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Abstract—Cloud environments should provide network per-
formance isolation for co-located untrusted tenants in a virtual-
ized datacenter. We present key properties that a performance
isolation solution should satisfy, and present our progress on
Gatekeeper, a system designed to meet these requirements.
Experiments on our Xen-based implementation of Gatekeeper in
a datacenter cluster demonstrate effective and flexible control of
ingress/egress link bandwidth for tenant virtual machines under
both TCP and greedy unresponsive UDP traffic.

I. INTRODUCTION

In cloud computing [2] environments, mutually non-trusted
tenants deploy their services in a shared datacenter infras-
tructure. Each tenant consists of a collection of one or more
virtual machines (VMs) placed on one or more physical
machines. Cloud environments have a strong requirement to
enforce performance isolation among tenants that share a
datacenter, but currently mechanisms are lacking to provide
performance isolation for datacenter network I/O resources.
Effective management of network bandwidth will be cru-
cial to handle the growing range of service workloads that
stress local area network resources in the datacenter. For
example, data-intensive applications on scalable frameworks
like MapReduce [5] can be highly network-intensive. Also,
future datacenters will merge traditional messaging traffic with
network storage traffic onto a single converged datacenter
fabric, using new network standards [4], [6] and distributed
storage and file systems [9].

This paper proposes properties that multi-tenant network
performance isolation solutions should provide to meet the
practical needs of both cloud users and cloud datacenter
providers. We show that existing techniques fall short of
meeting all of these requirements, and we report on our
significant progress in building an I/O virtualization control
system called Gatekeeper that is intended to fulfill these needs.

II. REQUIREMENTS

We argue that solutions to the tenant network performance
isolation problem must have the following properties to be
practical.

Scalable. A cloud datacenter supports thousands of physical
servers hosting 10s of thousands of tenants and 10s to 100s
of thousands of VMs. The VMs and tenants in the datacenter
come and go dynamically, with a high rate of churn. Each
datacenter network link is thus potentially shared by a large
and churning set of VMs. A solution for network performance

isolation must work at these large scales. For example, tech-
niques that require per-tenant or per-VM state to be maintained
at each switch are impractical if the need to manage a
large amount of state at high speed renders the switches
prohibitively expensive for cloud computing infrastructure.

Simple service performance abstraction. The cloud in-
frastructure provider should clearly describe the performance
level that users can expect when they deploy tenants. Typically,
the cloud provider presents a menu of choices for the service
level of VMs to deploy. For example, Amazon EC2 offers
different “instance types” like small or medium instances.
While each instance type offers a clear description of the
CPU performance and memory and storage capacities, I/O
performance is currently only vaguely specified. We argue
that users should be offered more meaningful guidelines for
expected network I/O performance, allowing users to better
gauge the trade-off between service level and the monetary
cost the users pay the cloud provider to host their tenants.

Robust to untrusted/malicious tenants. A key advantage
of Infrastructure as a Service (IaaS) cloud computing is that it
allows users to run arbitrary code as tenants, giving users great
flexibility for innovation. But this flexibility has the downside
of allowing tenants to execute malicious code that threatens
to subvert the performance of other tenants or the datacenter
infrastructure itself. A performance isolation solution should
limit the performance impact that malicious tenants can inflict
on others without restricting tenant code flexibility by, for
example, mandating the use of TCP (versus UDP, etc.) or a
particular implementation of the transport protocol.

Service level flexibility. Customers need deterministic guar-
antees ensuring predictable performance independent of VM
placement and migration, and the traffic and churn of other
tenants. However, deterministic guarantees can lead to overly
conservative network resource allocation with severe underuti-
lization of the physical resources. To achieve greater resource
efficiency, the cloud provider should have the flexibility to
offer service levels allowing tenants to exceed their minimum
guarantees. The service level should specify both minimum
and maximum bandwidth levels to trade-off determinism and
resource efficiency. Supporting maximum rates is important
for service providers that do not want their customers to get
used to high high service levels and get disappointed if their
services are later reduced to their minimum guarantees.



