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Abstract
The common conception of a (client-side) web applica-
tion is some collection of HTML, CSS and JavaScript
(JS) that is hosted within a web browser and that interacts
with the user in some non-trivial ways. The common
conception of a web browser is a monolithic program
that can render HTML, execute JS, and gives the user a
portal to navigate the web. Both of these are misconcep-
tions: nothing inherently confines webapps to a browser’s
page-navigation idiom, and browsers can do far more
than merely render content. Indeed, browsers and web
apps are converging in functionality, but their underlying
technologies are so far largely distinct.

We present C3, an implementation of the
HTML/CSS/JS platform designed for web-client
research and experimentation. C3’s typesafe, modular
architecture lowers the barrier to webapp and browser
research. Additionally, C3 explores the role of extensibil-
ity throughout the web platform for customization and
research efforts, by introducing novel extension points
and generalizing existing ones. We discuss and evaluate
C3’s design choices for flexibility, and provide examples
of various extensions that we and others have built.

1 Introduction

We spend vast amounts of time using web browsers: ca-
sual users view them as portals to the web, while power
users enjoy them as flexible, sophisticated tools with
countless uses. Researchers of all stripes view browsers
and the web itself as systems worthy of study: browsers
are a common thread for web-related research in fields
such as HCI, security, information retrieval, sociology,
software engineering, and systems research. Yet today’s
production-quality browsers are all monolithic, complex
systems that do not lend themselves to easy experimenta-
tion. Instead, researchers often must modify the source
code of the browsers—usually tightly-optimized, obscure,

and sprawling C/C++ code—and this requirement of deep
domain knowledge poses a high barrier to entry, correct-
ness, and adoption of research results.

Of course, this is a simplified depiction: browsers are
not entirely monolithic. Modern web browsers, such
as Internet Explorer, Firefox or Chrome, support exten-
sions, pieces of code—usually a mix of HTML, CSS and
JavaScript (JS)—that are written by third-party develop-
ers and downloaded by end users, that build on top of the
browser and customize it dynamically at runtime.1 To
date, such customizations focus primarily on modifying
the user interfaces of browsers. (Browsers also support
plug-ins, binary components that provide functionality,
such as playing new multimedia file types, not otherwise
available from the base browser. Unlike extensions, plug-
ins cannot interact directly with each other or extend each
other further.)

Extensions are widely popular among both users and
developers: millions of Firefox users have downloaded
thousands of different extensions over two billion times2.
Some research projects have used extensions to imple-
ment their ideas. But because current extension mecha-
nisms have limited power and flexibility, many research
projects still must resort to patching browser sources:

1. XML3D [14] defines new HTML tags and renders
them with a 3D ray-tracing engine—but neither
HTML nor the layout algorithm are extensible.

2. Maverick [12] permits writing device drivers in JS
and connecting the devices (e.g., webcams, USB
thumb drives, GPUs, etc.) to web pages—but JS
cannot send raw USB packets to the USB root hub.

3. RePriv [5] experiments with new ways to securely
expose and interact with private browsing informa-

1Opera supports widgets, which do not interact with the browser or
content, and Safari recently added small but slowly-growing support for
extensions in a manner similar to Chrome. We ignore these browsers in
the following discussions.

2https://addons.mozilla.org/en-US/statistics/
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tion (e.g. topics inferred from browsing history) via
reference-monitored APIs—but neither plug-ins nor
JS extensions can guarantee the integrity or security
of the mined data as it flows through the browser.

These projects incur development and maintenance costs
well above the inherent complexity of their added func-
tionality. Moreover, patching browser sources makes
it difficult to update the projects for new versions of
the browsers. This overhead obscures the fact that such
research projects are essentially extensions to the web-
browsing experience, and would be much simpler to real-
ize on a flexible platform with more powerful extension
mechanisms. Though existing extension points in main-
stream browsers vary widely in both design and power,
none can support the research projects described above.

1.1 The extensible future of web browsers
Web browsers have evolved from their beginnings as mere
document viewers into web-application runtime platforms.
Applications such as Outlook Web Access or Google
Documents are sophisticated programs written in HTML,
CSS and JS that use the browser only for rendering and
execution and ignore everything else browsers provide
(bookmarks, navigation, tab management, etc.). Projects
like Mozilla Prism3 strip away all the browser “chrome”
while reusing the underlying HTML/CSS/JS implementa-
tion (in this case, Gecko), letting webapps run like native
apps, outside of the typical browser. Taken to an extreme,
“traditional” applications such as Firefox or Thunderbird
are written using Gecko’s HTML/CSS/JS engine, and
clearly are not themselves hosted within a browser.

While browsers and web apps are growing closer,
they are still mostly separate with no possibility of
tight, customizable integration between them. Blogging
clients such as WordPress, instant messaging clients such
as Gchat, and collaborative document editors such as
Mozilla Skywriter are three disjoint web applications, all
designed to create and share content. An author might be
using all three simultaneously, and searching for relevant
web resources to include as she writes. Yet the only way
to do so is to “escape the system”, copying and pasting
web content via the operating system.

1.2 Contributions
The time has come to reconsider browser architectures
with a focus on extensibility. We present C3: a reconfig-
urable, extensible implementation of HTML, CSS and
JS designed for web client research and experimentation.
C3 is written entirely in C# and takes advantage of .Net’s
libraries and type-safety. Similar to Firefox building atop

3http://prism.mozillalabs.com/

Gecko, we have built a prototype browser atop C3, using
only HTML, CSS and JS.

By reconfigurable, we mean that each of the modules
in our browser—Document Object Model (DOM) imple-
mentation, HTML parser, JS engine, etc.—is loosely cou-
pled by narrow, typesafe interfaces and can be replaced
with alternate implementations compiled separately from
C3 itself. By extensible, we mean that the default imple-
mentations of the modules support run-time extensions
that can be systematically introduced to

1. extend the syntax and implementation of HTML

2. transform the DOM when being parsed from HTML

3. extend the UI of the running browser

4. extend the environment for executing JS, and

5. transform and modify running JS code.

Compared to existing browsers, C3 introduces novel ex-
tension points (1) and (5), and generalizes existing exten-
sion points (2)–(4). These extension points are treated in
order in Section 3. We discuss their functionality and their
security implications with respect to the same-origin pol-
icy [13]. We also provide examples of various extensions
that we and others have built.

