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Abstract

How should software engineers choose which tools to
use to develop secure web applications? Different devel-
opers have different opinions regarding which language,
framework, or vulnerability-finding tool tends to yield
more secure software than another; some believe that
there is no difference at all between such tools. This pa-
per adds quantitative data to the discussion and debate.

We use manual source code review and an automated
black-box penetration testing tool to find security vul-
nerabilities in 9 implementations of the same web ap-
plication in 3 different programming languages. We ex-
plore the relationship between programming languages
and number of vulnerabilities, and between framework
support for security concerns and the number of vul-
nerabilities. We also compare the vulnerabilities found
by manual source code review and automated black-box
penetration testing.

Our findings are: (1) we do not find a relationship
between choice of programming language and applica-
tion security, (2) automatic framework protection mech-
anisms, such as for CSRF and session management, ap-
pear to be effective at precluding vulnerabilities, while
manual protection mechanisms provide little value, and
(3) manual source code review is more effective than au-
tomated black-box testing, but testing is complementary.

1 Introduction

The web has become the dominant platform for new soft-
ware applications. As a result, new web applications
are being developed all the time, causing the security
of such applications to become increasingly important.
Web applications manage users’ personal, confidential,
and financial data. Vulnerabilities in web applications
can prove costly for organizations; costs may include di-
rect financial losses, increases in required technical sup-
port, and tarnished image and brand.

Security strategies of an organization often include de-
veloping processes and choosing tools that reduce the
number of vulnerabilities present in live web applica-
tions. These software security measures are generally
focused on some combination of (1) building secure soft-
ware, and (2) finding and fixing security vulnerabilities
in software after it has been built.

How should managers and developers in charge of
these tasks decide which tools – languages, frameworks,
debuggers, etc. – to use to accomplish these goals? What
basis of comparison do they have for choosing one tool
over another? Common considerations for choosing
(e.g.,) one programming language over another include:

• How familiar staff developers are with the language.

• If new developers are going to be hired, the current
state of the market for developers with knowledge
of the language.

• Interoperability with and re-usability of existing in-
house and externally-developed components.

• Perceptions of security, scalability, reliability, and
maintainability of applications developed using that
language.

Similar considerations exist for deciding which web ap-
plication development framework to use and which pro-
cess to use for finding vulnerabilities.

This work begins an inquiry into how to improve one
part of the last of these criteria: the basis for evaluating
a tool’s inclination (or disinclination) to contribute to ap-
plication security.

Past research and experience reveal that different tools
can have different effects on application security. The
software engineering and software development commu-
nities have seen that an effective way to preclude buffer
overflow vulnerabilities when developing a new appli-
cation is to simply use a language that offers automatic
memory management. We have seen also that even if
other requirements dictate that the C language must be
used for development, using the safer strlcpy instead



of strcpy can preclude the introduction of many buffer
overflow vulnerabilities.

This research is an exploratory study into the security
properties of some of the tools and processes that orga-
nizations might choose to use during and after they build
their web applications. We seek to understand whether
the choice of language, web application development
framework, or vulnerability-finding process affects the
security of the applications built using these tools.

We study the questions by analyzing 9 independent
implementations of the same web application. We col-
lect data on (1) the number of vulnerabilities found in
these implementations using both a manual security re-
view and an automatic black-box penetration testing tool,
and (2) the level of security support offered by the frame-
works. We look in these data sets for patterns that might
indicate differences in application security between pro-
gramming languages, frameworks, or processes for find-
ing vulnerabilities. These patterns allow us to generate
and test hypotheses regarding the security implications
of the various tools we consider.

This paper’s main contributions are as follows:
• We develop a methodology for studying differences

in the effect on application security that differ-
ent web application development tools may have.
The tools we consider are programming languages,
web application development frameworks, and pro-
cesses for finding vulnerabilities.

• We generate and test hypotheses regarding the dif-
ferences in security implications of these tools.

• We develop a taxonomy for framework-level de-
fenses that ranges from always on framework sup-
port to no framework support.

• We find evidence that automatic framework-level
defenses work well to protect web applications, but
that even the best manual defenses will likely con-
tinue to fall short of their goals.

• We find evidence that manual source code analy-
sis and automated black-box penetration testing are
complementary.

2 Goals

Programming language. We want to measure the in-
fluence that programming language choice has on the
security of the software developed using that language.
If such an influence exists, software engineers (or their
managers) could take it into account when planning
which language to use for a given job. This informa-
tion could help reduce risk and allocate resources more
appropriately.

We have many reasons to believe that the features of
a programming language could cause differences in the

security of applications developed using that language.
For example, research has shown that type systems can
statically find (and therefore preclude, by halting compi-
lation) certain types of vulnerabilities [21, 20]. In gen-
eral, static typing can find bugs (any of which could be
a vulnerability) that may not have been found until the
time of exploitation in a dynamically-typed language.

Also, one language’s standard libraries might be more
usable, and therefore less prone to error, than another’s.
A modern exception handling mechanism might help de-
velopers identify and recover from dangerous scenarios.

But programming languages differ in many ways be-
yond the languages themselves. Each language has its
own community, and these often differ in their philoso-
phies and values. For example, the Perl community val-
ues TMTOWTDI (“There’s more than one way to do
it”) [4], but the Zen of Python [16] states, “[t]here should
be one – and preferably, only one – obvious way to do
it.” Clear documentation could play a role as well.

Therefore, we want to test whether the choice of lan-
guage measurably influences overall application security.
If so, it would be useful to know whether one language
fares better than another for any specific class of vulner-
ability. If this is the case, developers could focus their ef-
forts on classes for which their language is lacking good
support, and not worry so much about those classes in
which data show their language is strong.

Web application development framework. Web ap-
plication development frameworks provide a set of li-
braries and tools for performing tasks common in web
application development. We want to evaluate the role
that they play in the development of secure software.
This can help developers make more informed decisions
when choosing which technologies to use.

