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Abstract

The increasing popularity of storage and server con-
solidation introduces new challenges for resource manage-
ment. In this paper we propose a Nested QoS service model
that offers multiple response time guarantees for a work-
load based on its burstiness. The client workload is filtered
into classes based on the Service Level Objective (SLO) and
scheduled to provide requests in each class a stipulated re-
sponse time guarantee. The Nested QoS model provides an
intuitive, enforceable, and verifiable SLO between provider
and client. The server capacity in the nested model is re-
duced significantly over a traditional SLO while the perfor-
mance is only marginally affected.

1 Introduction

Large virtualized data centers that multiplex shared re-
sources among hundreds of paying clients form the back-
bone of the growing cloud IT infrastructure. The increased
use of VM-based server consolidation in such data centers
introduces new challenges for resource management, ca-
pacity provisioning, and guaranteeing application perfor-
mance. Service Level Objectives (SLOs) are employed
to assure clients a level of performance QoS like mini-
mum throughput or maximum response time. The server
should provide sufficient capacity to meet the stipulated
QoS goals, while avoiding over-provisioning that leads to
increased infrastructure and operational costs. Accurate
provisioning is complicated by the bursty nature of stor-
age workloads [15, 9] and sharing by multiple client VMs.
Performance SLOs range from simply providing a speci-
fied floor on average throughput (e.g. IOPS) to providing
guarantees on the response time of requests. The former
can be readily supported using weighted Fair Queuing ap-
proaches (see Section 6); providing response-time guaran-
tees requires that the input stream be suitably constrained.

In this paper we propose a Nested QoS service model
that offers a spectrum of response time guarantees based on
the burstiness of the workload. It formalizes the observation

that a disproportionate fraction of server capacity is used
to handle the small tail of highly bursty requests. In [14]
we described a workload decomposition scheme to identify
and schedule these requests to reduce capacity. However,
this framework is not backed by a formal underlying SLO
model; the difficulty is in coming up with a suitable specifi-
cation. For instance, while the client may be satisfied with
an agreement that guarantees 95% of its requests will have
a response time of less than 20ms, the provider can only
make such an assurance if the workload satisfies some con-
straints on burstiness and throughput. Further, the model
should be intuitive, easy to enforce, and mutually verifiable
in case of dispute. The Nested QoS model provides a formal
(but intuitive and enforceable) way to specify the notion of
graduated QoS, where a single client’s SLO is specified in
the form of a spectrum of response times rather than a sin-
gle worst-case guarantee. The model properly generalizes
SLOs based on a single response time guarantee (e.g. [10]).

In Section 2 we describe the Nested QoS model and
its implementation. In Sections 3 and 4 we demonstrate
how it can reduce capacity in single client and shared
client environments respectively. It’s still useful in a non-
oversubscribed environment because of economy reason (
improved server utilization and reduced cost). Analysis of
the server capacity is presented in Section 5. Our work is
related to the ideas of differentiated service classes in com-
puter networks [4] [12] [16]. However, we believe our
model and analysis are different from these works, and the
decomposition and evaluation of storage traces is new.

2 System Model

The workload W of a client consists of a sequence of re-
quests. Figure 1 shows the framework of our Nested QoS
service model. The performance SLO is determined by
multiple nested classes C1, C2 · · ·Cn. Class Ci is specified
by three parameters: (σi, ρi, δi), where (σi, ρi) are token
bucket [16] parameters and δi is the response time guaran-
tee. Ci consists of the maximally-sized subsequence of re-
quests of W that is compliant with a (σi, ρi) token bucket:
that is, the number of requests in any interval of length t is
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upper bounded by σi + ρit, and no other request of W can
be added to the sequence without violating the constraint.
The token bucket provides an envelope on the traffic admit-
ted to each class by limiting its burst size (σi) and arrival
rate (ρi). All requests in Ci have a response time limit of δi.
Nesting requires that σi ≤ σi+1, ρi ≤ ρi+1 and δi ≤ δi+1.