The rest of the paper is structured as follows. Sec-
tion 2 gives an overview of C3’s architecture and high-
lights the software engineering choices made to further
our modularity and extensibility design goals. Section 3
presents the design rationale for our extension points and
discusses their implementation. Section 4 evaluates the
performance, expressiveness, and security implications
of our extension points. Section 5 describes future work.
Section 6 concludes.

2 C3 architecture and design choices

As a research platform, C3’s explicit design goals are
architectural modularity and flexibility where possible,
instead of raw performance. Supporting the various ex-
tension mechanisms above requires hooks at many levels
of the system. These goals are realized through careful
design and implementation choices. Since many require-
ments of an HTML platform are standardized, aspects of
our architecture are necessarily similar to other HTML
implementations. C3 lacks some of the features present in
mature implementations, but contains all of the essential
architectural details of an HTML platform.

C3’s clean-slate implementation presented an opportu-
nity to leverage modern software engineering tools and
practices. Using a managed language such as C# sidesteps
the headaches of memory management, buffer overruns,
and many of the common vulnerabilities in production
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Figure 1: C3’s modular architecture

browsers. Using a higher-level language better preserves
abstractions and simplifies many implementation details.
Code Contracts [4] are used throughout C3 to ensure
implementation-level invariants and safety properties—
something that is not feasible in existing browsers.

Below, we sketch C3’s module-level architecture, and
elaborate on several core design choices and resulting
customization opportunities. We also highlight features
that enable the extension points examined in Section 3.

2.1 Pieces of an HTML platform

The primary task of any web platform is to parse, ren-
der, and display an HTML document. For interactivity,
web applications additionally require the managing of
events such as user input, network connections, and script
evaluation. Many of these sub-tasks are independent; Fig-
ure 1 shows C3’s module-level decomposition of these
tasks. The HTML parser converts a text stream into an
object tree, while the CSS parser recognizes stylesheets.
The JS engine dispatches and executes event handlers.
The DOM implementation implements the API of DOM
nodes, and implements bindings to expose these methods
to JS scripts. The download manager handles actual net-
work communication and interactions with any on-disk
cache. The layout engine computes the visual structure
and appearance of a DOM tree given current CSS styles.
The renderer displays a computed layout. The browser’s
UI displays the output of the renderer on the screen, and
routes user input to the DOM.

2.2 Modularity

Unlike many modern browsers, C3’s design embraces
loose coupling between browser components. For ex-
ample, it is trivial to replace the HTML parser, renderer

frontend, or JS engine without modifying the DOM im-
plementation or layout algorithm. To make such drop-in
replacements feasible, C3 shares no data structures be-
tween modules when possible (i.e., each module is heap-
disjoint). This design decision also simplifies threading
disciplines, and is further discussed in Section 2.7.

Simple implementation-agnostic interfaces describe the
operations of the DOM implementation, HTML parser,
CSS parser, JS engine, layout engine, and front-end ren-
derer modules. Each module is implemented as a separate
.Net assembly, which prevents modules from breaking ab-
stractions and makes swapping implementations simple.
Parsers could be replaced with parallel [8] or speculative4

versions; layout might be replaced with a parallel [11] or
incrementalizing version, and so on. The default module
implementations are intended as straightforward, unopti-
mized reference implementations. This permits easy per-
module evaluations of alternate implementation choices.

2.3 DOM implementation

The DOM API is a large set of interfaces, methods and
properties for interacting with a document tree. We high-
light two key design choices in our implementation: what
the object graph for the tree looks like, and the bindings
of these interfaces to C# classes. Our choices aim to
minimize overhead and “boilerplate” coding burdens for
extension authors.

Object trees: The DOM APIs are used throughout the
browser: by the HTML parser (Section 2.4) to construct
the document tree, by JS scripts to manipulate that tree’s
structure and query its properties, and by the layout engine
to traverse and render the tree efficiently. These clients
use distinct but overlapping subsets of the APIs, which
means they must be exposed both to JS and to C#, which
in turn leads to the first design choice.

One natural choice is to maintain a tree of “imple-
mentation” objects in the C# heap separate from a set
of “wrapper” objects in the JS heap5 containing point-
ers to their C# counterparts: the JS objects are a “view”
of the underlying C# “model”. The JS objects contain
stubs for all the DOM APIs, while the C# objects contain
implementations and additional helper routines. This de-
sign incurs the overheads of extra pointer dereferences
(from the JS APIs to the C# helpers) and of keeping
the wrappers synchronized with the implementation tree.
However, it permits specializing both representations for
their respective usages, and the extra indirection enables

4http://hsivonen.iki.fi/speculative-html5-parsing/
5Expert readers will recognize that “objects in the JS heap” are

implemented by C# “backing” objects; we are distinguishing these from
C# objects that do not “back” any JS object.
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multiple views of the model: This is essentially the tech-
nical basis of Chrome extensions’ “isolated worlds” [1],
where the indirection is used to ensure security proper-
ties about extensions’ JS access to the DOM. Firefox
also uses the split to improve JS memory locality with
“compartments” [15].

By contrast, C3 instead uses a single tree of objects
visible to both languages, with each DOM node being a
C# subclass of an ordinary JS object, and each DOM API
being a standard C# method that is exposed to JS. This de-
sign choice avoids both overheads mentioned above. Fur-
ther, Spur [3], the tracing JS engine currently used by C3,
can trace from JS into DOM code for better optimization
opportunities. To date, no other DOM implementation/JS
engine pair can support this optimization.

DOM language bindings: The second design choice
stems from our choice for the first: how to represent DOM
objects such that their properties are callable from both
C# and JS. This representation must be open: extensions
such as XML3D must be able to define new types of
DOM nodes that are instantiable from the parser (see
Section 3.1) and capable of supplying new DOM APIs to
both languages as well. Therefore any new DOM classes
must subclass our C# DOM class hierarchy easily, and
be able to use the same mechanisms as the built-in DOM
classes. Our chosen approach is a thin marshaling layer
around a C# implementation, as follows:

• All Spur JS objects are instances of C# classes de-
riving from ObjectInstance. Our DOM class hi-
erarchy derives from this too, and so DOM objects
are JS objects, as above.

• All JS objects are essentially property bags, or
key/value dictionaries, and “native” objects (e.g.
Math, Date) may contain properties that are im-
plemented by the JS runtime and have access to
runtime-internal state. All DOM objects are native,
and their properties (the DOM APIs) access the in-
ternal representation of the document.