Recently, we have seen a trend of frameworks adding
security features over time. Many modern frameworks
take care of creating secure session identifiers (e.g.,
Zend, Ruby on Rails), and some have added support
for automatically avoiding cross-site scripting (XSS) or
cross-site request forgery (CSRF) vulnerabilities (e.g.,
Django, CodeIgniter). It is natural to wonder if frame-
works that are pro-active in developing security features
yield software with measurably better security, but up to
this point we have no data showing whether this is so.

Vulnerability-finding tool. Many organizations man-
age security risk by assessing the security of software
before they deploy or ship it. For web applications, two
prominent ways to do so are (1) black-box penetration
testing, using automated tools designed for this purpose,
and (2) manual source code analysis by an analyst knowl-
edgeable about security risks and common vulnerabili-
ties. The former has the advantage of being mostly au-
tomated and being cheaper; the latter has a reputation as



Team
Number

Language Frameworks used

1 Perl DBIx::DataModel, Catalyst, Tem-
plate Toolkit

2 Perl Mason, DBI
5 Perl Gantry, Bigtop, DBIx::Class
3 Java abaXX, JBoss, Hibernate
4 Java Spring, Spring Web Flow, Hiber-

nate, Acegi Security
9 Java Equinox, Jetty, RAP
6 PHP Zend Framework, OXID framework
7 PHP proprietary framework
8 PHP Zend Framework

Table 1: Set of frameworks used by each team.

more comprehensive but more expensive. However, we
are not aware of quantitative data to measure their rela-
tive effectiveness. We work toward addressing this prob-
lem by comparing the effectiveness of manual review to
that of automated black-box penetration testing. Solid
data on this question may help organizations make an in-
formed choice between these assessment methods.

3 Methodology

In order to address these questions, we analyze several
independent implementations of the same web applica-
tion specification, written using different programming
languages and different frameworks. We find vulnerabil-
ities in these applications using both manual source code
review and automated black-box penetration testing, and
we determine the level of framework support each im-
plementation has at its disposal to help it contend with
various classes of vulnerabilities. We look for associa-
tions between: (1) programming language and number
of vulnerabilities, (2) framework support and number of
vulnerabilities, and (3) number of vulnerabilities found
by manual source code analysis and by automated black-
box penetration testing.

We analyze data collected in a previous study called
Plat Forms [19]. In that work, the researchers devised
and executed a controlled experiment that gave 9 profes-
sional programming teams the same programming task
for a programming contest. Three of the teams used Perl,
three used PHP, and the remaining three used Java.

The contest rules stated that each team had 30 hours to
implement the specification of a web application called
People By Temperament [18]. Each team chose which
frameworks they were going to use. There was little
overlap in the set of frameworks used by teams using
the same programming language. Table 1 lists the set of
frameworks used by each team.

The researchers collected the 9 programs and analyzed
their properties. While they were primarily concerned

with metrics like performance, completeness, size, and
usability, we re-analyze their data to evaluate the security
properties of these 9 programs.

Each team submitted a complete source code package
and a virtual machine image. The VM image runs a web
server, which hosts their implementation of People by
Temperament. The source code packages were trimmed
to remove any code that was not developed specifically
for the contest, and these trimmed source code packages
were released under open source licenses.1

For our study, we used the set of virtual machine
images and the trimmed source code packages. The
Plat Forms study gathered a lot of other data (e.g., sam-
ples at regular intervals of the current action of each de-
veloper) that we did not need for the present study. The
data from our study are publicly available online.2

3.1 People by Temperament

We familiarized ourselves with the People by Tempera-
ment application before beginning our security analysis.
The application is described as follows:

PbT (People by Temperament) is a simple commu-
nity portal where members can find others with whom they
might like to get in contact: people register to become
members, take a personality test, and then search for others
based on criteria such as personality types, likes/dislikes,
etc. Members can then get in contact with one another if
both choose to do so. [18]

People by Temperament is a small but realistic web ap-
plication with a non-trivial attack surface. It has security
goals that are common amongst many web applications.
We list them here:

• Isolation between users. No user should be able
to gain access to another user’s account; that is,
all information input by a user should be integrity-
protected with respect to other users. No user
should be able to view another user’s confidential
information without approval. Confidential infor-
mation includes a user’s password, full name, email
address, answers to personality test questions, and
list of contacts. Two users are allowed to view each
other’s full name and email address once they have
agreed to be in contact with one another.

• Database confidentiality and integrity. No user
should be able to directly access the database, since
it contains other users’ information and it may con-
tain confidential web site usage information.

• Web site integrity. No user should be able to van-
dalize or otherwise modify the web site contents.

1http://www.plat-forms.org/sites/default/files/
platforms2007solutions.zip

2http://www.cs.berkeley.edu/˜finifter/datasets/



Integer-valued

Stored XSS
Reflected XSS
SQL injection
Authentication or authorization bypass

Binary
CSRF
Broken session management
Insecure password storage

Table 2: The types of vulnerabilities we looked for. We distin-
guish binary and integer-valued vulnerability classes. Integer-
valued classes may occur more than once in an implementa-
tion. For example, an application may have several reflected
XSS vulnerabilities. The binary classes represent presence or
absence of an application-wide vulnerability. For example, in
all implementations in this study, CSRF protection was either
present throughout the application or not present at all.

Review
Number

Dev.
Team
Number

Lang. SLOC Review
Time
(min.)

Review
Rate
(SLOC/hr)

1 6 PHP 2,764 256 648
2 3 Java 3,686 229 966
3 1 Perl 1,057 210 302
4 4 Java 2,021 154 787
5 2 Perl 1,259 180 420
6 8 PHP 2,029 174 700
7 9 Java 2,301 100 1,381
8 7 PHP 2,649 99 1,605
9 5 Perl 3,403 161 1,268

Table 3: Time taken for manual source code reviews, and num-
ber of source lines of code for each implementation.

