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Abstract
Malicious URLs have been widely used to mount various
cyber attacks including spamming, phishing and mal-
ware. Detection of malicious URLs and identification of
threat types are critical to thwart these attacks. Know-
ing the type of a threat enables estimation of severity
of the attack and helps adopt an effective countermea-
sure. Existing methods typically detect malicious URLs
of a single attack type. In this paper, we propose method
using machine learning to detect malicious URLs of all
the popular attack types and identify the nature of at-
tack a malicious URL attempts to launch. Our method
uses a variety of discriminative features including tex-
tual properties, link structures, webpage contents, DNS
information, and network traffic. Many of these fea-
tures are novel and highly effective. Our experimental
studies with 40,000 benign URLs and 32,000 malicious
URLs obtained from real-life Internet sources show that
our method delivers a superior performance: the accu-
racy was over 98% in detecting malicious URLs and over
93% in identifying attack types. We also report our stud-
ies on the effectiveness of each group of discriminative
features, and discuss their evadability.

1 Introduction

While the World Wide Web has become a killer applica-
tion on the Internet, it has also brought in an immense
risk of cyber attacks. Adversaries have used the Web as
a vehicle to deliver malicious attacks such as phishing,
spamming, and malware infection. For example, phish-
ing typically involves sending an email seemingly from
a trustworthy source to trick people to click a URL (Uni-
form Resource Locator) contained in the email that links
to a counterfeit webpage.

To address Web-based attacks, a great effort has been
directed towards detection of malicious URLs. A com-
mon countermeasure is to use a blacklist of malicious
URLs, which can be constructed from various sources,
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particularly human feedbacks that are highly accurate yet
time-consuming. Blacklisting incurs no false positives,
yet is effective only for known malicious URLs. It can-
not detect unknown malicious URLs. The very nature of
exact match in blacklisting renders it easy to be evaded.

This weakness of blacklisting has been addressed by
anomaly-based detection methods designed to detect un-
known malicious URLs. In these methods, a classifica-
tion model based on discriminative rules or features is
built with either knowledge a priori or through machine
learning. Selection of discriminative rules or features
plays a critical role for the performance of a detector.
A main research effort in malicious URL detection has
focused on selecting highly effective discriminative fea-
tures. Existing methods were designed to detect mali-
cious URLs of a single attack type, such as spamming,
phishing, or malware.

In this paper, we propose a method using machine
learning to detect malicious URLs of all the popular at-
tack types including phishing, spamming and malware
infection, and identify the attack types malicious URLs
attempt to launch. We have adopted a large set of dis-
criminative features related to textual patterns, link struc-
tures, content composition, DNS information, and net-
work traffic. Many of these features are novel and highly
effective. As described later in our experimental stud-
ies, link popularity and certain lexical and DNS features
are highly discriminative in not only detecting malicious
URLs but also identifying attack types. In addition, our
method is robust against known evasion techniques such
as redirection [42], link manipulation [16], and fast-flux
hosting [17].

Identification of attack types is useful since the knowl-
edge of the nature of a potential threat allows us to
take a proper reaction as well as a pertinent and effec-
tive countermeasure against the threat. For example,
we may conveniently ignore spamming but should re-
spond immediately to malware infection. Our exper-
iments on 40,000 benign URLs and 32,000 malicious
URLs obtained from real-life Internet sources show that
our method has achieved an accuracy rate of more than
98% in detecting malicious URLs and an accuracy rate
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of more than 93% in identifying attack types.
This paper has the following major contributions:

• We propose several groups of novel, highly discrim-
inative features that enable our method to deliver
a superior performance and capability on both de-
tection and threat-type identification of malicious
URLs of main attack types including spamming,
phishing, and malware infection. Our method pro-
vides a much larger coverage than existing methods
while maintaining a high accuracy.

• To the best of our knowledge, this is the first study
on classifying multiple types of malicious URLs,
known as a multi-label classification problem, in a
systematic way. Multi-label classification is much
harder than binary detection of malicious URLs
since multi-label learning has to deal with the am-
biguity that an entity may belong to several classes.

The remainder of this paper is organized as follows.
We present the proposed method and the learning algo-
rithms it uses in Section 2, and describe the discrimina-
tive features our method uses in Section 3. Evaluation of
our method with real-life data is reported in Section 4.
We review related work in Section 5, and conclude the
paper in Section 6.