• The JS dictionary is represented within Spur as a
TypeObject field of each ObjectInstance. To ex-
pose a native method on a JS object, the implemen-
tation simply adds a property to the TypeObject

mapping the (JS) name to the (C#) function that
implements it.6 This means that a single C# function
can be called from both languages, and need not be
implemented twice.

The ObjectInstance and TypeObject classes are pub-
lic Spur APIs, and so our DOM implementation is readily
extensible by new node types.

6Technically, to a C# function that unwraps the JS values into
strongly-typed C# values, then calls a second C# function with them.

2.4 The HTML parser

The HTML parser is concerned with transforming HTML
source into a DOM tree, just as a standard compiler’s
parser turns source into an AST. Extensible compilers’
parsers can recognize supersets of their original language
via extensions; similarly, C3’s default HTML parser sup-
ports extensions that add new HTML tags (which are im-
plemented by new C# DOM classes as described above;
see also Section 3.1).

An extensible HTML parser has only two dependen-
cies: a means for constructing a new node given a tag
name, and a factory method for creating a new node and
inserting it into a tree. This interface is far simpler than
that of any DOM node, and so exists as the separate
INode interface. The parser has no hard dependency on
a specific DOM implementation, and a minimal imple-
mentation of the INode interface can be used to test the
parser independently of the DOM implementation. The
default parser implementation is given a DOM node fac-
tory that can construct INodes for the built-in HTML tag
names. Extending the parser via this factory is discussed
in Section 3.1.

2.5 Computing visual structure

The layout engine takes a document and its stylesheets,
and produces as output a layout tree, an intermediate data
structure that contains sufficient information to display
a visual representation of the document. The renderer
then consults the layout tree to draw the document in a
platform- or toolkit-specific manner.

Computing a layout tree requires three steps: first,
DOM nodes are attributed with style information accord-
ing to any present stylesheets; second, the layout tree’s
structure is determined; and third, nodes of the layout tree
are annotated with concrete styles (placement and sizing,
fonts and colors, etc.) for the renderer to use. Each of
these steps admits a naı̈ve reference implementation, but
both more efficient and more extensible algorithms are
possible. We focus on the former here; layout extensibil-
ity is revisited in Section 3.3.

Assigning node styles The algorithm that decorates
DOM nodes with CSS styles does not depend on any
other parts of layout computation. Despite the top-down
implementation suggested by the name “cascading style
sheets”, several efficient strategies exist, including recent
and ongoing research in parallel approaches [11].

Our default style “cascading” algorithm is self-
contained, single-threaded and straightforward. It deco-
rates each DOM node with an immutable calculated style
object, which is then passed to the related layout tree
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node during construction. This immutable style suffices
thereafter in determining visual appearance.

Determining layout tree structure The layout tree is
generated from the DOM tree in a single traversal. The
two trees are approximately the same shape; the layout
tree may omit nodes for invisible DOM elements (e.g.
〈script/〉), and may insert “synthetic” nodes to simplify
later layout invariants. For consistency, this transforma-
tion must be serialized between DOM mutations, and so
runs on the DOM thread (see Section 2.7). The layout tree
must preserve a mapping between DOM elements and
the layout nodes they engender, so that mouse movement
(which occurs in the renderer’s world of screen pixels and
layout tree nodes) can be routed to the correct target node
(i.e. a DOM element). A naı̈ve pointer-based solution
runs afoul of an important design decision: C3’s archi-
tectural goals of modularity require that the layout and
DOM trees share no pointers. Instead, all DOM nodes
are given unique numeric ids, which are preserved by the
DOM-to-layout tree transformation. Mouse targeting can
now be defined in terms of these ids while preserving
pointer-isolation of the DOM from layout.

Solving layout constraints The essence of any layout
algorithm is to solve constraints governing the placement
and appearance of document elements. In HTML, these
constraints are irregular and informally specified (if at
all). Consequently the constraints are typically solved
by a manual, multi-pass algorithm over the layout tree,
rather than a generic constraint-solver [11]. The manual
algorithms found in production HTML platforms are often
tightly optimized to eliminate some passes for efficiency.

C3’s architecture admits such optimized approaches,
too; our reference implementation keeps the steps separate
for clarity and ease of experimentation. Indeed, because
the layout tree interface does not assume a particular
implementation strategy, several layout algorithm variants
have been explored in C3 with minimal modifications to
the layout algorithm or components dependent on the
computed layout tree.

2.6 Accommodating Privileged UI
Both Firefox and Chrome implement some (or all) of
their user interface (e.g. address bar, tabs, etc.) in declar-
ative markup, rather than hard-coded native controls. In
both cases this gives the browsers increased flexibility; it
also enables Firefox’s extension ecosystem. The markup
used by these browsers is trusted, and can access inter-
nal APIs not available to web content. To distinguish
the two, trusted UI files are accessed via a different
URL scheme: e.g., Firefox’s main UI is loaded using
chrome://browser/content/browser.xul.

We chose to implement our prototype browser’s UI in
HTML for two reasons. First, we wanted to experiment
with writing sophisticated applications entirely within the
HTML/CSS/JS platform and experience first-hand what
challenges arose. Even in our prototype, such experi-
ence led to the two security-related changes described
below. Secondly, having our UI in HTML opens the
door to the extensions described in Section 3; the en-
tirety of a C3-based application is available for extension.
Like Firefox, our browser’s UI is available at a privi-
leged URL: launching C3 with a command-line argument
of chrome://browser/tabbrowser.html will display
the browser UI. Launching it with the URL of any web-
site will display that site without any surrounding browser
chrome. Currently, we only permit HTML file resources
bundled within the C3 assembly itself to be given privi-
leged chrome:// URLs.

Designing this prototype exposed deliberate limitations
in HTML when examining the navigation history of child
windows (popups or 〈iframe/〉s): the APIs restrict access
to same-origin sites only, and are write-only. A parent
window cannot see what site a child is on unless it is from
the same origin as the parent, and can never see what sites
a child has visited. A browser must avoid both of these
restrictions so that it can implement the address bar.

Rather than change API visibility, C3 extends the DOM
API in two ways. First, it gives privileged pages (i.e.,
from chrome:// URLs) a new childnavigated noti-
fication when their children are navigated, just before
the onbeforeunload events that the children already
receive. Second, it treats chrome:// URLs as trusted
origins that always pass same-origin checks. The trusted-
origin mechanism and the custom navigation event suffice
to implement our browser UI.