• System confidentiality and integrity. No user
should be able to gain access to anything on the
web application server outside of the scope of the
web application. No user should be able to execute
additional code on the server.

The classes of vulnerabilities that we consider are pre-
sented in Table 2. A vulnerability in any of these classes
violates at least one of the application’s security goals.

3.2 Vulnerability data

We gathered vulnerability data for each implementation
in two distinct phases. In the first phase, a reviewer per-
formed a manual source code review of the implementa-
tion. In the second phase, we subjected the implemen-
tation to the attacks from an automated black-box web
penetration testing tool called Burp Suite Pro [17].

We used both methods because we want to find as
many vulnerabilities as we can. We hope that any failings
of one method will be at least partially compensated by
the other. Although we have many static analysis tools at
our disposal, we chose not to include them in this study
because we are not aware of any that work equally well
for all language platforms. Using a static analysis tool
that performs better for one language than another would
have introduced systematic bias into our experiment.

3.2.1 Manual source code review

One reviewer (Finifter) reviewed all implementations.
This reviewer is knowledgeable about security and had
previously been involved in security reviews.

Using one reviewer for all implementations avoids the
problem of subjectivity between different reviewers that
would arise if the reviewers were to examine disjoint sets
of implementations. We note that having multiple re-
viewers would be beneficial if each reviewer was able
to review all implementations independently of all other
reviewers.

The reviewer followed the Flaw Hypothesis Method-
ology [6] for conducting the source code reviews. He
used the People by Temperament specification and
knowledge of flaws common to web applications to de-
velop a list of types of vulnerabilities to look for. He
performed two phases of review, first looking for spe-
cific types of flaws from the list, then comprehensively
reviewing the implementation. He confirmed each sus-
pected vulnerability by developing an exploit.

We randomly generated the order in which to perform
the manual source code reviews in order to mitigate any
biases that may have resulted from choosing any partic-
ular review order. Table 3 presents the order in which
the reviewer reviewed the implementations as well as the
amount of time spent on each review.

The reviewer spent as much time as he felt necessary
to perform a complete review. As shown in Table 3, the
number of source lines of code reviewed per hour varies
widely across implementations; the minimum is 302 and
the maximum is 1,605. Cohen [7] states that “[a]n ex-
pected value for a meticulous inspection would be 100-
200 LOC/hour; a normal inspection might be 200-500.”
It is unclear upon what data or experience these numbers
are based, but we expect the notion of “normal” to vary
across different types of software. For example, we ex-
pect a review of a kernel module to proceed much more
slowly than that of a web application. Additionally, we
note that the number of source lines of code includes both
static HTML content and auto-generated code, neither of
which tends to require rigorous security review.

To help gauge the validity of our data for manual
source code review, we test the following hypotheses:

• Later reviews take less time than earlier reviews.

• More vulnerabilities were found in later reviews.

• Slower reviews find more vulnerabilities.
If we find evidence in support of either of the first two

hypotheses, this may indicate that the reviewer gained
experience over the course of the reviews, which may
have biased the manual review data. A more experi-
enced reviewer can be expected to find a larger fraction
of the vulnerabilities in the code, and if this fraction in-
creases with each review, we expect our data to be biased



in showing those implementations reviewed earlier to be
more secure. Spearman’s rho for these two hypotheses is
ρ = 0.633 (p = 0.0671) and ρ = −0.0502 (p = 0.8979),
respectively, which means that we do not find evidence
in support of either of these hypotheses.

If we find evidence in support of the third of these
hypotheses, this may indicate that the reviewer did not
allow adequate time to complete one or more of the re-
views. This would bias the data to make it appear that
those implementations reviewed more quickly are more
secure than those for which the review proceeded more
slowly. The correlation coefficient between review rate
and number of vulnerabilities found using manual anal-
ysis is r = 0.0676 (p = 0.8627), which means we do
not find evidence in support of this hypothesis. The lack
of support for these hypotheses modestly increases our
confidence in the validity of our manual analysis data.

3.2.2 Black-box testing

We used Portswigger’s Burp Suite Professional version
1.3.08 [17] for black box testing of the implementations.
We chose this tool because a previous study has shown it
to be among the best of the black box testing tools [11]
and because it has a relatively low cost.

We manually spidered each implementation before
running Burp Suite’s automated attack mode (called
“scanner”). All vulnerabilities found by Burp Suite were
manually verified and de-duplicated (when necessary).

3.3 Framework support data

We devised a taxonomy to categorize the level of support
a framework provides for protecting against various vul-
nerability classes. We distinguish levels of framework
support as follows.

The strongest level of framework support is always on.
Once a developer decides to use a framework that offers
always-on protection for some vulnerability class, a vul-
nerability in that class cannot be introduced unless the
developer stops using the framework. An example of this
is the CSRF protection provided automatically by Spring
Web Flow [10], which Team 4 used in its implementa-
tion. Spring Web Flow introduces the notion of tokens,
which define flows through the UI of an application, and
these tokens double as CSRF tokens, a well-known pro-
tection mechanism for defending against CSRF vulner-
abilities. Since they are integral to the functionality the
framework provides, they cannot be removed or disabled
without ceasing to use the framework entirely.

The next strongest level of framework support is opt-
out support. This level of support provides protection
against a vulnerability class by default, but it can be dis-

abled by the developer if he so desires. Team 2’s custom
ORM framework provides opt-out support for SQL in-
jection. If the framework is used, SQL injection cannot
occur, but a developer can opt out by going around the
framework to directly issue SQL queries.

Opt-in support refers to a defense that is disabled by
default, but can be enabled by the developer to provide
protection throughout the application. Enabling the pro-
tection may involve changing a configuration variable
or calling into the framework code at initialization time.
Once enabled, opt-in support defends against all subse-
quent instances of that vulnerability class. Acegi Secu-
rity, used by Team 4, provides a PasswordEncoder
interface with several different implementations. We
consider this opt-in support because a developer can se-
lect an implementation that provides secure password
storage for his application.