For example, a 3-class Nested QoS model (30, 120 IOPS,
500ms), (20, 110 IOPS, 50ms), (10, 100 IOPS, 5ms) indi-
cates that: all the requests in the workload that lie within the
(10, 100 IOPS) envelope have a response time guarantee of
5ms; the requests within the less restrictive (20, 110 IOPS)
arrival constraint have a latency bound of 50ms, while those
conforming to the (30, 120 IOPS) arrival bound have a la-
tency limit of 500ms.

zClass 1
(σ1, ρ1, δ1)

Class 2
(σ2, ρ2, δ2 ) Class 3

(σ3, ρ3, δ3)

Figure 1. Nested QoS Framework
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Figure 2. Nested Traffic Envelopes

Figure 2 shows an implementation of the model. It con-
sists of two components: request classification and request
scheduling (not shown in the figure). The former is im-
plemented using a cascade of token buckets, B1, B2 · · ·Bn

(innermost is B1). The buckets filter the arriving workload
so that queue Q1 receives all requests of class C1, Q2 re-
ceives requests of C2 − C1, and Q3 receives requests of
C3 − C2. By ensuring that requests in queue Qi meet a re-
sponse time of δi, the SLO of the Nested QoS model can
be met. The scheduler services requests across the queues
within a client based on their deadlines using an Earliest

Deadline First (EDF) policy. To give an example of request
classification, Figure 3 shows the filtering of the Exchange
workload as it goes through the token bucket network.
Bi has parameters (σi, ρi) that regulates the number of

requests that pass through it in any interval. Initially Bi

has σi tokens; an arriving request removes a token from the
bucket (if there is one) and passes thorough to Bi−1 (or Q1

if i is 1); if there are no tokens in Bi the request goes into
the queueQi+1 instead. Bi is filed with tokens at a constant
rate ρi, but the maximum number of tokens is capped at σi.
In Section 5 we compute the capacity required to meet the
SLO specified by the Nested QoS model parameters.

3 Nested QoS for a Single Workload

We describe how the Nested QoS parameters of a work-
load will typically be determined. The client first decides
the number of classes and their sizes (as a fraction of work-
load size) by empirically profiling the workload to achieve
a satisfactory tradeoff between capacity required (cost) and
performance. (Usually three classes appear to be sufficient
over a variety of workloads.) Using a decomposition algo-
rithm (see [14]) one can determine the minimum capacity
κ1 required for a fraction f1 of the workload to meet the
deadline δ1. We choose ρ1 = κ1 and σ1 = ρ1δ1. We simi-
larly profile each of the classes, and set ρ2 = max{κ1, κ2}
and σ1 ≤ σ2 ≤ ρ2δ2, and ρ3 = max{κ2, κ3} and
σ2 ≤ σ3 ≤ ρ3δ3.
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Figure 4. Capacity Requirement for Nested
QoS and Single level QoS

We implemented the Nested QoS model in a process-
driven system simulator and evaluated the performance
separately with five block-level storage workloads (W1-
W5) from UMass Storage Repository [1] and SNIA
IOTTA Repository [2]: WebSearch1, WebSearch2, Fin-
Trans, OLTP, Exchange. WebSearch1, WebSearch2 are
traces from a web search engine and consist of user web
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(a) Original workload
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(b) Workload in Queue 1
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(c) Workload in Queue 2
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(d) Workload in Queue 3

Figure 3. Decomposition of workload into different classes
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Figure 5. Performance for Nested QoS

search requests. FinTrans, OLTP are traces generated by fi-
nancial transactions running at large financial institutions.
Exchange trace is from Microsoft Exchange Server. The
parameters for each workload are as follows: δ1 = 5ms (all
workloads); σ1 = 3 (W1,W2,W3), σ1 = 4 (W4), and
σ1 = 33 (W5); ρ1 = 650 (W1, W2), ρ1 = 600 (W3),
ρ1 = 400 (W4) and ρ1 = 6600 (W5). For the other classes,
σi+1 = 2σi, δi+1 = 10δi and ρi+1 = ρi. The values were
found by profiling the workloads to guarantee more than
90% requests in C1.

Figure 4 compares the capacity required by the work-
loads for the Nested and Single-Level QoS models. The
capacity is significantly reduced by spreading the requests
over multiple classes. Figure 5 shows the distribution of re-
sponse times. In each case a large percentage (92%+) of the
workload meets the 5ms response time bound, and a tiny
0.1% or less requires more than 50ms. The capacity re-
quired for Nested QoS is several times smaller than that for
a Single-Level QoS, while the service seen by the clients is
only minimally degraded .