III. EXISTING MECHANISMS

TCP: TCP congestion control has been widely used to share
network links across multiple flows. While TCP works well to
provide best-effort service, it cannot enforce per tenant service
guarantees. For example, if two tenants are sharing a single
network link, and one tenant generates 99 TCP connections
while the other generates only one, TCP will try to partition
the bandwidth equally among the flows, giving 99% of the
bandwidth to one tenant and only 1% to the other. Basically,
TCP is designed to achieve fairness among flows and not
among tenants.

Bandwidth Capping: Hypervisors such as VMware ESX
and Xen have bandwidth capping mechanisms that enforce a
maximum transmission rate for each virtual network interface
(vNIC) associated with a virtual machine (VM). Bandwidth
capping can be used to guarantee per vNIC transmission band-
width using VM admission control to limit the total allocated
bandwidth. More recent versions of hypervisors can also en-
force receive bandwidth capping per vNIC. For well-behaved
TCP connections, dropping packets that exceed the allocated
bandwidth at the receiving vNIC causes TCP senders to reduce
their rates and adapt to the available vNIC bandwidth. So
using bandwidth capping could provide bandwidth guarantees
at the server access links to the network in both TX and RX
directions. However, this would require trusting that tenants
run well-behaved TCP implementations. In essence, bandwidth
capping is unable to control the ingress link bandwidth when
tenants are not trusted. Another disadvantage of bandwidth
capping is potential under-utilization of the link bandwidth.
Using a more flexible traffic shaper such as Linux Hierarchical
Token Bucket (HTB) can allow available bandwidth to be
distributed to VMs with extra traffic and better utilize the link
bandwidth. However, such schedulers can only be used in the
transmit direction and cannot provide efficient use of receive
bandwidth.

Secondnet: The Secondnet paper [11] describes a data-
center network allocation mechanism that provides bandwidth
guarantees for traffic between each VM pair. We argue that
providing end-to-end bandwidth guarantees for each pair of
tenant VM is not the ideal model, from the tenant perspective.
In general, tenants do not understand their applications’ com-
munication patterns well enough to specify their bandwidth
requirements between each pair of VMs. Moreover, typical
communication patterns are very dynamic, and the amount of
data exchanged between any pair of VM will vary significantly
over time. Creating bandwidth reservations in every network
link in the path for every pair of communicating VMs is
likely to be inefficient, since many reservations are expected
to be unused at any time. In large datacenters, efficient use
of network resources will only be possible in this model with
statistical guarantees. However, this would require accurate
statistical models of communication patterns in tenant appli-
cations which are very difficult to determine.

Seawall: The Seawall paper[19] describes a mechanism that
allocates bandwidth on every link of a datacenter network

by controlling rate limiters in the virtualization layer in each
server at the edge of the network. Seawall’s goal is to partition
the bandwidth in each congested network link according to
weights associated with each VMs sending traffic through
that link. Congestion controlled tunnels between each pair
of source and destination VM are created using sequence
numbers added to each packet sent in the tunnel. Sequence
numbers are stripped at the destination server and are used
to detect packet losses due to network congestion. Upon
receiving congestion notification messages from receivers,
senders use network topology information to detect bottleneck
links and adjust transmission rates at tunnels using that link.
Rates are adjusted using weighted additive rate increase and
multiplicative rate decrease functions, the goal of which is to
partition the bandwidth in the bottleneck links according to
the weights associated with VMs sending traffic to that link.

Seawall has several good design properties that are similar
to our Gatekeeper design. First, since rates are enforced at the
virtualization layer in the edge of the network, and tenant and
rate state is distributed over the servers, the design is scalable
to large datacenters. Second, the use of explicit feedback from
receivers allows traffic to be throttled at the sources before they
use network resources, and prevents a malicious VM to hog
bandwidth in the network.