Manual support is the weakest level of framework
support. This term applies if the framework provides
a useful routine to help protect against a vulnerability
class, but that routine must be utilized by the devel-
oper each time protection is desired. For example, many
frameworks provide XSS filters that can be applied to
untrusted data before it is included in the HTML page.
These filters spare a developer the burden of writing a
correct filter, but the developer must still remember to
invoke the filter every time untrusted data is output to
a user. Manual support is weak because a developer has
many opportunities to make an error of omission. Forget-
ting to call a routine (such as an XSS filter) even once is
enough to introduce a vulnerability. We use the term au-
tomatic support to contrast with manual support; it refers
to any level of support stronger than manual support.

For each implementation, we looked at the source
code to discover which frameworks were used. We read
through the documentation for each of the frameworks
to find out which protection mechanisms were offered
for each vulnerability class we consider. We defined the
implementation’s level of support for a particular vulner-
ability class to be the highest level of support offered by
any framework used by the implementation.

3.4 Individual vulnerability data

We gather data about each individual vulnerability to
deepen our understanding of the current framework
ecosystem, the reasons that developers introduce vul-
nerabilities, and the limitations of manual review. For
each vulnerability, we determine how far the developers
would have had to stray from their chosen frameworks in
order to find manual framework support that could have
prevented the vulnerability. Specifically, we label each
vulnerability with one of the following classifications:



Java Perl PHP
Number of programmers 9 9 9
Mean age (years) 32 32 32
Mean experience (years) 7.1 8.7 9.8

Table 4: Statistics of the programmers.

1. Framework used. Framework support that could
have prevented this vulnerability exists in at least
one of the frameworks used by the implementation.

2. Newer version of framework used. Framework
support exists in a newer version of one of the
frameworks used by the implementation.

3. Another framework for language used. Frame-
work support exists in a different framework for the
same language used by the implementation.

4. Some framework for some language. Framework
support exists in some framework for some lan-
guage other than the one used by the implementa-
tion.

5. No known support. We cannot find framework
support in any framework for any language that
would have stopped the vulnerability.

We label each vulnerability with the lowest level at which
we are able to find framework support that could have
prevented the vulnerability. We do so using our aware-
ness and knowledge of state-of-the-art frameworks as
well as the documentation frameworks provide.

Similarly, for each vulnerability, we determine the
level at which the developers could have found automatic
(i.e., opt-in or better) framework support. We evaluate
this in the same manner as we did for manual support, but
with a focus only on automatic protection mechanisms.

3.5 Threats to validity

Experimental design. The Plat Forms data were gath-
ered in a non-randomized experiment. This means that
the programmers chose which language to use; the lan-
guage was not randomly assigned to them by the re-
searchers. This leaves the experiment open to selection
bias; it could be the case that more skilled programmers
tend to choose one language instead of another. As a re-
sult, any results we find represent what one might expect
when hiring new programmers who choose which lan-
guage to use, rather than having developers on staff and
telling them which language to use.

Programmer skill level. If the skill level of the pro-
grammers varies from team to team, then the results rep-
resent the skills of the programmers, not inherent proper-
ties of the technologies they use for development. Fortu-
nately, the teams had similar skills, as shown in Table 4.

Security awareness. Security was not explicitly men-
tioned to the developers, but all were familiar with secu-

rity practices because their jobs required them to be [23].
It may be that explicitly mentioning security or speci-
fying security requirements would have changed the de-
velopers’ focus and therefore the security of the imple-
mentations, but we believe that the lack of special men-
tion is realistic and representative of many programming
projects. In the worst case, this limits the external valid-
ity of our results to software projects in which security is
not explicitly highlighted as a requirement.

Small sample size. Due to the cost of gathering data of
this nature, the sample size is necessarily small. This is
a threat to external validity because it makes it difficult
to find statistically significant results. In the worst case,
we can consider this a case study that lets us generate
hypotheses to test in future research.

Generalization to other applications. People by
Temperament is one web application, and any findings
with respect to it may not hold true with respect to other
web applications, especially those with vastly different
requirements or of much larger scale. The teams had
only 30 hours to complete their implementation, which
is not representative of most real software development
projects. Despite these facts, the application does have
a significant amount of functionality and a large enough
attack surface to be worth examining.

Number of vulnerabilities. We would like to find the
total number of vulnerabilities present in each implemen-
tation, but each analysis (manual and black-box) finds
only some fraction of them. If the detection rate of our
manual analysis is better for one language or one imple-
mentation than it is for another, this is a possible threat
to validity. However, we have no reason to expect a sys-
tematic bias of this nature, as the reviewer’s level of ex-
perience in manual source code review is approximately
equivalent for all three languages. At no time did the
reviewer feel that any one review was easier or more dif-
ficult than any other.

Similarly, if the detection rate of our black-box tool
is better for one language or implementation than it is
for another, this could pose a threat to validity. We have
no reason to believe this is the case. Because black-box
testing examines only the input-output behavior of a web
application and not its implementation, it is inherently
language- and implementation-agnostic, which leads us
to expect that it has no bias for any one implementation
over any other.

Vulnerability severity. Our analysis does not take into
account any differences in vulnerability severity. Using
our analysis, an implementation with many low-severity
vulnerabilities would appear less secure than an imple-
mentation with only a few very high-severity vulnerabil-
ities, though in fact the latter system may be less secure
overall (e.g., expose more confidential customer data).



We have no reason to believe that average vulnerability
severity varies widely between implementations, but we
did not study this in detail.

Vulnerabilities introduced later in the product cycle.
Our study considers only those vulnerabilities introduced
during initial product development. Continued develop-
ment brings new challenges for developers that simply
were not present in this experiment. Our results do not
answer any questions about vulnerabilities introduced
during code maintenance or when features are added af-
ter initial product development.