4 Nested QoS for Concurrent Workloads

In a shared environment, each VM workload is indepen-
dently decomposed into classes based on its Nested QoS pa-
rameters. The server provides capacity κj for VM j based
on its capacity estimate using the formula of Section 5, and
provisions a total capacity of Σjκj . A standard Fair Sched-
uler allocates the capacity to each VM in proportion to its
κj . When VM j is scheduled it chooses a request from its
queues with the smallest deadline. Figure 6 shows the or-
ganization for serving multiple clients.
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Figure 6. The architecture of Nested QoS
model in a VM Environment

We compare the performance of WF2Q [3], and
pClock [10] with scheduling of requested streams decom-
posed by Nested QoS. The former two methods try to pro-
vide 100% guarantees and their performance degrades ap-
preciably if the capacity provisioned is less than that re-
quired. We employ two concurrent workloads WebSearch
and FinTrans from two VMs. The parameters setting are:
σ1 = 16, ρ1 = 320, δ1 = 50ms for WebSearch, and
σ1 = 8, ρ1 = 160, δ1 = 50ms for FinTrans. For both
workloads, σi+1 = 2σi, δi+1 = 10δi, ρi+1 = ρi. Fig-



ures 7 (a) (b) show the performance of the three schedulers
with the server capacity of 528 IOPS. The weight of the
two VMs is 2 : 1 based on their capacity requirements.
Figure 7(c) for the WebSearch workload shows that with
Nested QoS 97% of the workload meets the 50ms response
time bound, while pClock and WF2Q can only guarantee
70% and 48% respectively. Figure 7(d) shows a similar per-
formance for FinTrans. We see that Nested QoS can pro-
vide better performance guarantees than both pClock and
WF2Q.

5 Analysis

The workload W consists of a sequence of requests ar-
riving at times 1, 2, 3, .... The decomposition splits W into
classesC1, C2, · · ·Cn. Ci consists of the requests ofW that
are output by the token bucket Bi. All requests in Ci have
a response time no more than δi. From the nested defini-
tion, we require that σi ≤ σi+1, ρi ≤ ρi+1 and δi ≤ δi+1.
The problem is to estimate the server capacity required to
meet the SLO. We present here only the result for special
case where all ρi are equal to ρ; this is also the case used in
all the experimental evaluations in this paper. We define a
busy period to be an interval in which there are one or more
requests in the system.
Lemma 1 The capacity required for all requests to meet
their deadlines in the Nested QoS model, when all ρi are
equal to ρ, is given by: max1≤j≤n{σj/δj + ρ(1 −
δ1/δj), ρ}.
Proof: We bound the maximum number of requests that
need to finish by time t ≥ 0, where t = 0 is the start of the
busy period. All requests with a deadline t or less must have
arrived in the interval [0, t − δ1], since δ1 is the smallest
response time bound. Requests with response time bound
δj have, by definition, been passed by Bj . The maximum
number of requests with deadline t that could have been ad-
mitted by Bj in [0, t− δ1] is Nj(t) = σj + ρ(t− δ1). The
server capacity κj required to finish the Nj(t) requests by
t is no more than Nj(t)/t = (σj − ρδ1)/t + ρ. First, if
σj < ρδ1 then κj is no more than ρ. Otherwise, we con-
sider two cases: t ≥ δj and t < δj . If t ≥ δj the maximum
value of Nj(t)/t is reached for t = δj and we get κj no
more than σj/δj + ρ(1− δ1/δj). If t < δj , all the requests
admitted by Bj have a deadline less than δj and hence must
belong to classCj−1 or smaller; in this case κj equals Sj−1.
Putting the cases together, the Lemma follows. The follow-
ing workload shows the capacity estimate is tight: a burst
of σn requests at t = 0 followed by requests arriving at the
uniform rate ρ, will require the capacity estimated by the
Lemma.

We end with an interesting case when the class parame-
ters are multiples of the base value.

Lemma 2: Let α = δi+1/δi, β = σi+1/σi and λ = β/α
be constants. The server capacity required to meet SLOs is
no more than: max1≤j≤n {ρ, λj(σ1/δ1) + ρ(1−1/λj)}.
For λ < 1, the server capacity is bounded by σ1/δ1 + ρ,
which is less than twice the capacity required for servicing
C1.