However, Seawall does not satisfy our predictable service
level requirement. While Seawall can provide minimum guar-
antees if the maximum weight associated with each link is
limited to a maximum value, it cannot enforce maximum rates
to support deterministic behavior. More importantly, Seawall’s
bandwidth allocation does not divide the link bandwidth
among tenants using the link, but among the total number
of VMs sending traffic through that link. This favors tenants
with a large number of VMs. For example, if a tenant has
a single VM on a server but is receiving traffic from many
senders it will use a significantly higher fraction of the server
link receive bandwidth than a VM of a different tenant on the
same server that has the same weight but is receiving traffic
from just one sender. As we describe later, Gatekeeper will
allocate the same bandwidth to each of the receiver VMs in
this case because our service model jointly satisfies receiver
and sender bandwidth guarantees.

AF-QCN: QCN (IEEE draft standard 802.1Qau) is a
switch-based congestion control mechanism for datacenters.
AF-QCN [12] proposes extensions to QCN for multi-tenancy.
Like Seawall, AF-QCN divides link bandwidth among sending
VMs without respect to receivers.

Netshare: Netshare [14] is the only mechanism that divides
link bandwidth among tenants instead of sender VMs. How-
ever, it relies on a centralized bandwidth allocator which is
difficult to scale to large datacenters and to deal with workload
changes and the high rate of tenant and VM churn of cloud
datacenters.



IV. OUR APPROACH

A. Service Model

A key design decision is to choose the form of network
performance guarantees that should be provided to each tenant.
We argue that tenants should be given a simple performance
guarantee model that is easy for them to understand and
specify. Figure 1 shows a simple model. In this model, all
VMs of a tenant connect to a single logical non-blocking
switch with guaranteed bandwidth on each access link. As it
is common in real physical deployments to attach multiple
servers directly to the same switch, this model should be
familiar and easy to understand for users who deploy tenants in
a datacenter. This model is similar to the hose model [7], [10]
in which throughputs are constrained only by the guaranteed
bandwidths of the access links of the VMs. The use of a single
logical switch has also been proposed by others as a means
of applying virtualization to the network [13], [3].

To obtain a better balance between determinism and ef-
ficiency, a tenant may be offered a variation of the above
model in which a VM may exceed its guaranteed minimum
bandwidth at times, if there is unused bandwidth on the
physical links. The amount by which a VM may exceed its
minimum guarantee can be limited to a specified maximum
rate, and potentially could be assigned based on a dynamic
pricing scheme like a spot market.

The model can be further extended to allow composition
of multiple logical switches. That is, a VM can have multiple
access links each attached to a different logical switch. For
example, as shown in Figure 2, in a 3-tier web service one
logical switch could be used to interconnect VMs of the web
server and application server tiers, and a second logical switch
could connect VMs of the application server and database tiers.
Each application server VM would have two access links, one
attached to each logical switch with an independently specified
rate.

B. Reserving link bandwidth

Mapping the simple tenant performance model in Figure 1
to link bandwidth reservations of an arbitrary datacenter
network topology is a dificult task. Tenant applications can
generate many different communication patterns that could
satisfy their access link bandwidth guarantees, but generate
completely different demands on each network link.

We argue that it is useful and feasible to solve a subset
of this general problem that is of particular importance in
practice. In particular, several recent advances in datacenter
networking research [10], [17], [1], [16], [18], commercial
products [8], and Ethernet standards [20] promise to make
it practical to cost-effectively scale the bisection bandwidth
of large datacenter networks using multi-path switching. Even
with traditional datacenter networks, network topology-aware
placement of service workloads can provide full bisection
bandwidth among the tenant VMs [15].

Our key observation is that using emerging scalable net-
works or placing tenants in bisection network regions shifts the

bottleneck from the network fabric to the endpoint links that
connect each physical server to the network fabric. This allows
translating the problem of managing tenant network bandwidth
into the more tractable problem of managing each server’s
network access links. Thus, tenant bandwidth management can
focus on the endpoint server links, which are potentially shared
by all VMs hosted on a server, instead of having to reason
about network bottlenecks that could arise anywhere in the
fabric which are difficult to predict without an accurate traffic
pattern model.