2.7 Threading architecture

One important point of flexibility is the mapping between
threads and the HTML platform components described
above. We do not impose any threading discipline be-
yond necessary serialization required by HTML and DOM
standards. This is made possible by our decision to pre-
vent data races by design: in our architecture, data is
either immutable, or it is not shared amongst multiple
components. Thus, it is possible to choose any thread-
ing discipline within a single component; a single thread
could be shared among all components for debugging, or
several threads could be used within each component to
implement worker queues.

Below, we describe the default allocation of threads
among components, as well as key concurrency concerns
for each component.
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2.7.1 The DOM/JS thread(s)

The DOM event dispatch loop and JS execution are
single-threaded within a set of related web pages7. “Sep-
arate” pages that are unrelated8 can run entirely paral-
lel with each other. Thus, sessions with several tabs or
windows open simultaneously use multiple DOM event
dispatch loops.

In C3, each distinct event loop consists of two threads:
a mutator to run script and a watchdog to abort run-away
scripts. Our system maintains the invariant that all mu-
tator threads are heap-disjoint: JS code executing in a
task on one event loop can only access the DOM nodes of
documents sharing that event loop. This invariant, com-
bined with the single-threaded execution model of JS
(from the script’s point of view), means all DOM nodes
and synchronous DOM operations can be lock-free. (Op-
erations involving local storage are asynchronous and
must be protected by the storage mutex.) When a window
or 〈iframe/〉 is navigated, the relevant event loop may
change. An event loop manager is responsible for main-
taining the mappings between windows and event loops
to preserve the disjoint-heap invariant.

Every DOM manipulation (node creation, deletion, in-
sertion or removal; attribute creation or modification; etc.)
notifies any registered DOM listener via a straightforward
interface. One such listener is used to inform the layout
engine of all document manipulations; others could be
used for testing or various diagnostic purposes.

2.7.2 The layout thread(s)

Each top-level browser window is assigned a layout
thread, responsible for resolving layout constraints as
described in Section 2.5. Several browser windows might
be simultaneously visible on screen, so their layout com-
putations must proceed in parallel for each window to
quickly reflect mutations to the underlying documents.
Once the DOM thread computes a layout tree, it transfers
ownership of the tree to the layout thread, and begins
building a new tree. Any external resources necessary for
layout or display (such as image data), are also passed
to the layout thread as uninterpreted .Net streams. This
isolates the DOM thread from any computational errors
on the layout threads.

2.7.3 The UI thread

It is common for GUI toolkits to impose threading restric-
tions, such as only accessing UI widgets from their creat-
ing thread. These restrictions influence the platform inso-

7We ignore for now web-workers, which are an orthogonal concern.
8Defining when pages are actually separate is non-trivial, and is a

refinement of the same-origin policy, which in turn has been the subject
of considerable research [7, 2]

far as replaced elements (such as buttons or text boxes)
are implemented by toolkit widgets.

C3 is agnostic in choosing a particular toolkit, but
rather exposes abstract interfaces for the few widget prop-
erties actually needed by layout. Our prototype currently
uses the .Net WinForms toolkit, which designates one
thread as the “UI thread”, to which all input events are
dispatched and on which all widgets must be accessed.
When the DOM encounters a replaced element, an actual
WinForms widget must be constructed so that layout can
in turn set style properties on that widget. This requires
synchronous calls from the DOM and layout threads to
the UI thread. Note, however, that responding to events
(such as mouse clicks or key presses) is asynchronous,
due to the indirection introduced by numeric node ids: the
UI thread simply adds a message to the DOM event loop
with the relevant ids; the DOM thread will process that
message in due course.

3 C3 Extension points

The extension mechanisms we introduce into C3 stem
from a principled examination of the various semantics of
HTML. Our interactions with webapps tacitly rely on ma-
nipulating HTML in two distinct ways: we can interpret
it operationally via the DOM and JS programs, and we
can interpret it visually via CSS and its associated layout
algorithms. Teasing these interpretations apart leads to
the following two transformation pipelines:

• JS global object + HTML source1,2

HTML parsing−−−−−−−−−→ 3DOM subtrees4

onload−−−−→ DOM document5

JS events−−−−−−→ DOM document . . .

• DOM document + CSS source6

CSS parsing−−−−−−−−→ CSS content model7

layout−−−−→ CSS box model

The first pipeline distinguishes four phases of the docu-
ment lifecycle, from textual sources through to the event-
based running of JS: the initial onload event marks the
transition point after which the document is asserted to
be fully loaded; before this event fires, the page may
be inconsistent as critical resources in the page may not
yet have loaded, or scripts may still be writing into the
document stream.

Explicitly highlighting these pipeline stages leads to
designing extension points in a principled way: we can
extend the inputs accepted or the outputs produced by
each stage, as long as we produce outputs that are accept-
able inputs to the following stages. This is in contrast to
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public interface IDOMTagFactory {

IEnumerable<Element> TagTemplates { get; }

}

public class HelloWorldTag : Element {

string TagName { get { return "HelloWorld"; } }

...

}

public class HelloWorldFactory : IDOMTagFactory {

IEnumerable<Element> TagTemplates { get {

yield return new HelloWorldTag();

} }

}

Figure 2: Factory and simple extension defining new tags

the extension models of existing browsers, which support
various extension points without relating them to other
possibilities or to the browser’s behavior as a whole. The
extension points engendered by the pipelines above are
(as numbered):

1. Before beginning HTML parsing, extensions may
provide new tag names and DOM-node implementa-
tions for the parser to support.

2. Before running any scripts, extensions may modify
the JS global scope by adding or removing bindings.

3. Before inserting subtrees into the document, exten-
sions may preprocess them using arbitrary C# code.

4. Before firing the onload event, extensions may
declaratively inject new content into the nearly-
complete tree using overlays.

5. Once the document is complete and events are run-
ning, extensions may modify existing event handlers
using aspects.

6. Before beginning CSS parsing, extensions may pro-
vide new CSS properties and values for the parser
to support.

7. Before computing layout, extensions may provide
new layout box types and implementations to affect
layout and rendering.

Some of these extension points are simpler than others
due to regularities in the input language, others are more
complicated, and others are as yet unimplemented. Points
(1) and (5) are novel to C3. C3 does not yet implement
points (6) or (7), though they are planned future work;
they are also novel. We explain points (1), (3) and (4) in
Section 3.1, points (2) and (5) in Section 3.2, and finally
points (6) and (7) in Section 3.3.

