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• Object Relational Model (ORM) Framework 

• Templating Language 

• Libraries 

• Vulnerability Remediation Tools or Services 

• Client-side framework 

• Meta-framework 

• Content Management System (CMS) 
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Choice is great, but… 

• How should a developer or project manager choose? 

• Is there any observable difference between different tools we 

might choose? 

• What should you optimize for? 

• How will you know you’ve made the right choices? 

• We need meaningful comparisons between tools so that 

developers can make informed decisions. 

5 



Talk Outline 

• Introduction 

• Goals 

• Methodology 

• Results 

• Conclusion and Future Work 
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Goals 

• Encourage future work in this problem space 

• Introduce methodology for evaluating differences between 

tools 

• Evaluate security differences between different tools 

• Programming Language 

• Web Application Development Framework 

• Process for Finding Vulnerabilities 
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Methodology 

• Secondary data set from [Prechelt 2010] 

• Different groups of  developers use different tools to 

implement the same functionality 

• Control for differences in specifications, human variability 

• Measure the security of  the developed programs 

• Black-box penetration testing (Burp Suite Pro) 

• Manual security review 

• Use statistical hypothesis testing to look for associations 
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Limitations 

• Experimental design 

• Only one security reviewer (me) 

• Application not necessarily representative 

• Small sample size 

• … and more (see the paper) 
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Programming Language 

• 3 Java teams, 3 Perl teams, 3 PHP teams 

• Look for association between programming language and: 

• Total number of  vulnerabilities found in the implementation 

• Number of  vulnerabilities for each vulnerability class 

• Main conclusion: 9 samples is too few to find these 

associations. 

• Maybe there is no association 

• Maybe we need more data 
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Results: Total Vulnerabilities 
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Results: Stored XSS 
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Results: Reflected XSS 
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Results: SQL Injection 
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Results: Auth. Bypass 

15 
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Framework Support 

• Different frameworks offer different features 

• Taxonomy of  framework support 

• None 

• Manual 

• Opt-in 

• Opt-out 

• Always on 
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Framework Support 

• Labeled each (team number, vulnerability class) with a 

framework support level 

• E.g., “team 4 had always-on CSRF protection” 

• This data set allows us to consider association between level 

of  framework support and vulnerabilities. 

• In other words, does a higher level of  framework support 

help? 
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Framework Support 

• No associations found for XSS, SQL injection, auth. bypass, 

or secure password storage. 

• Statistically significant associations found for CSRF and 

session management. 

19 



Individual Vulnerability 

Data 

• More data to shed light on frameworks 

• How far away from chosen tools to find framework support? 

• Framework used 

• Newer version of  framework used 

• Another framework for language used 

• Some framework for some language 

• No known support 

• For both automatic and manual framework support 
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Individual Vulnerability Data 
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Individual Vulnerability Data 

(Automatic Support) 
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Method of  Finding 

Vulnerabilities 

• Automated black-box penetration testing 

• Manual source code review 
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Method of  Finding 

Vulnerabilities 
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Results: Stored XSS 
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Results: Reflected XSS 
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Results: SQL Injection 
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Results: “Binary” Vulnerabilities 
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Related Work 

• BAU ET AL. State of  the Art: Automated Black-box Web Application 
Vulnerability Testing. 

• DOUPÉ ET AL. Why Johnny Can’t Pentest: An Analysis of  Black-Box 
Web Vulnerability Scanners. 

• PRECHELT ET AL. Plat_Forms: A Web Development Platform 
Comparison by an Exploratory Experiment Searching for Emergent 
Platform Properties. 

• WAGNER ET AL. Comparing Bug Finding Tools with Reviews and Tests. 

• WALDEN ET AL. Java vs. PHP: Security Implications of  Language 
Choice for Web Applications. 

• WhiteHat Website Security Statistic Report, 9th Edition. 
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Conclusion 

• We should quantify our tools along various dimensions 

• This study started (but did not finish!) that task for security 

• Language, framework, vulnerability-finding method 
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Conclusion 

• Web security is still hard; each implementation had at least 

one vulnerability. 

• Level of  framework support appears to influence security 

• Manual framework support is ineffective 

• Manual code review more effective than black-box testing 

• But they are complementary. 

• And they perform differently for different vulnerability classes 
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Future Work 

• Gathering and analyzing larger data sets 

• Other dimensions: reliability, performance, maintainability, 

etc. 

• Deeper understanding of  why some tools fare better than 

others 

• Not just web applications! 
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Thank you! 

Matthew Finifter 

finifter@cs.berkeley.edu 
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