V. GATEKEEPER ARCHITECTURE

Our Gatekeeper system provides network isolation for
multi-tenant datacenters using a distributed mechanism imple-
mented at the virtualization layer of each datacenter server.
Gatekeeper achieves scalability using a simple point-to-point
protocol and minimal datacenter-wide control state.

Gatekeeper controls the usage of each server’s network
access link. It provides per-vNIC link bandwidth guarantees
in both directions of the network link at each physical server,
i.e., for both ingress and egress traffic. Minimum bandwidth
guarantees are achieved using an admission control mechanism
that limits the sum of guarantees to the available physical link
bandwidth. Each vNIC can exceed its guaranteed allocation
when extra bandwidth is available at both transmitting and re-
ceiving endpoints. However, to provide deterministic behavior
Gatekeeper limits each vNIC bandwidth to a maximum rate.
By configuring the maximum rate, the system administrator
can tradeoff determinism for efficiency. Complete determinism
is provided by setting equal maximum rate and minimum
guarantee. Maximum efficiency is provided by having no
maximum rate limit. Operation between these extremes is
provided by setting the maximum to a factor of the guaranteed
rate.

For scheduling transmission bandwidth, Gatekeeper uses
a traditional weighted fair scheduler that provides minimum
bandwidth guarantees. For controlling receive bandwidth,
Gatekeeper monitors the receive traffic rate at each vNIC
and the physical link and determines the receive bandwidth
allocation to each vNIC at periodic intervals (10 ms in our
current implementation), taking into account the link usage
and the minimum and maximum rates for each vNIC. If
a vNIC receive bandwidth exceeds its computed allocation,
Gatekeeper sends a feedback message to other remote Gate-
keeper instances hosting VMs contributing to its traffic. The
feedback message includes an explicit rate that is computed
by distributing the desired vNIC receive rate to the senders.

Figure 3 shows an overview of the Gatekeeper architecture.
Gatekeeper has a set of rate limiters associated with each
vNIC interface. A root rate limiter enforces the maximum
transmission rate of each vNIC. Additional rate limiters are
dynamically created to reduce the rate of traffic sent to remote
congested vNICs. A packet filter classifies outgoing packets
based on their MAC address and direct then to the appropriate
rate limiter.



In the absence of congestion notification messages the rate
limit is increased in periodic intervals according to a linear
function, and if it reaches the maximum rate the limiter is
removed after a timeout interval.

Gatekeeper also keeps a dynamic set of counters associated
with each vNIC. These counters measure the rate between
every pair of communicating vNICs. The counters are created
and deleted dynamically based on the active set of remote
vNICs sending traffic to the corresponding local vNIC. Every
counter also stores the MAC address of the corresponding
remote vNIC which is used to send feedback messages1. Coun-
ters are created when packets from new sources are received
and deleted after timeouts (we extended the Open vSwitch
per flow packet counters to measure traffic rates). Periodically
(every 10 ms in the current prototype) the measured rates are
used to determine new allocated RX rates, and congestion
feedback messages are generated if needed. A congestion
message is generated if the aggregate rate on the physical link
exceeds a given threshold (95% of the link bandwidth in the
current prototype) or if a vNIC exceeds its maximum rate. If
the aggregate rate exceeds the threshold, congestion feedback
is generated for the vNIC that is exceeding its guaranteed
receive rate by the largest relative amount. Gatekeeper sets
the desired receive vNIC rate to its minimum guarantee
and divides this rate among its active senders. A sender is
considered active if its measured rate exceeds a threshold. A
congestion feedback message is sent to each active sender
with this explicit rate. The feedback message also includes
the number of senders of the same tenant that are contributing
to the receiver congestion. The sender uses this information
to calibrate its rate increase function, such that the aggregate
rate increase function at the receiving vNIC is independent of
the number of senders.

