
The Effectiveness of Application Permissions

Adrienne Porter Felt∗, Kate Greenwood, David Wagner
University of California, Berkeley
apf, kate eli, daw@cs.berkeley.edu

Abstract

Traditional user-based permission systems assign the
user’s full privileges to all applications. Modern plat-
forms are transitioning to a new model, in which each
application has a different set of permissions based on
its requirements. Application permissions offer several
advantages over traditional user-based permissions, but
these benefits rely on the assumption that applications
generally require less than full privileges. We explore
whether that assumption is realistic, which provides in-
sight into the value of application permissions.

We perform case studies on two platforms with appli-
cation permissions, the Google Chrome extension sys-
tem and the Android OS. We collect the permission re-
quirements of a large set of Google Chrome extensions
and Android applications. From this data, we evaluate
whether application permissions are effective at protect-
ing users. Our results indicate that application permis-
sions can have a positive impact on system security when
applications’ permission requirements are declared up-
front by the developer, but can be improved.

1 Introduction

Browsers and smartphone operating systems provide de-
velopment platforms that support thriving markets for
third-party applications. However, third-party code cre-
ates risks for the user. Some third-party authors are mali-
cious [3, 14], and third-party code can introduce vulner-
abilities because the authors of third-party applications
usually are not security experts [10, 19].

In order to protect users from the threats associated
with third-party code, modern platforms use application
permissions to control access to security- and privacy-
relevant parts of their APIs. Users decide whether to al-
low individual applications to access these sensitive re-
sources. Time-of-use systems prompt users to approve
permissions as needed by applications at runtime, and
install-time systems ask developers to declare their appli-

∗This material is based upon work supported under a National Sci-
ence Foundation Graduate Research Fellowship. Any opinions, find-
ings, conclusions or recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

cations’ permission requirements up-front so that users
can grant them during installation.

Traditional user-based permission systems assign the
user’s full privileges to all of the user’s applications. In
the application permission model, however, each appli-
cation can have a customized set of permissions based
on its individual privilege requirements. If most applica-
tions can be satisfied with less than the user’s full priv-
ileges, then three advantages of application permissions
over the traditional user-based model are possible:

• User Consent: Security-conscious users may be
hesitant to grant access to dangerous permissions
without justification. For install-time systems, this
might alert some users to malware at installation;
for time-of-use systems, this can prevent an in-
stalled application from accessing sensitive content.

• Defense in Depth: For install-time systems, the im-
pact of a vulnerability in an application will be lim-
ited to the vulnerable application’s declared privi-
leges. This could also be true for a time-of-use sys-
tem in which developers declare their applications’
maximum possible permissions up-front.

• Review Triaging: Up-front application permission
declarations facilitate central review because secu-
rity reviewers can ignore low-privilege applications
and focus on applications with dangerous permis-
sions. This may decrease the average review time.

The real-world impact of these potential advantages de-
pends on low application permission requirements. We
evaluate the practical benefits of application permissions.
by performing a large-scale study of Google Chrome ex-
tensions and Android applications.

We perform a measurement study that quantifies the
permission use of 1000 Google Chrome extensions and
956 Android applications. Both platforms use install-
time permissions. Our study provides detailed data on
the permission requirements of applications in the wild.
From this data, we assess whether the platforms are real-
izing the potential benefits of application permissions.

We find that almost all applications ask for fewer than
maximum permissions. Only 14 of 1000 extensions re-
quest the most dangerous privileges, and the average An-
droid application requests fewer than 4 of 56 available

1

dangerous permissions. In comparison, all typical desk-
top applications receive the equivalent of all 56 Android
permissions. These results indicate that application per-
mission systems with up-front permission declarations
can decrease the impact of application vulnerabilities and
simplify review. This supports the adoption of install-
time permission systems. Current time-of-use platforms
do not require up-front permission declarations, which
means that they do not provide the same defense in depth
or review triaging benefits. However, time-of-use plat-
forms could gain these advantages by requiring devel-
opers to state the maximum set of permissions that the
application will require at runtime.

Although developers use fewer than full permissions,
Google Chrome and Android users are presented with at
least one dangerous permission request during the instal-
lation of almost every extension and application. Warn-
ing science literature indicates that frequent warnings de-
sensitize users, especially if most warnings do not lead to
negative consequences [15, 11]. Users are therefore not
likely to pay attention to or gain information from install-
time permission prompts in these systems. Changes to
these permission systems are necessary to reduce the
number of permission warnings shown to users.

We examine the effects of developer incentives, devel-
oper error, wildcard permissions, and permission granu-
larity on permission usage. We find that more than 10%
of applications request unneeded permissions. Our re-
sults show that developers are willing to make use of
fine-grained permissions, motivating a fine-grained per-
mission design. We suggest error detection tools and
other platform changes to reduce permission requests.

We view the Google Chrome and Android permission
systems as case studies for the future of application per-
missions. Our primary contribution is a large-scale study
that demonstrates the defense in depth and review triag-
ing benefits of application permissions with up-front dec-
larations. This motivates the addition of up-front devel-
oper permission declarations to time-of-use permission
systems. We also discuss tools and changes that would
improve the effectiveness of these systems. Our results
should guide the design of in-progress and future permis-
sion systems, and we also provide concrete suggestions
for Google Chrome and Android.

2 Background

Popular platforms with application permissions include
Apple iOS, the Safari extension system, and Facebook.
In-progress platforms with application permissions in-
clude Mozilla Jetpack, the W3C device API for web ap-
plications, and the Google installable web application
platform. In this paper, we focus on the Google Chr-
ome extension system and Android application platform,
which feature install-time permissions.

2.1 Google Chrome Extensions

Browser extension platforms allow third-party code to
run as part of the browser environment. Extensions
change the user’s browsing experience by editing web
sites and changing browser behavior. All extensions are
free from the official Google Chrome extension gallery.

Google Chrome extensions can have three types of
components: core extensions, content scripts, and plug-
ins. A core extension comprises the main, persistent
portion of an extension. Content scripts are injected
into web sites; when the page loads, the content script’s
JavaScript executes in the context of the site. A con-
tent script has full access to its host site’s page. Core
extensions and content scripts are written in JavaScript,
whereas plug-ins are native executables.