3.1 HTML parsing/document construction
Point (1): New tags and DOM nodes The HTML
parser recognizes concrete syntax resembling
〈tagName attrName=“val”/〉 and constructs new
DOM nodes for each tag. In most browsers, the choices
of which tag names to recognize, and what corresponding
objects to construct, are tightly coupled into the parser. In
C3, however, we abstract both of these decisions behind a
factory, whose interface is shown in the top of Figure 2.9

Besides simplifying our code’s internal structure, this
approach permits extensions to contribute factories too.

Our default implementation of this interface provides
one “template” element for each of the standard HTML
tag names; these templates inform the parser which tag
names are recognized, and are then cloned as needed
by the parser. Any unknown tag names fall back to re-
turning an HTMLUnknownElement object, as defined by
the HTML specification. However, if an extension con-
tributes another factory that provides additional templates,
the parser seamlessly can clone those instead of using the
fallback: effectively, this extends the language recognized
by the parser, as XML3D needed, for example. A trivial
example that adds support for a 〈HelloWorld/〉 tag is
shown in Figure 2. A more realistic example is used by
C3 to support overlays (see Figure 4 and below).

The factory abstraction also gives us the flexibility
to support additional experiments: rather than adding
new tags, a researcher might wish to modify existing tags.
Therefore, we permit factories to provide a new template
for existing tag names—and we require that at most one
extension does so per tag name. This permits extensions
to easily subclass the C3 DOM implementation, e.g. to
add instrumentation or auditing, or to modify existing
functionality. Together, these extensions yield a parser
that accepts a superset of the standard HTML tags and
still produces a DOM tree as output.

Point (3): Preprocessing subtrees The HTML 5 pars-
ing algorithm produces a document tree in a bottom-up
manner: nodes are created and then attached to parent
nodes, which eventually are attached to the root DOM
node. Compiler-authors have long known that it is use-
ful to support semantic actions, callbacks that examine
or preprocess subtrees as they are constructed. Indeed,
the HTML parsing algorithm itself specifies some behav-
iors that are essentially semantic actions, e.g., “when an
〈img/〉 is inserted into the document, download the ref-
erenced image file”. Extensions might use this ability to
collect statistics on the document, or to sanitize it dur-
ing construction. These actions typically are local—they
examine just the newly-inserted tree—and rarely mutate

9Firefox seems not to use a factory; Chrome uses one, but the choice
of factory is fixed at compile-time. C3 can load factories dynamically.
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public interface IParserMutatorExtension {

IEnumerable<string> TagNamesOfInterest { get; }

void OnFinishedParsing(Element element);

}

Figure 3: The interface for HTML parser semantic actions

Base constructions
〈overlay/〉 Root node of extension document
〈insert

selector=“selector”
where=“before|after”/〉

Insert new content adjacent to all
nodes matched by CSS selector

〈replace
selector=“selector”/〉

Replace existing subtrees matching
selector with new content

〈self
attrName=“value”. . ./〉

Used within 〈replace/〉, refers to
node being replaced and permits
modifying its attributes

〈contents/〉 Used within 〈replace/〉, refers to
children of node being replaced

Syntactic sugar
〈before . . ./〉 〈insert where=“before”. . ./〉
〈after . . ./〉 〈insert where=“after”. . ./〉
〈modify selector=“sel”

where=“before”〉
〈self new attributes〉

new content
〈/self〉

〈/modify〉

〈replace selector=“sel”〉
〈self new attributes〉

new content
〈contents/〉

〈/self〉
〈/replace〉
and likewise for where=“after”

Figure 4: The overlay language for document construction
extensions. The bottom set of tags are syntactic sugar.

the surrounding document. (In HTML in particular, be-
cause inline scripts execute during the parsing phase, the
document may change arbitrarily between two successive
semantic-action callbacks, and so semantic actions will
be challenging to write if they are not local.)

Extensions in C3 can define custom semantic actions
using the interface shown in Figure 3. The interface sup-
plies a list of tag names, and a callback to be used when
tags of those names are constructed.

Point (4): Document construction Firefox pioneered
the ability to both define application UI and define ex-
tensions to that UI using a single declarative markup
language (XUL), an approach whose success is witnessed
by the variety and popularity of Firefox’s extensions. The
fundamental construction is the overlay, which behaves
like a “tree-shaped patch”: the children of the 〈overlay/〉
select nodes in a target document and define content to
be inserted into or modified within them, much as hunks
within a patch select lines in a target text file. C3 adapts
and generalizes this idea for HTML.

Our implementation adds eight new tags to HTML,

〈overlay〉
〈modify selector=“head” where=“after”〉

〈self〉
〈style〉
li > #bullet { color: blue; }

〈/style〉
〈/self〉

〈/modify〉
〈before selector=“li > *:first-child”〉

〈span class=“bullet”〉&bull;〈/span〉
〈/before〉

〈/overlay〉

Figure 5: Simulating list bullets (in language of Fig. 4)

shown in Figure 4, to define overlays and the various ac-
tions they can perform. As they are a language extension
to HTML, we inform the parser of these new tags using
the IDOMTagFactory described above.10 Overlays can
〈insert/〉 or 〈replace/〉 elements, as matched by CSS
selectors. To support modifying content, we give over-
lays the ability to refer to the target node (〈self/〉) or its
〈contents/〉. Finally, we define syntactic sugar to make
overlays easier to write.

Figure 5 shows a simple but real example used dur-
ing development of our system, to simulate bulleted lists
while generated content support was not yet implemented.
It appends a 〈style/〉 element to the end of the 〈head/〉
subtree (and fails if no 〈head/〉 element exists), and in-
serts a 〈span/〉 element at the beginning of each 〈li/〉.

The subtlety of defining the semantics of overlays lies
in their interactions with scripts: when should overlays
be applied to the target document? Clearly overlays must
be applied after the document structure is present, so a
strawman approach would apply overlays “when pars-
ing finishes”. This exposes a potential inconsistency, as
scripts that run during parsing would see a partial, not-yet-
overlaid document, with nodes a and b adjacent, while
scripts that run after parsing would see an overlaid docu-
ment where a and b may no longer be adjacent. However,
the HTML specification offers a way out: the DOM raises
a particular event, onload, that indicates the document
has finished loading and is ready to begin execution. Prior
to that point, the document structure is in flux—and so
we choose to apply overlays as part of that flux, imme-
diately before the onload event is fired. This may break
poorly-coded sites, but in practice has not been an issue
with Firefox’s extensions.

