
Exploring the Relationship

Between Web Application

Development Tools and

Security

Matthew Finifter and David Wagner

University of California, Berkeley

It’s a great time to be a developer!

Languages

PHP JAVA RUBY

PERL PYTHON SCALA

HASKELL
COLD

FUSION
…

2

It’s a great time to be a developer!

Languages Frameworks

Yii, ASP.NET, Zend, Struts,

Django, Snap, GWT, RoR,

Mason, Sinatra, CakePHP,

Fusebox, Catalyst, Spring,

Grails, Dancer, CodeIgniter,

Tapestry, Pyjamas, Symfony

PHP JAVA RUBY

PERL PYTHON SCALA

HASKELL
COLD

FUSION
…

3

It’s a great time to be a developer!

Languages Frameworks

Yii, ASP.NET, Zend, Struts,

Django, Snap, GWT, RoR,

Mason, Sinatra, CakePHP,

Fusebox, Catalyst, Spring,

Grails, Dancer, CodeIgniter,

Tapestry, Pyjamas, Symfony

PHP JAVA RUBY

PERL PYTHON SCALA

HASKELL
COLD

FUSION
…

• Object Relational Model (ORM) Framework

• Templating Language

• Libraries

• Vulnerability Remediation Tools or Services

• Client-side framework

• Meta-framework

• Content Management System (CMS)

4

Choice is great, but…

• How should a developer or project manager choose?

• Is there any observable difference between different tools we

might choose?

• What should you optimize for?

• How will you know you’ve made the right choices?

• We need meaningful comparisons between tools so that

developers can make informed decisions.

5

Talk Outline

• Introduction

• Goals

• Methodology

• Results

• Conclusion and Future Work

6

Goals

• Encourage future work in this problem space

• Introduce methodology for evaluating differences between

tools

• Evaluate security differences between different tools

• Programming Language

• Web Application Development Framework

• Process for Finding Vulnerabilities

7

Methodology

• Secondary data set from [Prechelt 2010]

• Different groups of developers use different tools to

implement the same functionality

• Control for differences in specifications, human variability

• Measure the security of the developed programs

• Black-box penetration testing (Burp Suite Pro)

• Manual security review

• Use statistical hypothesis testing to look for associations

8

Limitations

• Experimental design

• Only one security reviewer (me)

• Application not necessarily representative

• Small sample size

• … and more (see the paper)

9

Programming Language

• 3 Java teams, 3 Perl teams, 3 PHP teams

• Look for association between programming language and:

• Total number of vulnerabilities found in the implementation

• Number of vulnerabilities for each vulnerability class

• Main conclusion: 9 samples is too few to find these

associations.

• Maybe there is no association

• Maybe we need more data

10

Results: Total Vulnerabilities

11

Results: Stored XSS

12

Results: Reflected XSS

13

Results: SQL Injection

14

Results: Auth. Bypass

15

Results: “Binary” Vulnerabilities

16

0

1

2

3

CSRF Session Management Password Storage

N
o

.
V

u
ln

e
ra

b
le

 I
m

p
le

m
e

n
ta

o
n

s

Perl Java PHP

Framework Support

• Different frameworks offer different features

• Taxonomy of framework support

• None

• Manual

• Opt-in

• Opt-out

• Always on

17

Framework Support

• Labeled each (team number, vulnerability class) with a

framework support level

• E.g., “team 4 had always-on CSRF protection”

• This data set allows us to consider association between level

of framework support and vulnerabilities.

• In other words, does a higher level of framework support

help?

18

Framework Support

• No associations found for XSS, SQL injection, auth. bypass,

or secure password storage.

• Statistically significant associations found for CSRF and

session management.

19

Individual Vulnerability

Data

• More data to shed light on frameworks

• How far away from chosen tools to find framework support?

• Framework used

• Newer version of framework used

• Another framework for language used

• Some framework for some language

• No known support

• For both automatic and manual framework support

20

Individual Vulnerability Data

(Manual Support)

 0

 5

 10

 15

 20

 25

 30

 35

Java3 Java4 Java9 PHP6 PHP7 PHP8 Perl1 Perl2 Perl5

Where manual support exists to prevent vulnerabilities

No known framework

Some fwk. for some language

Diff. fwk. for language used

Newer version of fwk. used

Framework used

Reflected XSS in
JavaScript context

21

Individual Vulnerability Data

(Automatic Support)

 0

 5

 10

 15

 20

 25

 30

 35

Java3 Java4 Java9 PHP6 PHP7 PHP8 Perl1 Perl2 Perl5

Where automatic support exists to prevent vulnerabilities

No known framework

Some fwk. for some language

Diff. fwk. for language used

Newer version of fwk. used

Framework used

Reflected XSS in
JavaScript context

Authorization
bypass

Authorization
bypass

Secure password storage

22

Method of Finding

Vulnerabilities

• Automated black-box penetration testing

• Manual source code review

23

Method of Finding

Vulnerabilities

20 19 52

Black-box Manual

24

Results: Stored XSS

25

Results: Reflected XSS

26

Results: SQL Injection

27

Results: Auth. Bypass

28

Results: “Binary” Vulnerabilities

29

0

1

2

3

CSRF Session Management Password Storage

N
o

.
V

u
ln

e
ra

b
le

 I
m

p
le

m
e

n
ta

o
n

s

Perl Java PHP

Related Work

• BAU ET AL. State of the Art: Automated Black-box Web Application
Vulnerability Testing.

• DOUPÉ ET AL. Why Johnny Can’t Pentest: An Analysis of Black-Box
Web Vulnerability Scanners.

• PRECHELT ET AL. Plat_Forms: A Web Development Platform
Comparison by an Exploratory Experiment Searching for Emergent
Platform Properties.

• WAGNER ET AL. Comparing Bug Finding Tools with Reviews and Tests.

• WALDEN ET AL. Java vs. PHP: Security Implications of Language
Choice for Web Applications.

• WhiteHat Website Security Statistic Report, 9th Edition.

30

Conclusion

• We should quantify our tools along various dimensions

• This study started (but did not finish!) that task for security

• Language, framework, vulnerability-finding method

31

Conclusion

• Web security is still hard; each implementation had at least

one vulnerability.

• Level of framework support appears to influence security

• Manual framework support is ineffective

• Manual code review more effective than black-box testing

• But they are complementary.

• And they perform differently for different vulnerability classes

32

Future Work

• Gathering and analyzing larger data sets

• Other dimensions: reliability, performance, maintainability,

etc.

• Deeper understanding of why some tools fare better than

others

• Not just web applications!

33

Thank you!

Matthew Finifter

finifter@cs.berkeley.edu

34