The extension gallery prompts the user with a warning
(e.g., Figure 1) that indicates what privileges the exten-
sion has requested:

Plug-ins. Plug-ins are native executables, so a plug-in
grants the extension full permissions to the user’s ma-
chine. The installation warning for an extension with a
plug-in says the extension “can access all data on your
computer.” Extensions with plug-ins are reviewed.

Browser managers. Core extensions can access the ex-
tension API, which is a set of browser managers. Each
manager is controlled with one permission. The man-
agers include history, bookmarks, and geolocation. The
browser warns that extensions with these permissions
can access “your browsing history,” “bookmarks,” and
“your physical location,” respectively. Non-security rel-
evant browser managers also exist, but their use does not
prompt a warning so we do not consider them.

Web access. The developer must specify web permis-
sions for content scripts and core extensions. Content
script web permissions determine which domains they
are installed on by default. A core extension can send
XMLHttpRequests (XHRs) and inject code into the
domains it has permissions for. Content script and core
extension domain permissions are listed separately.

All-domain access is the broadest web permission. If
either the content scripts or the core extension have all-
domain access, the browser warning states that the exten-

Figure 1: Google Chrome extension installation.

2

Figure 2: Android application installation.

sion “can access your data on all web sites.” Alternately,
a developer can list specific domains, using wildcards for
protocols or subdomains (e.g., *://*.bar.com). The
installation warning will list the requested domains.

2.2 Android Applications
The Android smartphone operating system supports
third-party Java applications, which can be installed by
users through the Android Market. Some third-party ap-
plications are free, and some are paid. Android applica-
tions do not need to be reviewed prior to inclusion in the
Android Market, although other phone vendors like RIM
and Apple maintain official review processes.

Android’s API provides access to phones’ cameras,
microphones, GPS, text messages, WiFi, Bluetooth, etc.
Most device access is controlled by permissions, al-
though large parts of the overall API are not protected
by permissions. Applications can define their own extra
permissions, but we only consider permissions defined
by the Android OS. There are 134 permissions in An-
droid 2.2. Permissions are categorized into threat levels:

Normal. API calls with annoying but not harmful conse-
quences are protected with Normal permissions. Exam-
ples include accessing information about available WiFi
networks, vibrating the phone, and setting the wallpaper.

Dangerous. API calls with potentially harmful con-
sequences are protected with Dangerous permissions.
These include actions that could cost the user money or
leak private information. Example permissions are the
ones used to protect opening a network socket, recording
audio, and using the camera.

Signature. The most sensitive operations are protected
with Signature permissions. These permissions are only
granted to applications that have been signed with the de-
vice manufacturer’s certificate. Market applications are
only eligible for Signature permissions if they are up-

dates to applications that were pre-installed and signed
by the device manufacturer. Requests for Signature per-
missions by other applications will be ignored. An ex-
ample is the ability to inject user events.

SignatureOrSystem. This category includes signed ap-
plications and applications that are installed into the
/system/app folder. Typically, this only includes pre-
installed applications. Advanced users who have rooted
their phones [9] can manually install applications into
this folder, but the official Market installation process
will not do so. Requests for SignatureOrSystem permis-
sions by other applications will be ignored. For example,
these permissions protect the ability to turn off the phone.

The Android Market displays a permission prompt to
the user during installation for Dangerous permissions
(e.g., Figure 2). Warnings for Dangerous permissions are
grouped into functionality categories. For example, all
Dangerous permissions related to location are displayed
as part of the same location warning. Normal permis-
sions can be viewed once the application is installed but
are hidden behind a collapsed drop-down menu. Signa-
ture/System permissions are not displayed to users at all.

3 Permission Prevalence

We examine the frequency of permission requests in
Google Chrome extensions and Android applications.
These results should be compared to traditional systems
that grant all applications full privileges.

3.1 Chrome Extensions
We study the 1000 “most popular” extensions, as ranked
in the official Google Chrome extension gallery1. Of
these, the 500 most popular extensions are relevant to
user consent and application vulnerabilities because they
comprise the majority of user downloads. The 500 less
popular extensions are installed in very few browsers, but
they are relevant to reviewers because reviewers would
need to examine all extensions in the directory. Table 1
provides an overview of our results.

3.1.1 Popular Extensions

Of the 500 most popular extensions, 91.4% ask for at
least one security-relevant permission. This indicates
that nearly every installation of an extension generates
at least one security warning2.

1We crawled the directory on August 27, 2010.
2We discovered that Google Chrome sometimes fails to generate a

warning for history access. The bug has been fixed for new versions [7].
Our analysis assumes that all requests for history access correctly gen-
erate a warning. The bug affects 5 of extensions in our set.

3

Permission Popular Unpopular
Plug-ins 2.80 % 0.00 %
Web access 82.0 % 60.8 %

All domains 51.6 % 21.8 %
Specific domains 30.4 % 39.0 %

Browser manager(s) 74.8 % 43.4 %

Table 1: We measure the prevalence of permissions in 1000
Google Chrome extensions, split into the 500 most popular and
500 less popular. For web access, we report the highest permis-
sion of either the content script or core extension.

Plug-ins. Only 14 of the 500 extensions include plug-ins.

Browser managers. The majority of security warnings
are caused by the window manager, which is requested
by almost 75% of the 500 extensions. Requesting ac-
cess to the window manager generates a warning about
history access because history is indirectly available
through the window manager. The bookmark and ge-
olocation managers are requested infrequently: 44 times
and once, respectively.

All domains. Half of the 500 extensions request all-
domain access for either content scripts or the core ex-
tension. 52% request access to all http sites, and 42%
ask for all https sites.

Specific domains. One-third of extensions only request a
set of specific domains. This reduces the attack surface
and removes the possibility that an extension is snooping
on sensitive web data.

No warning. Only 43 of the 500 extensions do not re-
quest access to a security-relevant permission. 38 do not
ask for any permissions at all; they load normal web sites
into their extension windows or apply “themes” to the
user interface. The remainder use browser managers that
are not relevant to privacy or security.

3.1.2 Unpopular Extensions

Not all of the extensions listed in the “most popular” di-
rectory ranking are popular. After approximately the first
500 of 1000 popularity-ranked extensions, the number of
users per extension abruptly decreases, and applications
are no longer ranked solely according to the number of
users. (Although the ranking algorithm is private, we be-
lieve it incorporates time.) Figure 3 shows the transition.
16.2% of the bottom 500 extensions have fewer than ten
users. These 500 low-ranked extensions are of uneven
quality. E.g., two of them are unaltered versions of the
example extension on the developer web site.