Framework documentation. If a framework’s docu-
mentation is incomplete or incorrect, or if we misread
or misunderstood the documentation, we may have mis-
labeled the level of support offered by the framework.
However, the documentation represents the level of sup-
port a developer could reasonably be expected to know
about. If we were unable to find documentation for pro-
tection against a class of vulnerabilities, we expect that
developers would struggle as well.

Awareness of frameworks and levels of support.
There may exist frameworks that we are not aware of
that provide strong framework support for a vulnerabil-
ity class. If this is the case, our labeling of vulnerabilities
with the nearest level at which framework support exists
(Section 3.4) may be incorrect. We have made every ef-
fort to consider all frameworks with a significant user
base in order to mitigate this problem, and we have con-
sulted several lists of frameworks (e.g., [14]) in order to
make our search as thorough as reasonably possible.

4 Results

We look for patterns in the data and analyze it using sta-
tistical techniques. We note that we do not find many
statistically significant results due to the limited size of
our data set.

4.1 Total number of vulnerabilities

Figure 1 displays the total number of vulnerabilities
found in each implementation, including both integer-
valued and binary vulnerability classes (we count a bi-
nary vulnerability as one vulnerability in these aggregate
counts).

Every implementation had at least one vulnerability.
This suggests that building secure web applications is
difficult, even with a well-defined specification, and even
for a relatively small application.
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Figure 1: The total number of vulnerabilities found in the 9
implementations of People by Temperament. The x-axis is la-
beled with the language and team number.

One of the Perl implementations has by far the most
vulnerabilities, primarily due to its complete lack of XSS
protection.3 This does not seem to be related to the fact
that Perl is the language used, however, since the other
two Perl implementations have only a handful of vulner-
abilities, and few XSS vulnerabilities.

The Java implementations have fewer vulnerabilities
than the PHP implementations. In fact, every Java imple-
mentation contains fewer vulnerabilities than each PHP
implementation.

A one-way ANOVA test reveals that the overall re-
lationship in our data set between language and total
number of vulnerabilities is not statistically significant
(F = 0.57, p = 0.592). Because this appears to be
largely due to the obvious lack of a difference between
Perl and each of the other two languages, we also per-
form a Student’s t-test for each pair of languages, using
the Bonferroni correction to correct for the fact that we
test 3 separate hypotheses. As expected, we do not find a
significant difference between PHP and Perl or between
Perl and Java. We find a statistically significant differ-
ence between PHP and Java (p = 0.033).

4.2 Vulnerability classes

Figure 2 breaks down the total number of vulnerabilities
into the separate integer-valued vulnerability classes, and
the shaded rows in Table 5 present the data for the binary
vulnerability classes.

XSS. A one-way ANOVA test reveals that the relation-
ship between language and number of stored XSS vul-
nerabilities is not statistically significant (F = 0.92, p =
0.4492). The same is true for reflected XSS (F = 0.43,
p = 0.6689).

3None of our conclusions would differ if we were to exclude this
apparent outlier.



CSRF Session Management Password Storage
Team
Number

Language Vulnerable? Framework
Support

Vulnerable? Framework
Support

Vulnerable? Framework
Support

1 Perl • none opt-in • opt-in
2 Perl • none • none • none
5 Perl • none • none opt-out
3 Java manual opt-out • none
4 Java always on opt-in • opt-in
9 Java • none opt-in none
6 PHP • none opt-out • opt-in
7 PHP • none opt-out • none
8 PHP • none opt-out • opt-in

Table 5: Presence or absence of binary vulnerability classes, and framework support for preventing them.
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Figure 2: Vulnerabilities by vulnerability class.

SQL injection. Very few SQL injection vulnerabilities
were found. Only two implementations had any such
vulnerabilities, and only 4 were found in total. The dif-
ference between languages is not statistically significant
(F = 0.70, p = 0.5330).

Authentication and authorization bypass. No such
vulnerabilities were found in 5 of the 9 implementations.
Each of the other 4 had only 1 or 2 such vulnerabilities.
The difference between languages is not statistically sig-
nificant (F = 0.17, p = 0.8503).

CSRF. As seen in Table 5, all of the PHP and Perl
implementations, and 1 of 3 Java implementations were
vulnerable to CSRF attacks. Fisher’s exact test reveals
that the difference between languages is not statistically
significant (p = 0.25).

Session management. All implementations other than
2 of the 3 Perl implementations were found to implement
secure session management. That is, the Perl implemen-
tations were the only ones with vulnerable session man-
agement. Fisher’s exact test reveals that the difference is
not statistically significant (p = 0.25).



Vulnerabilities found by
Team
Number

Language Manual
only

Black-
box only

Both Total

1 Perl 4 1 0 5
2 Perl 3 1 0 4
5 Perl 12 3 18 33
3 Java 1 7 0 8
4 Java 2 2 0 4
9 Java 5 0 0 5
6 PHP 7 3 0 10
7 PHP 7 3 0 10
8 PHP 11 0 1 12

Table 6: Number of vulnerabilities found in the implementa-
tions of People by Temperament. The “Vulnerabilities found
by” columns display the number of vulnerabilities found only
by manual analysis, only by black-box testing, and by both
techniques, respectively. The final column displays the total
number of vulnerabilities found in each implementation.

Insecure password storage. Most of the implementa-
tions used some form of insecure password storage, rang-
ing from storing passwords in plaintext to not using a salt
before hashing the passwords. One Perl and one Java
implementation did not violate current best practices for
password storage. There does not, however, appear to be
any association between programming language and in-
secure password storage. Fisher’s exact test does not find
a statistically significant difference (p = 0.999).

4.3 Manual review vs. black-box testing

Table 6 and Figure 1 list how many vulnerabilities were
found only by manual analysis, only by black-box test-
ing, and by both techniques. All vulnerabilities in the bi-
nary vulnerability classes were found by manual review,
and none were found by black-box testing.