2 Our Framework

2.1 Overview
Our method consists of three stages as shown in Fig-
ure 1: training data collection, supervised learning with
the training data, and malicious URL detection and at-
tack type identification. These stages can operate se-
quentially as in batched learning, or in an interleaving
manner: additional data is collected to incrementally
train the classification models while the models are used
in detection and identification. Interleaving operations
enable our method to adapt and improve continuously
with new data, especially with online learning where the
output of our method is subsequently labeled and used to
train the classification models.

1. Data Collection
3-1. Detection

2. Supervised Leaning
3-2. IdentificationInput: URL

Output: Benign URL Malicious URL, {Type}

Figure 1: The framework of our method.

2.2 Learning Algorithms
The two tasks performed by our method, detecting mali-
cious URLs and identifying attack types, need different

machine learning methods. The first task is a binary clas-
sification problem. The Support Vector Machine (SVM)
is used to detect malicious URLs. The second task is a
multi-label classification problem. Two multi-label clas-
sification methods, (RAkEL [38] and ML-kNN [48]), are
used to identify attack types.

Task1: Support Vector Machine (SVM). SVM is
a widely used machine learning method introduced by
Vapnik et al. [8]. SVM constructs hyperplanes in a high
or infinite dimensional space for classification. Based
on the Structural Risk Maximization theory, SVM finds
the hyperplane that has the largest distance to the nearest
training data points of any class, called functional mar-
gin. Functional margin optimization can be achieved by
maximizing the following equation

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi, xj)

subject to

n∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, 2, ..., n

where αi and αj are coefficients assigned to training
samples xi and xj . K(xi, xj) is a kernel function used
to measure similarity between the two samples. After
specifying the kernel function, SVM computes the co-
efficients which maximize the margin of correct classi-
fication on the training set. C is a regulation parameter
used for tradeoff between training error and margin, and
training accuracy and model complexity.

Task2: RAkEL. and ML-kNN. RAkEL is a high-
performance multi-label learning method that accepts
any multi-label learner as a parameter. RAkEL creates
m random sets of k label combinations, and builds an
ensemble of Label Powerset (LP) [47] classifiers from
each of the random sets. LP is a transformation-based
algorithm that accepts a single-label classifier as a pa-
rameter. It considers each distinct combination of labels
that exists in the training set as a different class value
of a single-label classification task. Ranking of the la-
bels is produced by averaging the zero-one predictions
of each model per considered label. An ensemble voting
process under a threshold t is then employed to make a
decision for the final classification set. We use C4.5 [32]
as the single-label classifier and LP as a parameter of the
multi-label learner.

ML-kNN is derived from the traditional k-Nearest
Neighbor (kNN) algorithm [1]. For each unseen in-
stance, its k nearest neighbors in the training set are first
identified. Based on the statistical information gained
from the label sets of these neighboring instances, max-
imum a posteriori principle is then utilized to determine
the label set for the unseen instance.
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3 Discriminative Features

Our method uses the same set of discriminative features
for both tasks: malicious URL detection and attack type
identification. These features can be classified into six
groups: lexicon, link popularity, webpage content, DNS,
DNS fluxiness, and network traffic. They can effectively
represent the entire multifaceted properties of a mali-
cious URL and are robust to known evasion techniques.

3.1 Lexical Features
Malicious URLs, esp. those for phishing attacks, often
have distinguishable patterns in their URL text. Ten lex-
ical features, listed in Table 1, are used in our method.
Among these lexical features, the average domain/path
token length (delimited by ‘.’, ‘/’, ‘?’, ‘=’, ‘-’, ‘ ’) and
brand name presence were motivated from a study by
McGrath and Gupta [24] that phishing URLs show dif-
ferent lexical patterns. For example, a phishing URL
likely targets a widely trusted brand name for spoofing,
thus contains the brand name. Therefore, we employ a
binary feature to check whether a brand name is con-
tained in the URL tokens but not in its SLD (Second
Level Domain)1.