Table 1 presents the results of our survey of the 500
less popular extensions. 71.6% of the less popular ex-
tensions have at least one security-relevant permission.
When compared to the top 500 extensions, the unpopu-

0

2000

4000

6000

8000

10000

12000

14000

16000

20
0

22
9

25
8

28
7

31
6

34
5

37
4

40
3

43
2

46
1

49
0

51
9

54
8

57
7

60
6

63
5

66
4

69
3

72
2

75
1

78
0

80
9

83
8

86
7

89
6

92
5

95
4

98
3

!
"#
$"
%

&'()*+$,-.%/+01%

Figure 3: Users per extension. We omit the first 200 for graph
clarity; the most popular extension has 1.3M users.

lar extensions request far fewer permissions than popular
extensions. We hypothesize that this is because less pop-
ular extensions offer less functionality. All of the differ-
ences are significant at a 1% significance level.

Unranked extensions are strictly less popular than the
unpopular extensions in our data set. If one were to re-
view the remaining 5, 696 unranked Google Chrome ex-
tensions, we expect their permission requirements would
be equivalent to or less than the permission requirements
of these 500 unpopular applications. We note with cau-
tion that future studies on permissions need to consider
the effect of popularity. E.g., a study that looks at the full
set of 6, 696 extensions to evaluate warning frequency
would would likely underestimate the number of warn-
ings that users see in practice by approximately 20%.

3.1.3 Evaluation

User Consent. Nearly all popular extensions (91% of the
top 500) generate at least one security warning, which
decreases the value of the warnings. History and all-
domain permissions are requested by more than half of
extensions; users have no reason to be suspicious of
extensions with these permissions because they are not
anomalous. However, warnings about plug-ins are rare
and therefore potentially notable.

Defense in Depth. This study shows that the permis-
sion system dramatically reduces the scope of potential
extension vulnerabilities. A negligible number of exten-
sions include plug-ins, which means that the typical ex-
tension vulnerability cannot yield access to the local ma-
chine. This is a significant improvement over the Firefox
and Internet Explorer extension systems, which provide
all extensions with access to the local file system. We
also find that all-domain access is frequent but not uni-
versal: 18% of popular extensions need no web access,
and 30.4% only need limited web access. This means
that the permission system prevents half of popular ex-
tensions from having unnecessary web privileges.

4

Review Triaging. Of the 1000 extensions in our study,
only 1.4% require review under current Google Chrome
review triaging procedures. (It should be noted, however,
that we do not know how many extensions requiring re-
view were submitted to the directory.) These results sug-
gest that the Firefox extension review process could be
significantly streamlined if Mozilla were to adopt a simi-
lar permission system. Reviewers could indisputably ig-
nore 28% of submitted extensions regardless of the exact
triaging criteria, based on the number of less-popular ex-
tensions with no security-relevant permissions.

3.2 Android Applications
We survey 100 paid and 856 free applications from the
Android Market3. For the paid applications, we selected
the 100 most popular. The free set is comprised of the
756 most popular and 100 most recently added applica-
tions. Unlike Google Chrome extensions, we observe no
differences between popular and recently added free ap-
plications, so we present them together. It is possible that
we do not see a popularity bias in Android applications
because of differences in the developer communities and
entrance barriers. We do not compare applications based
on their categories in the Android Market; the categories
are loosely defined and include a wide variety of different
functionality [1]. Although Android applications written
by the same developer could collude, we consider each
application’s permissions independently. Legitimate de-
velopers have no incentive to hide communication and
circumvent permission warnings.

3.2.1 Dangerous Permissions

We are primarily concerned with the prevalence of Dan-
gerous permissions, which are displayed as a warning to
users during installation and can have serious security
ramifications if abused. We find that 93% of free and
82% of paid applications have at least one Dangerous
permission, i.e., generate at least one permission prompt.

Android permissions are grouped into functionality
categories, and Table 1(a) shows how many applications
use at least one Dangerous permission from each given
category. This provides a relative measure of which parts
of the protected API are used by applications. All of the
permissions in a category display the same permission
prompt, so Table 1(a) also indicates how often users see
each type of permission request.

A small number of permissions are requested very fre-
quently. Table 1(b) shows the most popular Dangerous
permissions. In particular, the INTERNET permission is
heavily used. We find that 14% of free and 4% of paid
applications request INTERNET as their only Dangerous

3The applications were collected in October 2010.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%
 o

f A
pp

lic
at

io
ns

Number of Permissions

Figure 4: Percentage of paid and free applications with at least
the given number of Dangerous permissions.

permission. Barrera et al. hypothesize that free applica-
tions often need the INTERNET permission only to load
advertisements [1]. The disparity in INTERNET use be-
tween free and paid applications supports this hypothe-
sis, although it is still the most popular permission for
paid applications.

The prevalence of the INTERNET permission
means that most applications with access to per-
sonal information also have the ability to leak it.
For example, 97% of the 225 applications that
ask for ACCESS FINE LOCATION also request the
INTERNET permission. Similarly, 94% and 78% of the
respective applications that request READ CONTACTS
and READ CALENDAR also have the INTERNET per-
mission. We find that significantly more free than paid
applications request both Internet access and location
data, which possibly indicates widespread leakage of
location information to advertisers in free applications.
This corroborates a previous study that found that 20 of
30 randomly selected free applications send user infor-
mation to content or advertisement servers [5].

Although many applications ask for at least one Dan-
gerous permission, the number of permissions required
by an application is typically low. Even the most highly
privileged application in our set asks for 26 permissions,
which is less than half of the available 56 Dangerous per-
missions. Figure 4 shows the distribution of Dangerous
permission requests. Paid applications use an average of
3.99 Dangerous permissions, and free applications use
an average of 3.46 Dangerous permissions.

3.2.2 Signature and System Permissions

Applications can request Signature and SignatureOrSys-
tem permissions, but the operating system will not grant
the request unless the application has been signed by
the device manufacturer (Signature) or installed in the
/system/app folder (System). It is pointless for a typ-
ical application to request these permissions because the
permission requests will be ignored.

5

(a) Prevalence of Dangerous permissions, by category.

