modules that do not require persisted state at the hypervisor level (do not require special
handling for live-migration, checkpoint/restore)

Middleware

Module A Module B Module C

�

VAMOS – WIOV 2011

VAMOS Requirements

1. A runtime environment:
� Isolated
� At the hypervisor level
� Executing middleware code
� With access to physical resources, such as network devices or disk drives

– Most hypervisors have a general purpose OS

2. A communication channel between:
� the middleware running in the guest
� the middleware running in the host
� the hypervisor

– Para-virtualization channels are commonly used

�

VAMOS – WIOV 2011

Looking for the right balance

High Performance
Tight Coupling

Unmodified
Guests

Para-Virtualization VAMOS

SR-IOV
I/O Pass-through

Low Performance
Loose Coupling

�

VAMOS – WIOV 2011

MySQL Software Architecture

	

VAMOS – WIOV 2011

VAMOS for MySQL

���

�
���

��������"�����!��

"���#����#���

$�������

������������

Virtio guest
middleware
connector

Virtio
front-end

������

Virtio
back-end

�����
����������������

"���#����#���

%�������

����!�������

Virtio host
middleware
connector

Host
File System

		

VAMOS – WIOV 2011

Guest/Host – Cycles Distribution

Experimental setup for different row sizes
• Guest cycles: still the same
• Host cycles: significantly reduced

	�

VAMOS – WIOV 2011

Runtime Improvement

Tradeoff between amount of data and number of switches:
• VAMOS: number of switches depends on the request type
• Virtio: number of switches depends on the amount of data

	�

VAMOS – WIOV 2011

Related Work

� Virtual Interface
– Xen [Barham03]
– HPC [Gavrilovska08]
– Virtio [Rusell08]

� OS Interface
– VirtFS [Jujjuri10]
– Libra [Ammons07]

� Hardware Interface
– SR-IOV [Dong08, Liu10]

� VAMOS takes virtualization awareness up into userspace (Middleware)

	�

VAMOS – WIOV 2011

Conclusions & Future Work

� Virtualization overhead is still high due to the transitions between the guest and the hypervisor

� Running part of the middleware at the hypervisor level, VAMOS reduces the overall number of
guest/hypervisor switches and improves I/O performance

� Exploiting existing modular designs and abstraction layers, middleware can be adapted to run
at the hypervisor level with modest cost

� VAMOS presents a new design point to be considered in the [transparency vs. performance]
trade-off spectrum

� Next Steps:
– Apply VAMOS to other middleware
– Explore additional areas such as memory over-commit
– Analyze feasibility of building a common infrastructure shared across different middleware
– Improve middleware isolation and security
– Guest/Host communication optimizations
– What can we do if we re-think the middleware from scratch ?

	�

VAMOS – WIOV 2011

Questions ?