We observe that manual analysis fared better overall,
finding 71 vulnerabilities (including the binary vulner-
ability classes), while black-box testing found only 39.
We also observe that there is very little overlap between
the two techniques; the two techniques find different vul-
nerabilities. Out of a total of 91 vulnerabilities found by
either technique, only 19 were found by both techniques
(see Figure 3). This suggests that they are complemen-
tary, and that it may make sense for organizations to use
both.

Organizations commonly use only black-box testing.
These results suggest that on a smaller budget, this prac-
tice makes sense because either technique will find some
vulnerabilities that the other will miss. If, however, an or-
ganization can afford the cost of manual review, it should
supplement this with black-box testing. The cost is small
relative to that of review, and our results suggest that
black-box testing will find additional vulnerabilities.

Figure 2 reveals that the effectiveness of the two tech-
niques differs depending upon the vulnerability class.

20 19 52

Black-box Manual
Figure 3: Vulnerabilities found by manual analysis and black-
box penetration testing.

Manual review is the clear winner for authentication
and authorization bypass and stored XSS vulnerabilities,
while black-box testing finds more reflected XSS and
SQL injection vulnerabilities. This motivates the need
for further research and development of better black-box
penetration testing techniques for stored XSS and au-
thentication and authorization bypass vulnerabilities. We
note that recent research has made progress toward find-
ing authentication and authorization bypass vulnerabili-
ties [9, 13], but these are not black-box techniques.

Reviewer ability. We now discuss the 20 vulnerabil-
ities that were not found manually. Our analysis of
these vulnerabilities further supports our conclusion that
black-box testing complements manual review.

For 40% (8) of these, the reviewer found at least one
similar vulnerability in the same implementation. That
is, there is evidence that the reviewer had the skills and
knowledge required to identify these vulnerabilities, but
overlooked them. This suggests that we cannot expect a
reviewer to have the consistency of an automated tool.

For another 40%, the vulnerability detected by the tool
was in framework code, which was not analyzed by the
reviewer. An automated tool may find vulnerabilities that
reviewers are not even looking for.

The remaining 20% (4) represent vulnerabilities for
which no similar vulnerabilities were found by the re-
viewer in the same implementation. It is possible that
the reviewer lacked the necessary skills or knowledge to
find these vulnerabilities.

4.4 Framework support

We examine whether stronger framework support is as-
sociated with fewer vulnerabilities. Figure 4 displays the
relationship for each integer-valued vulnerability class
between the level of framework support for that class and
the number of vulnerabilities in that class. If for some
vulnerability class there were an association between the
level of framework support and the number of vulnerabil-
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Figure 4: Level of framework support vs. number of vulnera-
bilities for integer-valued vulnerability classes. The area of a
mark scales with the number of observations at its center.

ities, we would expect most of the points to be clustered
around (or below) a line with a negative slope.

For each of the three4 classes, we performed a one-
way ANOVA test between framework support for the
vulnerability class and number of vulnerabilities in the
class. None of these results are statistically significant.

Our data set allows us to compare only frameworks
with no support to frameworks with manual support be-
cause the implementations in our data set do not use
frameworks with stronger support (with one exception).
We found no significant difference between these levels
of support. However, this data set does not allow us to
examine the effect of opt-in, opt-out, or always-on sup-
port on vulnerability rates. In future work, we would like
to analyze implementations that use frameworks with
stronger support for these vulnerability classes. Exam-
ple frameworks include CodeIgniter’s xss clean [1],
Google Ctemplate [3], and Django’s autoescape [2],
all of which provide opt-out support for preventing XSS
vulnerabilities. A more diverse data set might reveal re-
lationships that cannot be gleaned from our current data.

Table 5 displays the relationship between framework
support and vulnerability status for each of the binary
vulnerability classes.

There does not appear to be any relationship for pass-
word storage. Many of the implementations use frame-
works that provide opt-in support for secure password
storage, but they do not use this support and are therefore
vulnerable anyway. This highlights the fact that manual
framework support is only as good as developers’ aware-
ness of its existence.

Session management and CSRF do, on the other hand,
appear to be in such a relationship. Only the two im-
plementations that lack framework support for session

4The level of framework support for stored XSS and reflected XSS
is identical in each implementation, so we combined these two classes.

management have vulnerable session management. Sim-
ilarly, only the two implementations that have framework
support for CSRF were not found to be vulnerable to
CSRF attacks. Both results were found to be statistically
significant using Fisher’s exact test (p = 0.028 for each).

The difference in results between the integer-valued
and binary vulnerability classes suggests that manual
support does not provide much protection, while more
automated support is effective at preventing vulnerabil-
ities. During our manual source code review, we fre-
quently observed that developers were able to correctly
use manual support mechanisms in some places, but they
forgot or neglected to do so in other places.

Figure 5 presents the results from our identification of
the lowest level at which framework support exists that
could have prevented each individual vulnerability (as
described in Section 3.4).

It is rare for developers not to use available automatic
support (the darkest bars in Figure 5b show only 2 such
vulnerabilities), but they commonly fail to use existing
manual support (the darkest bars in Figure 5a, 37 vul-
nerabilities). In many cases (30 of the 91 vulnerabilities
found), the existing manual support was correctly used
elsewhere. This suggests that no matter how good man-
ual defenses are, they will never be good enough; devel-
opers can forget to use even the best manual framework
support, even when it is evident that they are aware of it
and know how to use it correctly.

For both manual and automatic support, the major-
ity of vulnerabilities could have been prevented by sup-
port from another framework for the same language that
the implementation used. That is, it appears that strong
framework support exists for most vulnerability classes
for each language in this study.