Category Free Paid
NETWORK** 87.3 % 66 %
SYSTEM TOOLS 39.7 % 50 %
STORAGE** 34.1 % 50 %
LOCATION** 38.9 % 25 %
PHONE CALLS 32.5 % 35 %
PERSONAL INFO 18.4 % 13 %
HARDWARE CONTROLS 12.5 % 17 %
COST MONEY 10.6 % 9 %
MESSAGES 3.7 % 5 %
ACCOUNTS 2.6 % 2 %
DEVELOPMENT TOOLS 0.35 % 0 %

(b) The most frequent Dangerous permissions and their categories.

Permission (Category) Free Paid
INTERNET** (NETWORK) 86.6 % 65 %
WRITE EXTERNAL STORAGE** (STORAGE) 34.1 % 50 %
ACCESS COARSE LOCATION** (LOCATION) 33.4 % 20 %
READ PHONE STATE (PHONE CALLS) 32.1 % 35 %
WAKE LOCK** (SYSTEM TOOLS) 24.2 % 40 %
ACCESS FINE LOCATION (LOCATION) 23.4 % 24 %
READ CONTACTS (PERSONAL INFO) 16.1 % 11 %
WRITE SETTINGS (SYSTEM TOOLS) 13.4 % 18 %
GET TASKS* (SYSTEM TOOLS) 4.4 % 11 %

Table 2: Survey of 856 free and 100 paid Android applications. We indicate significant difference between the free and paid
applications at 1% (**) and 5% (*) significance levels.

As far as we are aware, none of the paid applications
in our data set are signed or distributed by device man-
ufacturers. Three of the paid applications request Sig-
nature permissions, and five request SignatureOrSystem
permissions. Of the free applications, 25 request Sig-
nature permissions, 30 request SignatureOrSystem per-
missions, and four request both. We have found four
of the aforementioned free applications pre-installed on
phones; the remainder will not receive the permissions
on a typical device. Requests for unobtainable permis-
sions may be developer error or leftover from testing.

3.2.3 Evaluation

User Consent. Nearly all applications (93% of free and
82% of paid) ask for at least one Dangerous permis-
sion, which indicates that users are accustomed to in-
stalling applications with Dangerous permissions. The
INTERNET permission is so widely requested that users
cannot consider its warning anomalous. Security guide-
lines or anti-virus programs that warn against installing
applications with access to both the Internet and personal
information are likely to fail because almost all applica-
tions with personal information also have INTERNET.

Several important categories are requested relatively
infrequently, which is a positive finding. Permissions
in the PERSONAL INFO and COST MONEY categories
are only requested by a fifth and a tenth of applications,
respectively. The PERSONAL INFO category includes
permissions associated with the user’s contacts, calen-
dar, etc.; COST MONEY permissions let applications send
text messages or make phone calls without user confir-
mation4. Users have reason to be suspicious of applica-
tions that ask for permissions in these categories. How-
ever, users may not notice these rare warnings because
the overall rate is so high.

4The separate PHONE CALLS category contains permissions that
modify telephony state but do not cost the user money.

Defense in Depth. Given the prevalence of Dangerous
permissions, an application vulnerability is likely to oc-
cur in an application with at least one Dangerous permis-
sion. However, the average Android application is much
less privileged than a traditional operating system pro-
gram. Every desktop Windows application has full privi-
leges, whereas no Android application in our set requests
more than half of the available Dangerous permissions.
A majority of the Android applications ask for less than
seven, and only 10% have access to functionality that
costs the user money. This is a significant improvement
over the traditional full-privilege, user-based approach.

Review Triaging. A hypothetical review process could
exempt applications that do not have Dangerous permis-
sions. Unfortunately, this alone would not reduce re-
viewer workload much. Only 18% of paid and 7% of free
applications would be exempt from review. To improve
this, a review process could also exclude applications
whose only Dangerous permission is INTERNET. An
application with only the INTERNET permission cannot
leak sensitive personal information because reading user
data requires a second permission. This would increase
the number of exempt applications to 22% of paid and
21% of free applications.

4 Reducing Application Privileges

Our application survey indicates that up-front permission
declarations can promote defense in depth security and
provide moderate review triaging advantages. However,
a large number of applications still ask for dangerous
permissions. Decreasing the number of privileges that
applications require to function will improve the utility
of permissions. We investigate factors that influence per-
mission requirements and present corresponding sugges-
tions for reducing the frequency of permission usage.

6

4.1 Developer Incentives

Developer incentives can encourage or discourage per-
mission requests. Current incentives include the length
of the review process, how the automatic update system
treats additional permissions, and pressure from users.

Review Process. Formal review can delay an applica-
tion’s entrance into the directory. Developers are often
concerned about the length of the review process [13].
If dangerous permissions increase the review time (and
a lack of dangerous permissions decreases it), then de-
velopers have an incentive to use as few permissions as
necessary. Google Chrome extensions have to undergo
a review process if they include plug-ins, which incen-
tivizes developers to not use plug-ins. Other platforms
could adopt similar review systems or institute a timed
delay for applications with more permissions.

Pressure From Users. The ultimate goal of a developer
is to reach as many users as possible. If users are hesitant
to install applications with certain permissions, then de-
velopers are motivated to avoid those permissions. Users
can express their dislike of permission requests in appli-
cation comments and e-mails to the developer.

We read the user comments for 50 randomly selected
Google Chrome extensions with at least one permission.
Of the 50 extensions, 8 (15%) have at least one comment
questioning the extension’s use of permissions. The per-
centage of comments pertaining to permissions ranges
widely, from 1 of 2 to 5 of 984. A majority of the per-
mission comments refer to the extension’s ability to ac-
cess browsing history. Several commenters state that the
permission requests are preventing them from installing
an application, e.g., “Really would like to give it a try. ...
But why does it need access to my history? I hope you
got a plausible answer because I really would like to try
it out.” These comments indicate that a small number of
users are pressuring developers to use fewer permissions.

Additionally, developers of 3 of the 50 extensions de-
scriptions include an explanation of their permission us-
age. This indicates that these developers are concerned
about user reactions to permission requests.

Automatic Updates. Android and Google Chrome auto-
matically update applications as they become available,
according to user preferences. However, automatic up-
dates do not proceed for applications whose updates re-
quest more permissions. Instead, the user needs to manu-
ally install the update and approve the new permissions;
in Android, this amounts to several additional screens.
This incentivizes developers to request unnecessary per-
missions in in case later versions require the permissions.
If update UIs were improved to minimize the user effort
required to update applications with new permissions,
this disincentive might be eliminated.