6 Related Work

The simplest QoS model provides each client i a guar-
anteed server bandwidth of Bi IOPS. The server capacity is
divided among the active clients in proportion to their guar-
anteed bandwidths, so that client i receives an allocation of
C×wi, whereC is the server capacity, wi = Bi/

∑
j∈ABj

and A is the set of active clients. As long as the provi-
sioned capacity C and the set of admitted clients A satisfy
C ≥

∑
j∈ABj , the QoS guarantees for all clients can be

met. A large number of algorithms have been proposed
for proportional resource sharing e.g. Fair Queuing [8],
WFQ [17, 5], WF2Q [3], Start Time Fair Queuing [7], Self-
Clocking [6] etc. The general idea is to emulate the behav-
ior of an ideal (continuous) Generalized Processor Sharing
(GPS) scheduler in a discrete system, and divide the re-
source at a fine granularity in proportion to client weights.
With proportional allocation, it is not possible to specify an
independent response time requirement that is unrelated to
its throughput. The WF2Q algorithm [3] guarantees that the
worst-case response time of a request of client i is bounded
by the time to serve all its queued requests at a uniform
rate Bi without any additional delay. QoS models and al-
gorithms for providing throughput guarantees when system
capacity can vary, were presented in [11].

A second QoS model focuses on providing latency con-
trols along with proportional sharing [17, 10]. In addition
to providing minimum bandwidth guarantees, individual re-
quests are guaranteed a maximum response time provided
the client traffic satisfies stipulated constraints on burst size
and arrival rate. Cruz et al. [17, 5] utilize the service
curves concept to regulate workload patterns and arrival
rates. They provide the SCED algorithm to schedule work-
loads specified by a given set of service curves. However, a
major problem of the SCED algorithm is that it may result
in starvation of a client which uses spare system capacity.
Gulati et al. propose an algorithm pClock [10], which uses
a token bucket to control the arrival burst size and flow rate,
and provide a synchronization scheme to avoid starvation;
further, by setting the deadline of a request to be as late as
possible the method attains greater flexibility in scheduling
spare capacity. An issue not addressed by these methods is
the impact on QoS guarantees of a badly behaved workload
which violates its arrival constraints. Since these methods
do not isolate the non-compliant part of the workload from
its well-behaved portions, even small violations can lead to
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(a) WebSearch performance
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(b) FinTrans performance
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(c) WebSearch: CDF of Response time
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Figure 7. Performance for Multiplexing

loss of QoS guarantees over extended (unbounded) portions
of the workload. In addition, only a single response time
guarantee is supported by this model, so the flexibility is
limited and the provisioned capacity requirements are high.

More closely related to nested QoS are network QoS
models where traffic shaping is used to decompose the
workloads, and provide performance guarantees in terms of
bandwidth and latency. Typically, arriving network traffic
is made to conform to a token-bucket model by regulating
the arrivals, and dropping requests that do not conform to
the bucket parameters. With this drop-and-retransmission
mechanism, the workload performance is guaranteed for
the admitted portion of the workload, and the server uti-
lization is maximized. However, drop-and-retransmission
is not generally acceptable in storage systems, whose pro-
tocols do not support automatic retry.

The Nested QoS model classifies different portions of
the workload into different classes and schedules them with
different response time bounds. Empirical study of storage
workloads to show the benefits of exempting a fraction of
the workload from response time bounds was shown in [13],
and used in the design of a slack-based two-level scheduler
for a single client workload in [14]. However, there was no
formal QoS model underlying the approach, that precluded
specifying a well-defined SLO.

7 Conclusions and Future Work

The Nested QoS model provides several advantages over
usual SLO specifications: (i) large reduction in server ca-
pacity without significant performance loss, (ii) accurate
analytical estimation of the server capacity, (iii) provid-
ing flexible SLOs to clients with different performance/cost
tradeoffs, and (iv) providing a clear conceptual structure of
SLOs in workload decomposition. Our work continues to
explore alternative implementations, capacity estimation for
unrestricted parameters, relating workload characteristics
with nested model parameters, semantic restrictions on de-
composition, scheduling multiple decomposed workloads
on a shared server, and a Linux block-level implementation.
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