The annotations in Figure 5 point out particular
shortcomings of frameworks for different vulnerability
classes. We did not find any framework that provides
any level of support for sanitizing untrusted output in a
JavaScript context, which Team 3 failed to do repeatedly,
leading to 3 reflected XSS vulnerabilities. We were also
unable to find a PHP framework that offers automatic
support for secure password storage, though we were
able to find many tutorials on how to correctly (but man-
ually) salt and hash passwords in PHP. Finally, we are not
aware of any automatic framework support for prevent-
ing authorization bypass vulnerabilities. Unlike the other
vulnerability classes we consider, these require correct
policies; in this sense, this vulnerability class is funda-
mentally different, and harder to tackle, as acknowledged
by recent work [9, 13].
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Figure 5: For each vulnerability found, how far developers would have to stray from the technologies they used in order to find
framework support that could have prevented each vulnerability, either manually (left) or automatically (right).

4.5 Limitations of statistical analysis

We caution the reader against drawing strong, general-
izable conclusions from our statistical analysis, and we
view even our strongest results as merely suggestive but
not conclusive. Although we entered this study with spe-
cific goals and hypotheses (as described in Section 2),
results that appear statistically significant may not in fact
be valid – they could be due to random chance.

When testing 20 hypotheses at a 0.05 significance
level, we expect one of them to appear significant purely
by chance. We tested 19 hypotheses in this study, and
3 of them appeared to be significant. Therefore, we
should not be surprised if one or two of these seemingly-
significant associations are in fact spurious and due
solely to chance. We believe more powerful studies with
larger data sets are needed to convincingly confirm the
apparent associations we have found.

5 Related work

In this section, we survey related work, which falls
into 3 categories: (1) studies of the relationship be-
tween programming languages and application secu-
rity, (2) comparisons of the effectiveness of different
automated black-box web application penetration test-
ing tools, and (3) comparisons of different bug- and
vulnerability-finding techniques.

Programming languages and security. The 9th edi-
tion of the WhiteHat Website Security Statistic Re-
port [26] offers what we believe is the best insight to
date regarding the relationship between programming
language and application security. Their data set, which
includes over 1,500 web applications and over 20,000
vulnerabilities, was gathered from the penetration-testing
service WhiteHat performs for its clients.

Their report found differences between languages in
the prevalence of different vulnerability classes as well as

the average number of “serious” vulnerabilities over the
lifetime of the applications. For example, in their sample
of applications, 57% of the vulnerabilities in JSP appli-
cations were XSS vulnerabilities, while only 52% of the
vulnerabilities in Perl applications were XSS vulnerabil-
ities. Another finding was that PHP applications were
found to have an average of 26.6 vulnerabilities over their
lifetime, while Perl applications had 44.8 and JSP appli-
cations had 25.8. The report makes no mention of statis-
tical significance, but given the size of their data set, one
can expect all of their findings to be statistically signifi-
cant (though not necessarily practically significant).

Walden et al. [25] measured the vulnerability density
of the source code of 14 PHP and 11 Java applications,
using different static analysis tools for each set. They
found that the Java applications had lower vulnerability
density than the PHP applications, but the result was not
statistically significant.

While these analyses sample across distinct applica-
tions, ours samples across implementations of the same
application. Our data set is smaller, but its collection was
more controlled. The first study focused on fixed combi-
nations of programming language and framework (e.g.,
Java JSP), and the second did not include a framework
comparison. Our study focuses separately on language
and framework.

Dwarampudi et al. [12] compiled a fairly comprehen-
sive list of pros and cons of the offerings of several dif-
ferent programming languages with respect to many lan-
guage features, including security. No experiment or data
analysis were performed as a part of this effort.

Finally, the Plat Forms [19] study (from which the
present study acquired its data) performed a shallow se-
curity analysis of the data set. They ran simple black-box
tests against the implementations in order to find indica-
tions of errors or vulnerabilities, and they found minor
differences. We greatly extended their study using both
white- and black-box techniques to find vulnerabilities.



Automated black-box penetration testing. We are
aware of three separate efforts to compare the effective-
ness of different automated black-box web application
security scanners. Suto [22] tested each scanner against
the demonstration site of each other scanner and found
differences in the effectiveness of the different tools. His
report lists detailed pros and cons of using each tool
based on his experience. Bau et al. [5] tested 8 differ-
ent scanners in an effort to identify ways in which the
state of the art of black box scanning could be improved.
They found that the scanners tended to perform well on
reflected XSS and (first-order) SQL injection vulnera-
bilities, but poorly on second-order vulnerabilities (e.g.,
stored XSS). We augment this finding with the result that
manual analysis performs better for stored XSS, authen-
tication and authorization bypass, CSRF, insecure ses-
sion management, and insecure password storage, and
black-box testing performs better for reflected XSS and
SQL injection.

Doupé et al. [11] evaluated 11 scanners against a
web application custom-designed to have many different
crawling challenges and types of vulnerabilities. They
found that the scanners were generally poor at crawling
the site, they performed poorly against “logic” vulner-
abilities (e.g., application-specific vulnerabilities, which
often include authorization bypass vulnerabilities), and
that they required their operators to have a lot of knowl-
edge and training to be able to use them effectively.

While these studies compare several black-box tools
to one another, we compare the effectiveness of a sin-
gle black-box tool to that of manual source code anal-
ysis. Our choice regarding which black-box scanner to
use was based in part on these studies.

Bug- and vulnerability-finding techniques. Wagner
et al. [24] performed a case study against 5 applications
in which they analyzed the true- and false-positive rates
of three static bug-finding tools and compared manual
source code review to static analysis for one of the 5 ap-
plications. This study focused on defects of any type,
making no specific mention of security vulnerabilities.
They found that all defects the static analysis tools dis-
covered were also found by the manual review. Our study
focuses specifically on security vulnerabilities in web ap-
plications, and we use a different type of tool in our study
than they use in theirs.

Two short articles [8, 15] discuss differences between
various tools one might consider using to find vulnera-
bilities in an application. The first lists constraints, pros,
and cons of several tools, including source code analysis,
dynamic analysis, and black-box scanners. The second
article discusses differences between white- and black-
box approaches to finding vulnerabilities.