10We apply the overlays using just one general-purpose callback
within our code. This callback could be factored as a standalone, ad-hoc
extension point, making overlays themselves truly an extension to C3.
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3.2 JS execution

Point (2): Runtime environment Extensions such as
Maverick may wish to inject new properties into the
JS global object. This object is an input to all scripts,
and provides the initial set of functionality available
to pages. As an input, it must be constructed before
HTML parsing begins, as the constructed DOM nodes
should be consistent with the properties available from
the global object: e.g., document.body must be an in-
stance of window.HTMLBodyElement. This point in the
document’s execution is stable—no scripts have executed,
no nodes have been constructed—and so we permit ex-
tensions to manipulate the global object as they please.
(This could lead to inconsistencies, e.g. if they modify
window.HTMLBodyElement but do not replace the im-
plementation of 〈body/〉 tags using the prior extension
points. We ignore such buggy extensions for now.)

Point (5): Scripts themselves The extensions de-
scribed so far modify discrete pieces of implementation,
such as individual node types or the document structure,
because there exist ways to name each of these resources
statically: e.g., overlays can examine the HTML source
of a page and write CSS selectors to name parts of the
structure. The analogous extension to script code needs
to modify the sources of individual functions. Many JS
idioms have been developed to achieve this, but they all
suffer from JS’s dynamic nature: function names do not
exist statically, and scripts can create new functions or
alias existing ones at runtime; no static inspection of the
scripts’ sources can precisely identify these names. More-
over, the common idioms used by extensions today are
brittle and prone to silent failure.

C3 includes our prior work [10], which addresses this
disparity by modifying the JS compiler to support aspect
oriented programming using a dynamic weaving mecha-
nism to advise closures (rather than variables that point
to them). Only a dynamic approach can detect runtime-
evaluated functions, and this requires compiler support
to advise all aliases to a function (rather than individual
names). As a side benefit, aspects’ integration with the
compiler often improves the performance of the advice:
in the work cited, we successfully evaluated our approach
on the sources of twenty Firefox extensions, and showed
that they could express nearly all observed idioms with
shorter, clearer and often faster code.

3.3 CSS and layout

Discussion An extensible CSS engine permits incre-
mentally adding new features to layout in a modular, clean
way. The CSS 3 specifications themselves are a step in
this direction, breaking the tightly-coupled CSS 2.1 spec-

ification into smaller pieces. A true test of our proposed
extension points’ expressiveness would be to implement
new CSS 3 features, such as generated content or the
flex-box model, as extensions. An even harder test would
be to extricate older CSS 2 features, such as floats, and re-
implement them as compositional extensions. The benefit
to successfully implementing these extensions is clear: a
stronger understanding of the semantics of CSS features.

We discovered the possibility of these CSS extension
points quite recently, in exploring the consequences of
making each stage of the layout pipeline extensible “in the
same way” as the DOM/JS pipeline is. To our knowledge,
implementing the extension points below has not been
done before in any browser, and is planned future work.

Point (6): Parsing CSS values We can extend the
CSS language in four ways: 1) by adding new prop-
erty names and associated values, 2) by recognizing new
values for existing properties, 3) by extending the set of
selectors, or 4) by adding entirely new syntax outside of
style declaration blocks. The latter two are beyond the
scope of an extension, as they require more sweeping
changes to both the parser and to layout, and are better
suited to an alternate implementation of the CSS parser
altogether (i.e., a different configuration of C3).

Supporting even just the first two extension points is
nontrivial. Unlike HTML’s uniform tag syntax, nearly
every CSS attribute has its own idiosyncratic syntax:

font: italic bold 10pt/1.2em "Gentium", serif;

margin: 0 0 2em 3pt;

display: inline-block;

background-image: url(mypic.jpg);

...

However, a style declaration itself is very regular, being a
semicolon-separated list of colon-separated name/value
pairs. Moreover, the CSS parsing algorithm discards
any un-parsable attributes (up to the semicolon), and then
parse the rest of the style declaration normally.

Supporting the first extension point—new property
names—requires making the parser table-driven and reg-
istering value-parsing routines for each known property
name. Then, like HTML tag extensions, CSS property ex-
tensions can register new property names and callbacks to
parse the values. (Those values must never contain semi-
colons, or else the underlying parsing algorithm would
not be able to separate one attribute from another.)

Supporting the second extension point is subtler. Un-
like the HTML parser’s uniqueness constraint on tag
names, here multiple extensions might contribute new
values to an existing property; we must ensure that the
syntaxes of such new values do not overlap, or else pro-
vide some ranking to choose among them.
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Point (7): Composing layout The CSS layout algo-
rithm describes how to transform the document tree (the
content model) into a tree of boxes of varying types, ap-
pearances and positions. Some boxes represent lines of
text, while others represent checkboxes, for example. This
transformation is not obviously compositional: many
CSS properties interact with each other in non-trivial
ways to determine precisely which types of boxes to con-
struct. Rather than hard-code the interactions, the layout
transformation must become table-driven as well. Then
both types of extension above become easy: extensions
can create new box subtypes, and patch entries in the
transformation table to indicate when to create them.

4 Evaluation

The C3 platform is rapidly evolving, and only a few ex-
tensions have yet been written. To evaluate our platform,
we examine: the performance of our extension points,
ensuring that the benefits are not outweighed by huge
overheads; the expressiveness, both in the ease of “port-
ing” existing extensions to our model and in comparison
to other browsers’ models; and the security implications
of providing such pervasive customizations.

4.1 Performance
Any time spent running the extension manager or conflict
analyses slows down the perceived performance of the
browser. Fortunately, this process is very cheap: with one
extension of each supported type, it costs roughly 100ms
to run the extensions. This time includes: enumerating all
extensions (27ms), loading all extensions (4ms), and de-
tecting parser-tag conflicts (3ms), mutator conflicts (2ms),
and overlay conflicts (72ms). All but the last of these
tasks runs just once, at browser startup; overlay conflict
detection must run per-page. Enumerating all extensions
currently reads a directory, and so scales linearly with
the number of extensions. Parser and mutator conflict
detection scale linearly with the number of extensions
as well; overlay conflict detection is more expensive as
each overlay provides more interacting constraints than
other types of extensions do. If necessary, these costs
can be amortized further by caching the results of conflict
detection between browser executions.