4.2 Developer Error

Developers may ask for unnecessary permissions due to
confusion or forgetfulness. We explore the prevalence of
developer error. Tools that help developers select correct
permissions could reduce application privileges without
requiring any changes to the permission system itself.

4.2.1 Errors in Google Chrome Extensions

Browser Managers. We count the extensions that re-
quest browser managers but do not use them. About
half of the extensions in our set of 1000 “popular” ex-
tensions request access to security-relevant browser man-
agers. We search their source code (including remotely
sourced scripts) for references to their requested browser
managers. 14.7% of the 1000 extensions are overpriv-
ileged by this measure because they request access to
managers that they never use. It is possible for an ex-
tension to name a browser manager without explicitly in-
cluding the name as a string (e.g., "book"+"marks");
we examined a random sample of 15 overprivileged ex-
tensions and found no evidence of developers doing this.

Domains. We also review fifty randomly selected exten-
sions for excessive domain access (see Appendix A). For
each extension, we compare the permissions it requests
with the domains needed to implement its functionality,
which we determine by manually exercising the user in-
terface and consulting its source code when necessary.
We find that 41 of the 50 extensions request access to
web data, and 7 of those are overprivileged: 5 request
too many domain permissions for their core extensions,
and 2 install content scripts on unnecessary domains.

The reasons for overprivilege are diverse. One ex-
ample is “PBTweet+”, which requests web access for a
nonexistent core extension; other examples are “iBood”
and “Castle Age Autoplayer”, which request access to all
domains even though they only interact with iBOOD and
Facebook, respectively.

“Send using Gmail (no button)” demonstrates a com-
mon error, which is that developers sometimes request
access to all and specific domains in the same list.
We find that an additional 27 of the 1000 popularity-
ranked extensions also make this mistake. This is a
conservative measure of wildcard-induced error; sub-
domain wildcards can feature the same mistake, like
asking for both http://www.example.com and
http://*.example.com.

4.2.2 Errors in Android Applications

We manually review the top free and top paid application
from eighteen Android Market categories (see Appendix
A for a list). For each of the applications, we compare

7

its functionality to the permissions it requests. To de-
termine an application’s functionality requirements, we
exercise the user interface. Android’s permission doc-
umentation is incomplete; when we were unable to de-
termine whether functionality requires permissions, we
conservatively assumed it does.

Of the 36 applications, 4 are overprivileged. Un-
necessary INTERNET permissions account for three of
the overprivileged applications. One of the develop-
ers may have done this with the mistaken belief that
launching the browser requires the INTERNET permis-
sion, since that is how the application interacts with the
Internet. The fourth overprivileged application requests
ACCESS FINE LOCATION unnecessarily.

In addition to the four overprivileged applications, an-
other four could re-implement the same functionality
without the INTERNET permission. For example, “Doc-
sToGo” provides the ability to update the application
over the Internet even though that functionality is already
provided by the Android Market, and “Jesus Hates Zom-
bies” could store its small set of static resources locally.

4.2.3 Tools for Error Reduction

As far as we are aware, none of the prominent platforms
with install-time permissions provide developer tools to
detect unnecessary permissions. We recommend that fu-
ture platforms provide developers with tools to guide the
writing of permission declarations. Such a tool could
help reduce privileges by aiding developers in correct
permission selection. The tool could run whenever an ap-
plication is submitted to the directory, or it could be pro-
vided to developers as part of the development or pack-
aging process. If unnecessary permissions are found, the
developer could be prompted to remove them.

Our Google Chrome extension overprivilege detection
tool is simple but sufficient to find some types of errors.
As shown in Section 4.2.1, a JavaScript text search is
sufficient to remove unnecessary browser manager per-
missions from 147 of the 1000 popularity-ranked ex-
tensions. Our text search has a small number of false
positives; e.g., we found three extensions that only con-
tain references to browser managers in remotely sourced
scripts. However, a developer can disregard a warning
if she feels it is incorrect. Our tool also detects simple
redundant wildcard errors and asks the developer to re-
move the broad wildcard in favor of the more specific
domain. Detecting the larger problem of overly broad
domain requests is a challenging open problem for fu-
ture research in JavaScript program analysis.

A similar Android tool could analyze applications to
find all Android API calls, and from that deduce what
permissions the applications need. The tool could ask
the developer to discard permissions that are not required

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 21 31 41 51 101 201

Fr
eq

ue
nc

y

List Length

Figure 5: The number of content script specific domain lists
with at least a given length. Note the non-linear x-axis.

by any of the API calls. The tool cannot completely
replace developers; developers must still edit their per-
mission requirements if they want to include additional
permissions for inter-application interactions. (Applica-
tions can choose to only accept messages from applica-
tions with certain permissions.) Unfortunately, incom-
plete documentation currently prevents this tool from be-
ing built; the documentation does not completely state
which API calls require which permissions. Experimen-
tally determining the permission-API relationship is an
active area of future research.

4.3 Wildcards

Domain access in the Google Chrome extension system
relies on wildcards. A developer can write <all urls>
or *://*/* and gain access to all domains, or she can
define a list of specific domains. When it is not feasible
for a developer to list all possible subdomains, she can
use wildcards to capture multiple subdomains. However,
a developer might choose to use a wildcard even though
it includes more privileges than the application requires.

Compliance. To determine whether developers are
willing to write specific domain lists when they can
more easily request access to all domains, we evalu-
ate the prevalence of specific domain lists in the 1000
popularity-ranked extensions. Of the 714 extensions that
need access to web data, 428 use a specific domain list
for either a content script or core extension. This is a sur-
prising and positive finding: 60% of developers whose
extensions need web access choose to opt in to domain
restrictions for at least one component. However, 367
extensions also have at least one component that requests
full domain access. (An extension with multiple content
scripts might request full domain access for some scripts
but place restrictions on others.)

8

Developer Effort. We suspect that developers will de-
fault to requesting all-domain access if the number of
specific domains in the list grows too high. To exam-
ine this further, we consider the 237 content scripts that
use specific domain lists. The lists are short: only 31 are
longer than five. Figure 5 presents the distribution. This
indicates that most developers either request a very small
number of domains or opt to request full domain access,
with few in-between. However, six developers wrote
eight lists that are longer than fifty domains. These out-
liers result from developers internationalizing their ex-
tensions by repeating the same domains with different
suffixes; wildcards cannot be used to represent suffixes
because the domains may have different owners.