6 Conclusion and future work

We have analyzed a data set of 9 implementations of the
same web application to look for security differences as-
sociated with programming language, framework, and
method of finding vulnerabilities. Each implementation
had at least one vulnerability, which indicates that it is
difficult to build a secure web application – even a small,
well-defined one.

Our results provide little evidence that programming
language plays a role in application security, but they
do suggest that the level of framework support for secu-
rity may influence application security, at least for some
classes of vulnerabilities. Even the best manual support
is likely not good enough; frameworks should provide
automatic defenses if possible.

In future work, we would like to evaluate more mod-
ern frameworks that offer stronger support for prevent-
ing vulnerabilities. We are aware of several frameworks
that provide automatic support for avoiding many types
of XSS vulnerabilities.

We have found evidence that manual code review is
more effective than black-box testing, but combining the
two techniques is more effective than using either one by
itself. We found that the two techniques fared differently
for different classes of vulnerabilities. Black-box testing
performed better for reflected XSS and SQL injection,
while manual review performed better for stored XSS,
authentication and authorization bypass, session man-
agement, CSRF, and insecure password storage. We be-
lieve these findings warrant future research with a larger
data set, more reviewers, and more black-box tools.

We believe it will be valuable for future research to test
the following hypotheses, which were generated from
this exploratory study.

• H1: The practical significance of the difference in
security between applications that use different pro-
gramming languages is negligible. If true, pro-
grammers need not concern themselves with secu-
rity when choosing which language to use (subject
to the support offered by frameworks available for
that language).

• H2: Stronger, more automatic, framework support
for vulnerabilities is associated with fewer vulnera-
bilities. If true, recent advances in framework sup-
port for security have been beneficial, and research
into more framework-provided protections should
be pursued.

• H3: Black-box penetration testing tools and manual
source code review tend to find different sets of vul-
nerabilities. If true, organizations can make more
informed decisions regarding their strategy for vul-
nerability remediation.



We see no reason to limit ourselves to exploring these
hypotheses in the context of web applications; they are
equally interesting in the context of mobile applications,
desktop applications, and network services.

Finally, we note that future work in this area may ben-
efit from additional data sources, such as source code
repositories. These rich data sets may help us answer
questions about (e.g.,) developers’ intentions or misun-
derstandings when introducing vulnerabilities and how
vulnerabilities are introduced into applications over time.
A deeper understanding of such issues will aid us in de-
signing new tools and processes that will help developers
write more secure software.
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[11] DOUPÉ, A., COVA, M., AND VIGNA, G. Why Johnny Can’t
Pentest: An Analysis of Black-box Web Vulnerability Scanners.
In Proceedings of the Conference on Detection of Intrusions and
Malware and Vulnerability Assessment (DIMVA) (Bonn, Ger-
many, July 2010).

[12] DWARAMPUDI, V., DHILLON, S. S., SHAH, J., SEBASTIAN,
N. J., AND KANIGICHARLA, N. S. Comparative study of the
Pros and Cons of Programming languages: Java, Scala, C++,
Haskell, VB.NET, AspectJ, Perl, Ruby, PHP & Scheme. http:
//arxiv.org/pdf/1008.3431.

[13] FELMETSGER, V., CAVEDON, L., KRUEGEL, C., AND VIGNA,
G. Toward Automated Detection of Logic Vulnerabilities in Web
Applications. In Proceedings of the USENIX Security Symposium
(Washington, DC, August 2010).

[14] JASPAL. The best web development frameworks,
June 2010. http://www.webdesignish.com/
the-best-web-development-frameworks.html.

[15] MCGRAW, G., AND POTTER, B. Software security testing. IEEE
Security and Privacy 2 (2004), 81–85.

[16] PETERS, T. PEP 20 – The Zen of Python. http://www.
python.org/dev/peps/pep-0020/.

[17] PORTSWIGGER LTD. Burp Suite Professional. http://www.
portswigger.net/burp/editions.html.

[18] PRECHELT, L. Plat Forms 2007 task: PbT. Tech. Rep. TR-B-
07-10, Freie Universität Berlin, Institut für Informatik, Germany,
January 2007.

[19] PRECHELT, L. Plat Forms: A Web Development Platform Com-
parison by an Exploratory Experiment Searching for Emergent
Platform Properties. IEEE Transactions on Software Engineer-
ing 99 (2010).

[20] ROBERTSON, W., AND VIGNA, G. Static Enforcement of Web
Application Integrity Through Strong Typing. In Proceedings
of the USENIX Security Symposium (Montreal, Canada, August
2009).

[21] SHANKAR, U., TALWAR, K., FOSTER, J. S., AND WAGNER,
D. Detecting Format String Vulnerabilities with Type Qualifiers.
In Proceedings of the 10th USENIX Security Symposium (2001),
pp. 201–220.

[22] SUTO, L. Analyzing the Accuracy and Time Costs
of Web Application Security Scanners, February 2010.
http://www.ntobjectives.com/files/Accuracy_
and_Time_Costs_of_Web_App_Scanners.pdf.

[23] THIEL, F. Personal Communication, November 2009.

[24] WAGNER, S., JRJENS, J., KOLLER, C., TRISCHBERGER, P.,
AND MNCHEN, T. U. Comparing bug finding tools with reviews
and tests. In In Proc. 17th International Conference on Testing
of Communicating Systems (TestCom05), volume 3502 of LNCS
(2005), Springer, pp. 40–55.

[25] WALDEN, J., DOYLE, M., LENHOF, R., AND MURRAY, J. Java
vs. PHP: Security Implications of Language Choice for Web Ap-
plications. In International Symposium on Engineering Secure
Software and Systems (ESSoS) (February 2010).

[26] WHITEHAT SECURITY. WhiteHat Website Security Statistic Re-
port: 9th Edition, May 2010. http://www.whitehatsec.
com/home/resource/stats.html.