4.2 Expressiveness
Figure 6 lists several examples of extensions available
for IE, Chrome, and Firefox, and the corresponding C3
extension points they would use if ported to C3. Many of
these extensions simply overlay the browser’s user inter-
face and require no additional support from the browser.
Some, such as Smooth Gestures or LastTab, add or revise

UI functionality. As our UI is entirely script-driven, we
support these via script extensions. Others, such as the
various Native Client libraries, are sandboxed programs
that are then exposed through JS objects; we support the
JS objects and .Net provides the sandboxing.

Figure 6 also shows some research projects that are not
implementable as extensions in any other browser except
C3. As described below, these projects extend the HTML
language, CSS layout, and JS environment to achieve
their functionality. Implementing these on C3 requires
no hacking of C3 , leading to a much lower learning
curve and fewer implementation pitfalls than modifying
existing browsers. We examine some examples, and how
they might look in C3, in more detail here.

4.2.1 XML3D: Extending HTML, CSS and layout

XML3D [14] is a recent project aiming to provide
3D scenes and real-time ray-traced graphics for web
pages, in a declarative form analogous to 〈svg/〉 for two-
dimensional content. This work uses XML namespaces to
define new scene-description tags and requires modifying
each browser to recognize them and construct special-
ized DOM nodes accordingly. To style the scenes, this
work must modify the CSS engine to recognize new style
attributes. Scripting the scenes and making them inter-
active requires constructing JS objects that expose the
customized properties of the new DOM nodes. It also
entails informing the browser of a new scripting language
(AnySL) tailored to animating 3D scenes.

Instead of modifying the browser to recognize new tag
names, we can use the new-tag extension point to define
them in an extension, and provide a subclassed 〈script/〉
implementation recognizing AnySL. Similarly, we can
provide new CSS values and new box subclasses for
layout to use. The full XML3D extension would consist
of these four extension hooks and the ray-tracer engine.

4.2.2 Maverick: Extensions to the global scope

Maverick [12] aims to connect devices such as webcams
or USB keys to web content, by writing device drivers in
JS and connecting them to the devices via Native Client
(NaCl) [17]. NaCl exposes a socket-like interface to web
JS over which all interactions with native modules are
multiplexed. To expose its API to JS, Maverick injects an
actual DOM 〈embed/〉 node into the document, stashing
state within it, and using JS properties on that object to
communicate with NaCl. This object can then transliterate
the image frames from the webcam into Base64-encoded
src URLs for other scripts’ use in 〈img/〉 tags, and so
reuse the browser’s image decoding libraries.

There are two main annoyances with Maverick’s im-
plementation that could be avoided in C3. First, NaCl
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Extensions Available from C3-equivalent extension points used
IE:

Explorer bars (4) overlay the main browser UI
Context menu items (4) overlay the context menu in the browser UI
Accelerators (4) overlay the context menu
WebSlices (4) overlay browser UI

Chrome:
Gmail checkers https://chrome.google.com/

extensions/search?q=gmail

(4) overlay browser UI, (5) script advice

Skype http://go.skype.com/dc/

clicktocall

(4) overlay browser UI, (2) new JS objects, (5) script
advice

Smooth Gestures http://goo.gl/rN5Y (4) overlay browser UI, (5) script advice
Native Client libraries http://code.google.com/p/

nativeclient/

(2) new JS objects

Firefox:
TreeStyleTab https://addons.mozilla.org/

en-US/firefox/addon/5890/

(4) overlay tabbar in browser UI, inject CSS

LastTab https://addons.mozilla.org/

en-US/firefox/addon/112/

(5) script advice

Perspectives [16] (5) script extensions, (4) overlay error UI
Firebug http://getfirebug.com/ (4) overlays, (5) script extensions, (2) new JS objects

Research projects:
XML3D [14] (1) new HTML tags, (6) new CSS values, (7) new layouts
Maverick [12] (2) new JS objects
Fine [6] (1) HTML 〈script/〉 tag replacement
RePriv [5] (2) new JS objects

Figure 6: Example extensions in IE, Firefox, and Chrome, as well as research projects best implemented in C3, and the
C3 extension points that they might use

isolates native modules in a strong sandbox that prevents
direct communication with resources like devices; Maver-
ick could not be implemented in NaCl without modifying
the sandbox to expose a new system call and writing
untrusted glue code to connect it to JS; in C3, trusted
JS objects can be added without recompiling C3 itself.
Second, implementing Maverick’s exposed API requires
carefully managing low-level NPAPI routines that must
mimic JS’s name-based property dispatch; in C3, expos-
ing properties can simply reuse the JS property dispatch,
as in Section 2.3.

Ultimately, using a DOM node to expose a device is
not the right abstraction: it is not a node in the document
but rather a global JS object like XMLHttpRequest. And
while using Base64-encoded URLs is a convenient imple-
mentation trick, it would be far more natural to call the
image-decoding libraries directly, avoiding both overhead
and potential transcoding errors.

4.2.3 RePriv: Extensions hosting extensions

RePriv [5] runs in the background of the browser and
mines user browsing history to infer personal interests. It
carefully guards the release of that information to web-
sites, via APIs whose uses can be verified to avoid un-
wanted information leakage. At the same time, it offers its

own extension points for site-specific “interest miners” to
use to improve the quality of inferred information. These
miners are all scheduled to run during an onload event
handler registered by RePriv. Finally, extensions can be
written to use the collected information to reorganize web
pages at the client to match the user’s interests.