Noncompliance. Section 4.2 describes a manual analy-
sis of fifty extensions. Five of those extensions are over-
privileged due to improper wildcard use. Two of the de-
velopers choose to request all-domain access rather than
write specific domain lists, two write specific domain
lists but unnecessarily use wildcards for subdomains, and
one incorrectly requests all-domain access alongside spe-
cific domains. In other words, 10% of the extensions
with web access request excessive permissions because
their developers are unable or unwilling to write suffi-
ciently specific domain lists.

In summary, our findings are twofold. We show that
60% of extension developers write at least one specific
domain list. This demonstrates that the option to write
specific domain lists is a worthwhile part of a declarative
permission system. On the other hand, 40% of develop-
ers whose extensions need web access do not write any
specific domain lists. Furthermore, our manual analy-
sis indicates that 10% of extensions with web access use
wildcards improperly.

4.4 Permission Granularity

If a single permission protects a diverse set of API calls,
then an application seeking to use only a subset of that
functionality will be overprivileged. Separating a coarse
permission into multiple permissions can improve the
correlation between permissions and application require-
ments. On the other hand, excessively fine-grained per-
missions would burden developers with a large list of
permissions required to perform simple actions.

4.4.1 Google Chrome Browser Managers

At the time of our study, Google Chrome extension per-
missions were at the granularity of a browser manager:
one permission per entire browser manager. This posed a
problem for the window manager, which includes some
methods that provide indirect access to history via the

location property of loaded windows. Using the win-
dow manager generated history warnings, regardless of
whether the extension used any of the methods that pro-
vide access to the location property.

The fact that the window manager caused a history
warning was confusing to users and developers. Con-
sider this quote from the developer of Neat Bookmarks:

Installing this extension will ask for permis-
sion to access your browsing history, which is
totally useless, not used and not stored by the
extension at all. Not really sure why ‘History’
is part of ‘Bookmarks’ in the Chrome browser.

The developer is so confused by the history warning that
he or she believes it is caused by the extension’s use of
the bookmark manager, rather than the window manager.

Since the time of our study, the window manager has
been changed so that certain methods do not require
any permission. Consequently, developers can access
some non-history-related functionality without acquiring
a permission that shows users the history warning.

4.4.2 Fine-Grained Android Permissions

We evaluate whether Android’s fine-grained permissions
are an improvement over a coarser-grained alternative.

Categories. Android permission categories are high-
level functionality groups. Categories are comprised of
multiple permissions, which developers must request in-
dividually. A coarse-grained permission system might
simply have one permission per category, but Android
subdivides each category into multiple finer-grained per-
missions. We find that no application (out of 956) re-
quires all of the permissions in any category except
STORAGE, a category with only one permission. This
demonstrates that coarse-grained permissions at the cat-
egory level would overprivilege all extensions.

Read/Write. Android controls access to data with sep-
arate read and write permissions. For example, ac-
cess to contacts is governed by READ CONTACTS and
WRITE CONTACTS. We find that 149 applications re-
quest one of the contacts permissions, but none requests
both. 10 of 19 applications with calendar access request
both read and write permissions. Text messages are con-
trolled by three primary permissions; only 6 of the 53
applications with text message permissions request all
three. These results demonstrate that separate read and
write permissions reflect application requirements better
than coalesced permissions would.

Location. Location is separated into “fine” and “coarse”
permissions, referring to the precision of the loca-
tion measurement. ACCESS FINE LOCATION gov-
erns GPS location, and cell location is controlled

9

by ACCESS COARSE LOCATION. 358 applications re-
quest at least one of the location permissions; 133 request
only ACCESS COARSE LOCATION. This indicates that
37% of applications that need to know the user’s loca-
tion are satisfied with a “coarse” location metric, which
benefits user privacy.

Future permission systems should consider adopting
similar fine-grained permissions.

4.4.3 Coarse-Grained Android Permissions

Not all of Android’s permissions are fine-grained.
The INTERNET permission lets an application send
HTTP(S) requests to all domains, load any web site into
an embedded browser window (“WebView”), and con-
nect to arbitrary destinations and ports. The granular-
ity of the INTERNET permission is important because
86.6% of free and 65% of paid applications in our large-
scale study use it.

We find that 27 of the 36 Android applications in our
manual review (Section 4.2.2) have the INTERNET per-
mission. Of those, 13 only use the Internet to make
HTTP(S) requests to specific domains. These Android
applications rely on backend servers for content, much
like web applications. A fourteenth application addition-
ally uses the INTERNET permission to support Google
AdSense, which displays advertisements from a single
domain in a WebView.

These results indicate that many applications would
tolerate a limited Internet permission that only permits
HTTP(S) or WebView access to a specific list of do-
mains, similar to what Google Chrome offers extensions.
This hypothetical limited permission would be sufficient
for 52% of the 27 applications that use INTERNET.

5 Reducing User Prompts

Our study in Section 3 demonstrates that almost all ex-
tensions and applications trigger prompts for dangerous
permissions during installation. The high rate of per-
mission warnings makes it unlikely that even an alert,
security-conscious user would pay special attention to an
application with several dangerous privileges.

Possible solutions to this problem depend on the
intended role of permission prompts. If permission
prompts are only intended to inform the user and de-
crease platform liability, then perhaps their presentation
and frequency do not matter. If a prompt is supposed to
warn or alert the user, however, then increasing user at-
tention will improve its efficacy. In order to preserve the
significance of truly important warnings, one possibility
is to de-emphasize or remove lesser warnings.

5.1 Google Chrome

Google Chrome currently presents all permissions
equally. Critical extension privileges (e.g., including a
plug-in) should always be prominently displayed as part
of the installation process, but less significant permis-
sions (e.g., bookmarks) could be omitted from the instal-
lation warning and simply listed on the download page.