Our current rate decrease function causes traffic exceeding
its guarantee to be reduced to its minimum guarantee. This
may be too aggressive and the link can become under-utilized
for some time. An open question left for future work is
to understand the tradeoff of different response functions
that trade fast reaction to congestion versus fast recovery of
available bandwidth.

VI. EVALUATION

We implemented a Gatekeeper prototype on Xen 3.4.2
using the Open vSwitch 1.1.0pre2 (www.openvswitch.org) in
Dom0 running Linux 2.6.34.6. Our prototype extends the
Open vSwitch flow table to track flow rates. We use Linux
hierarchical token bucket (HTB) scheduler to implement our
link scheduler and rate limiters. Our current implementation
does not yet support dynamic creation and deletion of rate
limiters; we use a preconfigured set of limiters that matches
our experimental setup.

We evaluate Gatekeeper for simple scenarios using a con-
figuration with five servers, each with a one Gb/s Ethernet

1Our current prototype is based on the Open vSwitch
(www.openvswitch.org).

interface connected to a single switch, as shown in Figure 4.
The system hosts two tenants. Tenant A has two VMs and
tenant B has four VMs. One shared host runs one VM
from each tenant, while the others run a single VM each.
Each tenant runs a netperf (www.netperf.org) microbenchmark
between its VM in the shared host and all its other VMs in the
other hosts, i.e. tenant A runs one netperf flow and tenant B
runs 3 netperf flows. We examine two scenarios: 1) transmit
(TX) bottleneck where traffic is transmitted from each VM
in the shared host to the other VMs of the same tenant, and
2) receive (RX) bottleneck where traffic is transmitted from
the hosts with a single VM to the shared host. We allocate
70% of each server link bandwidth to tenant A and 30% to
tenant B. Tenant A is a well behaved tenant running a single
TCP connection. We consider three cases for tenant B traffic
type: a) no traffic b) 3 well behaved TCP flows, c) 3 UDP
flows representing a malicious tenant that does not use a well
behaved TCP stack.

Figures 5 and 6 show the results. We consider four different
bandwidth allocation mechanisms: 1) No control, 2) RX and
TX bandwidth capping, 3) Gatekeeper with equal maximum
rate and minimum guarantee, 4) Gatekeeper without maximum
rate. The horizontal dotted lines show the ideal bandwidth
shares for tenant A and tenant B given their minimum guar-
antees.

The results show that while bandwidth capping works well
for well behaved tenants with TCP traffic, it cannot enforce
bandwidth allocation for “misbehaving” tenants that generate
unresponsive traffic. In addition, bandwidth capping cannot
take advantage of unused bandwidth. Gatekeeper on the other
hand can enforce the desired bandwidth allocation even for
misbehaving tenants with unresponsive traffic for both the
transmit and receive scenarios. Furthermore, Gatekeeper can
take advantage of unused bandwidth both at the transmit and
receive sides up to a maximum rate specified by the system
administrator for each vNIC.

VII. CONCLUSION

There is a wide variation of network performance guarantees
that can be offered to tenants in Cloud computing environ-
ments. We argue that current models are not satisfactory
and propose a simple tenant performance model abstraction.
We describe the Gatekeeper mechanism that supports this
performance model in virtualized data centers. Our preliminary
results show that Gatekeeper works well in simple scenarios.
As part of future work, we plan to evaluate Gatekeeper
behavior for larger configurations and dynamic workloads and
explore alternative congestion response functions. In addition,
our current implementation implements increase/decrease poli-
cies and congestion feedback generation in a user level daemon
in Xen Dom0. While this approach facilitates policy experi-
mentation, it adds overhead to the implementation because
of kernel-user crossings. Currently, turning on Gatekeeper
increases CPU load on Xen Dom0 by around 10% of a CPU
core (Intel i7-930 2.8GHz) to manage a 1Gbps link under
some traffic scenarios. We plan to migrate policy functions



from user space to kernel level to minimize the CPU cycles
consumed by Gatekeeper.
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