While this functionality is largely implementable as a
plug-in in other browsers, several factors make it much
easier to implement in C3. First and foremost, RePriv’s
security guarantees rely on C3 being entirely managed
code: we can remove the browser from RePriv’s trusted
computing base by isolating RePriv extensions in an App-
Domain and leveraging .Net’s freedom from common
exploits such as buffer overflows. Obtaining such a strong
security guarantee in other browsers is at best very chal-
lenging. Second, the document construction hook makes
it trivial for RePriv to install the onload event handler.
Third, AppDomains ensure the memory isolation of every
miner from each other and from the DOM of the doc-
ument, except as mediated by RePriv’s own APIs; this
makes proving the desired security properties much eas-
ier. Finally, RePriv uses Fine [6] for writing its interest
miners; since C3, RePriv and Fine target .Net, RePriv can
reuse .Net’s assembly-loading mechanisms.
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4.3 Other extension models
4.3.1 Extensions to application UI

Internet Explorer 4.0 introduced two extension points per-
mitting customized toolbars (Explorer Bars) and context-
menu entries. These extensions were written in native C++
code, had full access to the browser’s internal DOM repre-
sentations, and could implement essentially any function-
ality they chose. Unsurprisingly, early extensions often
compromised the browser’s security and stability. IE 8
later introduced two new extension points that permit-
ted self-updating bookmarks of web-page snippets (Web
Slices) and context-menu items to speed access to repeti-
tive tasks (Accelerators), providing safer implementations
of common uses for Explorer Bars and context menus.

The majority of IE’s interface is not modifiable by ex-
tensions. By contrast, Firefox explored the possibility
that entire application interfaces could be implemented
in a markup language, and that a declarative extension
mechanism could overlay those UIs with new construc-
tions. Research projects such as Perspectives change the
way Firefox’s SSL connection errors are presented, while
others such as Xmarks or Weave synchronize bookmarks
and user settings between multiple browsers. The UI for
these extensions is written in precisely the same declar-
ative way as Firefox’s own UI, making it as simple to
extend Firefox’s browser UI as it is to design any website.

But the single most compelling feature of these ex-
tensions is also their greatest weakness: they permit im-
plementing features that were never anticipated by the
browser designers. End users can then install multiple
such extensions, thereby losing any assurance that the
composite browser is stable, or even that the extensions
are compatible with each other. Indeed, Chrome’s care-
fully curtailed extension model is largely a reaction to the
instabilities often seen with Firefox extensions. Chrome
permits extensions only minimal change to the browser’s
UI, and prevents interactions between extensions. For
comparison, Chrome directly implements bookmarks
and settings synchronization, and now permits extension
context-menu actions, but the Perspectives behavior re-
mains unimplementable by design.

Our design for overlays is based strongly on Firefox’s
declarative approach, but provides stronger semantics for
overlays so that we can detect and either prevent or correct
conflicts between multiple extensions. We also general-
ized several details of Firefox’s overlay mechanism for
greater convenience, without sacrificing its analyzability.

4.3.2 Extensions to scripts

In tandem with the UI extensions, almost the entirety
of Firefox’s UI behaviors are driven by JS, and again
extensions can manipulate those scripts to customize

those behaviors. A similar ability lets extensions modify
or inject scripts within web pages. Extensions such as
LastTab change the tab-switching order from cyclic to
most-recently-used, while others such as Ghostery block
so-called “web tracking bugs” from executing. Firefox
exposes a huge API, opening basically the entire plat-
form to extension scripts. This flexibility also poses a
problem: multiple extensions may attempt to modify the
same scripts, often leading to broken or partially-modified
scripts with unpredictable consequences.

Modern browser extension design, like Firefox’s Jet-
pack or Chrome’s extensions, are typically developed
using HTML, JS, and CSS. While Firefox “jetpacks” are
currently still fully-privileged, Chrome extensions run
in a sandboxed process. Chrome extensions cannot ac-
cess privileged information and cannot crash or hang the
browser. While these new guarantees are necessary for the
stability of a commercial system protecting valuable user
information, they also restrict the power of extensions.

One attempt to curtail these scripts’ interactions with
each other within web pages is the Fine project [6]. In-
stead of directly using JS, the authors use a dependently-
typed programming language to express the precise read-
and write-sets of extension scripts, and a security policy
constrains the information flow between them. Exten-
sions that satisfy the security policy are provably non-
conflicting. The Fine project can target C3 easily, either
by compiling its scripts to .Net assemblies and loading
them dynamically (by subclassing the 〈script/〉 tag), or
by statically compiling its scripts to JS and dynamically
injecting them into web content (via the JS global-object
hook). Guha et al. successfully ported twenty Chrome
extensions to Fine and compiled them to run on C3 with
minimal developer effort.

As mentioned earlier, C3 includes our prior work on
aspect-oriented programming for JS [10], permitting ex-
tensions clearer language mechanisms to express how
their modifications apply to existing code. Beyond the
performance gains and clarity improvements, by elimi-
nating the need for brittle mechanisms and exposing the
intent of the extension, compatibility analyses between
extensions become feasible.

4.4 Security considerations

Of the five implemented extension points, two are written
in .Net and have full access to our DOM internals. In
particular, new DOM nodes or new JS runtime objects
that subclass our implementation may use protected DOM
fields inappropriately and violate the same-origin policy.
We view this flexibility as both an asset and a liability:
it permits researchers to experiment with alternatives to
the SOP, or to prototype enhancements to HTML and
the DOM. At the same time, we do not advocate these
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extensions for web-scale use. The remaining extension
points are either limited to safe, narrow .Net interfaces
or are written in HTML and JS and inherently subject to
the SOP. Sanitizing potentially unsafe .Net extensions to
preserve the SOP is itself an interesting research problem.
Possible approaches include using .Net AppDomains to
segregate extensions from the main DOM, or static analy-
ses to exclude unsafe accesses to DOM internals.

5 Future work

We have focused so far on the abilities extensions have
within our system. However, the more powerful exten-
sions become, the more likely they are to conflict with one
another. Certain extension points are easily amenable to
conflict detection; for example, two parser tag extensions
cannot both contribute the same new tag name. However,
in previous work we have shown that defining conflicts
precisely between overlay extensions, or between JS run-
time extensions, is a more challenging task [9] .

Assuming a suitable notion of extension conflict exists
for each extension type, it falls to the extension loading
mechanism to ensure that, whenever possible, conflicting
extensions are not loaded. In some ways this is very sim-
ilar to the job of a compile-time linker, ensuring that all
modules are compatible before producing the executable
image. Such load-time prevention gives users a much bet-
ter experience than in current browsers, where problems
never surface until runtime. However not all conflicts are
detectable statically, and so some runtime mechanism is
still needed to detect conflict, blame the offending exten-
sion, and prevent the conflict from recurring.

6 Conclusion

We presented C3, a platform implementing of HTML,
CSS and JS, and explored how its design was tuned for
easy reconfiguration and runtime extension. We presented
several motivating examples for each extension point,
and confirmed that our design is at least as expressive as
existing extension systems, supporting current extensions
as well as new ones not previously possible.
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