Not all Internet access needs to be displayed to users.
Web sites with private information (e.g., financial, com-
mercial, and e-mail sites) use TLS to protect users from
man-in-the-middle attacks. We assume that HTTP-only
sites are not concerned about eavesdropping. If Google
Chrome were to only show warnings for extensions with
access to HTTPS sites, 148 of the 500 most popular ex-
tensions would no longer trigger web access warnings.
102 extensions would no longer prompt a warning at
all, reducing the number of extensions with at least one
warning from 91.4% to 71% of the 500 most popular ex-
tensions. Users would be at risk of man-in-the-middle
attacks on HTTP-only sites, but they already are at risk
of this on their networks.

5.2 Android

Android ranks permissions by threat level, and only Dan-
gerous permissions are displayed to users. However,
there is still great variance within Dangerous permis-
sions. Dangerous permissions let an application perform
actions that cost the user money (e.g., send text mes-
sages), pertain to private information (e.g., location, con-
tacts, and the calendar), and eavesdrop on phone calls.
On the other hand, Dangerous permissions also guard the
ability to connect to paired Bluetooth devices, modify
audio settings, and get the list of currently running ap-
plications. Users may not care about Dangerous permis-
sions that cannot cause direct harm to the user or phone.
De-emphasizing the less-threatening Dangerous permis-
sions could reduce the number of user warnings.
WAKE LOCK and WRITE EXTERNAL STORAGE are

two of the most popular Dangerous permissions, and nei-
ther has a clear implication for users. The WAKE LOCK
permission lets an application perform actions that keep
the phone awake without user interaction. Playing music,
for example, requires this permission. Although the per-
mission could be used to slowly drain the battery, it does
not pose a serious privacy or security threat. 26% of the
956 applications have the WAKE LOCK permission. The
WRITE EXTERNAL STORAGE permission controls ac-
cess to the SD card, which could be used to access other
applications’ files that are on the SD card. However, the
user has no way of differentiating between legitimate and
illegitimate access to the SD card. It seems reasonable
for all applications to store data, and only the developer

10

knows whether to use internal or external storage. 35.7%
of the 956 applications have this Dangerous permission.
INTERNET is the most popular permission. The

higher prevalence of the INTERNET permission in free
applications and past work [5] indicate that free applica-
tions commonly use the Internet to contact advertisers.
Section 4.4.3 suggests enabling applications to request
access to a specific list of web domains. Accordingly,
the Android Market could display a less severe warning
for applications with limited Internet access than for ap-
plications with the full INTERNET. The warning could
further notify the user if a known advertising domain is
included in the specific domain list.

6 Related Work

Google Chrome Extensions. When Barth et al. intro-
duced the Google Chrome extension permission system,
they conducted a motivating analysis of 25 Google Chr-
ome extensions [2]. However, their sample set is too lim-
ited to be definitive. Google employees authored 9 of
the 25 extensions, and the extension platform had only
been public for a few weeks prior to their study. The re-
sults of our large-scale evaluation of Google Chrome ex-
tensions show that their small-scale study overestimated
the prevalence of extension privileges. Guha et al. [8]
performed a concurrent, short study of the permissions
used by Google Chrome extensions, although they do not
study the effect of popularity. We provide a significantly
more detailed discussion of extension privileges.

Android Applications. Barrera et al. [1] analyze the
permissions requested by 1, 100 free Android applica-
tions. They primarily focus on the structure of the per-
mission system; they group applications together using
a neural network and look for patterns in permission
group requests. They note that 62% of the applica-
tions collected in December 2009 use the INTERNET
permission. Significantly more applications in our data
set use the INTERNET permission, which is possibly
due to changes in applications over time. We also pro-
vide data that can be used to evaluate two of their pro-
posals for changes to Android permissions. First, they
suggest that applications should be able to simultane-
ously request multiple permissions with wildcards (e.g.,
android.permission.SMS.*). Our Google Chr-
ome survey shows that developers often use wildcards
to request excessive privileges, and our Android study
shows that the majority of applications do not need ac-
cess to all permissions in a group. Next, they propose
that the INTERNET permission should support specific
domain lists. A manual review finds that 14 of 27 appli-
cations with the INTERNET permission would indeed be
satisfied with access to a list of specific domains.

Researchers at SMobile present a survey of the per-
missions requested by 48, 694 Android applications [18].
They do not state whether their sample set is composed
of free applications, paid applications, or a combination.
They report that 68% of the applications in their sample
set request enough permissions to be considered “sus-
picious.” We similarly find that applications have high
privilege requests. They also report with alarm that 9
applications request access to the BRICK permission,
which can be used to make a phone non-operational.
However, this is a Signature permission; it is only avail-
able to a very small number of applications signed by the
device manufacturer. We find that a surprising number
of applications request Signature and SignatureOrSys-
tem permissions, given that most applications are unable
to actually use these permissions.

Kirin [6] is a tool that evaluates the security of an
Android application. It compares the application’s re-
quested permissions to a set of permission rules. They
propose several rules and test them against 311 appli-
cations. Their rules are specific enough to only flag a
small number of the applications in our set, but we did
not check to see whether the applications are malicious.

User Warnings. We consider whether installation warn-
ings are of value to security-conscious users. Other re-
searchers have examined the best way to visually display
installation permissions to users [17] but not examined
the frequency of prompts in install-time permission sys-
tems. Warning science literature indicates that frequent
exposure to specific warnings, especially if the warnings
do not lead to negative consequences, drastically reduce
the warnings’ effectiveness [11, 15]. Other researchers
have shown that browser warnings for phishing sites and
invalid SSL certificates are ignored by most users [4, 16];
it is possible that even infrequent permission installation
warnings will be ignored.

LUA. Windows users can reduce application privileges
by running Windows as a low-privileged user account
(LUA). While in LUA mode, all applications have re-
duced privileges. When an application wants to perform
a task that requires administrative privileges, Windows
presents the user with a prompt for approval. Unlike
the application permission model discussed in this paper,
only two security modes are available (user or adminis-
trative). Furthermore, in practice, users run in adminis-
trative mode all the time, thereby granting the system’s
full privileges to applications [12].

11

7 Conclusion

This study contributes evidence in support of application
permission systems. Our large-scale analysis of Google
Chrome extensions and Android applications finds that
real applications ask for significantly fewer than the max-
imum set of permissions. Only 14 of 1000 Google Chr-
ome extensions use native code, which is the most dan-
gerous privileges. Approximately 30% of extension de-
velopers restrict their extensions’ web access to a small
set of domains. All Android applications ask for less
than half of the available set of 56 Dangerous permis-
sions, and a majority request less than 4.

These findings indicate that permission systems with
up-front permission declarations have two advantages
over the traditional user permission model: the impact
of a potential third-party vulnerability is greatly reduced
when compared to a full-privilege system, and a num-
ber of applications could be eligible for expedited review.
These results can be extended to time-of-use permission
systems if the system requires developers to declare a set
of maximum permissions.

However, our study shows that users are frequently
presented with requests for dangerous permissions dur-
ing application installation in install-time systems. As
a consequence, installation security warnings may not be
an effective malware prevention tool, even for alert users.
Future work should identify which permission warnings
are useful to users and consider alternate methods of pre-
senting permissions to users.

References
[1] BARRERA, D., KAYACIK, H. G., VAN OORSCHOT, P. C.,

AND SOMAYAJI, A. A Methodology for Empirical Analysis
of Permission-Based Security Models and its Application to An-
droid. In ACM CCS (2010).

[2] BARTH, A., FELT, A. P., SAXENA, P., AND BOODMAN, A.
Protecting Browsers from Extension Vulnerabilities. In NDSS
(2010).

[3] CLULEY, G. Windows Mobile Terdial Trojan makes expensive
phone calls. http://www.sophos.com/
blogs/gc/g/2010/04/10/windows-mobile-terdial-trojan-
expensive-phone-calls/.

[4] EGELMAN, S., CRANOR, L. F., AND HONG, J. You’ve
Been Warned: An Empirical Study of the Effectiveness of Web
Browser Phishing Warnings. In CHI (2008).

[5] ENCK, W., GILBERT, P., CHUN, B., COX, L. P., JUNG,
J., MCDANIEL, P., AND SHETH, A. N. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Moni-
toring on Smartphones. In OSDI (2010).

[6] ENCK, W., ONGTANG, M., AND MCDANIEL, P. D. On
Lightweight Mobile Phone Application Certification. In ACM
CCS (2009).

[7] FELT, A. P. Issue 54006: Security: Extension
history permission does not generate a warning.
http://code.google.com/p/chromium/issues/
detail?id=54006, August 2010.

[8] GUHA, A., FREDRIKSON, M., LIVSHITS, B., AND SWAMY, N.
Verified Security for Browser Extensions. In IEEE Security and
Privacy (2011).

[9] IBRAHIM, S. Universal 1-Click Root App for Android De-
vices. http://androidspin.com/2010/08/10/ universal-1-click-root-
app-for-android-devices/, August 2010.

[10] LIVERANI, R. S., AND FREEMAN, N. Abusing Firefox Exten-
sions. Defcon17, July 2009.

[11] MAGAT, W., VISCUSI, W. K., AND HUBER, J. Consumer pro-
cessing of hazard warning information. Journal of Risk and Un-
certainty (1988).

[12] MOTIEE, S., HAWKEY, K., AND BEZNOSOV, K. Do Windows
Users Follow the Principle of Least Privilege? Investigating User
Account Control Practices. In SOUPS (2010).

[13] MOZILLA ADD-ONS BLOG. The Add-on Review Process and
You. http://blog.mozilla.com/addons/2010/02/ 15/the-add-on-
review-process-and-you.

[14] SERIOT, N. iPhone Privacy. Black Hat DC (2010).

[15] STEWART, D. W., AND MARTIN, I. M. Intended and Unin-
tended Consequences of Warning Messages: A Review and Syn-
thesis of Empirical Research. Journal of Public Policy Marketing
13, 1 (1994).

[16] SUNSHINE, J., EGELMAN, S., ALMUHIMEDI, H., ATRI, N.,
AND CRANOR, L. F. Crying Wolf: An Empirical Study of SSL
Warning Effectiveness. In USENIX Security Symposium (2009).

[17] TAM, J., REEDER, R. W., AND SCHECHTER, S. I’m Allowing
What? Disclosing the authority applications demand of users as
a condition of installation. Tech. Rep. MSR-TR-2010-54, Mi-
crosoft Research, 2010.

[18] VENNON, T., AND STROOP, D. Threat Analysis of the Android
Market. Tech. rep., SMobile Systems, 2010.

[19] WILLISON, S. Understanding the Greasemonkey vulnerability.
http://simonwillison.net/2005/Jul/ 20/vulnerability/.

A Manual Review

Android Applications. Jesus Hates Zombies, Compass, Aquarium
Live Wallpaper, Movies, Mobile Banking, Calorie Counter by Fat-
Secret, Daily Horoscope, Pandora Radio, The Weather Channel, Ad-
vanced Task Killer, Google Sky Map, Barcode Scanner, Facebook for
Android, NFL Mobile Aquarium, Live Wallpaper, weird facts, Google
Maps Screen Crack, screen krack, twidroyd for twitter, touch to talk,
open home, pageonce pro, personal finance, baby esp, gentle alarm,
picsay pro, beautiful widgets, iQuran Pro, Grocery King, Touitor Pre-
mium, MLB.com at Bat 2010, myBackupPro, London Journey, Be-
yondPod Unlock Key, Text to Speech Extended, DocumentsToGo Full

Google Chrome Extensions. Orkut Chrome Extension, Google Sim-
ilar Pages beta (by Google), Proxy Switchy!, AutoPager Chrome,
Send using Gmail (no button), Blog this! (by Google), Fbsof, Di-
igo Web Highlighter and Bookmark, Woot!, Pendule, Inline Search
& Look Up, YouTube Middle-Click Extension, Send to Google Docs,
[Non-English Title], PBTweet+, Search Center, Yahoo Mail Widget for
Google Chrome, Google Reader Compact, Chromed Movilnet, Ubuntu
light-themes scrollbars, Persian Jalali Calender, Intersect, deviantART
Message Notifier, Expand, Castle Age Autoplayer Alpha Patched, Patr
Pats Flickr App, Better HN, Mark the visited links, Chrome Real-
time Search, Gtalk, SpeedyLinks, Slick RSS, Yahoo Avatar, Demo-
tivation.ru ads remover, [Non-English Title], PPTSearch Edu Sites,
Page2RSS, Good Habits, VeryDou, Wikidot Extender, Close Left,
iBood, Facebook Colored, eBay Espana (eBay.es) Busqueda avan-
zada, Keep Last Two Tabs, Google Transliteration Service, Ohio State
University Library Proxy Extension, Add to Google Calendar, Rocky,
Short Youtube

12