Table 1: Lexical features (LEX)
No. Feature Type
1 Domain token count Integer
2 Path token count Integer
3 Average domain token length Real
4 Average path token length Real
5 Longest domain token length Integer
6 Longest path token length Integer

7∼9 Spam, phishing and malware SLD hit ratio Real
10 Brand name presence Binary

In our method, the detection model maintains two lists
of URLs: a list of benign URLs and a list of malicious
URLs. The identification model breaks the list of mali-
cious URLs into three lists: spam, phishing, and mal-
ware URL lists. For a URL, our method extracts its
SLD and calculates the ratio of the number that the SLD
matches SLDs in the list of malicious URLs or a list of
specific type of malicious URLs (e.g., spam URL list)
to the number that the SLD matches SLDs in the list of
benign URLs. This ratio is called the malicious or a spe-
cific attack type (e.g., spam) SLD hit ratio feature, which
is actually an a priori probability of the URL to be ma-
licious or of a specific malicious type (e.g., spam) based
on the precompiled URL lists.

Previous methods use URL tokens as the “bag-of-
words” model in which the information of a token’s po-
sition in a URL is lost. By examining a large set of ma-
licious and benign URLs, we observed that the position
of a URL token also plays an important role. SLDs are
relatively hard to forge or manipulate than URL tokens

1Brand names can be taken from the SLDs of the Alexa [2] top 500
site list.

at other positions. Therefore, we discard the widely used
“bag-of-words” approach and adopt several new features
differentiating SLDs from other positions, resulting in
a higher robustness against lexical manipulations by at-
tackers. Lexical features No. 1 to No. 4 in Table 1 are
from previous work. Feature No. 10 is different from
the “bag-of-words” model used in previous work by ex-
cluding the SLD position. The other lexical features in
Table 1 are novel features never used previously.

3.2 Link Popularity Features
One of the most important features used in our method
is “link popularity”, which is estimated by counting the
number of incoming links from other webpages. Link
popularity can be considered as a reputation measure of
a URL. Malicious sites tend to have a small value of link
popularity, whereas many benign sites, especially pop-
ular ones, tend to have a large value of link popularity.
Both link popularity of a URL and link popularity of the
URL’s domain are used in our method. Link popularity
(LPOP) can be obtained from a search engine2. Different
search engines may produce different link popularity due
to different coverage of webpages each has crawled. In
our method, five popular search engines, Altavista,
AllTheWeb, Google, Yahoo!, and Ask, are used to
calculate the link popularity of a URL and the link popu-
larity of its domain, corresponding to LPOP features No.
1 to 10 in Table 2.

One problem in using link popularity is “link-
farming [16]”, a link manipulation that uses a group
of webpages to link together. To address this problem,
we develop five additional LPOP features by exploiting
different link properties between link-manipulated ma-
licious websites and popular benign websites. The first
feature, the distinct domain link ratio, is the ratio of the
number of unique domains to the total number of do-
mains that link to the targeted URL. The second fea-
ture, the max domain link ratio, is the ratio of the max-
imum number of links from a single domain to the total
number of domains that link to the targeted URL. Link-
manipulated malicious URLs tend to be linked many
times with a few domains, resulting in a low score on the
distinct domain link ratio and a high score on the max
domain link ratio. A study by Castillo et al. [4] indi-
cates that spam pages tend to be linked mainly by spam
pages. We believe that a hypothesis to assume that not
only spam pages, but also phishing and malware pages
tend to be linked by phishing and malware pages, re-
spectively, is plausible. Therefore, we develop the last
three features: spam link ratio, phishing link ratio, and
malware link ratio. Each represents the ratio from do-
mains of a specific malicious type that link to the targeted
URL. To measure these three features, we use the mali-
cious URL lists described in Section 3.1. The link pop-
ularity features described in this subsection are all novel

2For example, we can use Yahoo! site explorer to get inlinks of
target URLs.
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features.

Table 2: Link popularity features (LPOP)
No. Feature Type
1∼5 5 LPOPs of the URL Integer
6∼10 5 LPOPs of the domain Integer

11 Distinct domain link ratio Real
12 Max domain link ratio Real

13∼15 Spam, phishing and malware link ratio Real

3.3 Webpage Content Features
Recent development of the dynamic webpage technol-
ogy has been exploited by hackers to inject malicious
code into webpages through importing and thus hiding
exploits in webpage content. Therefore, statistical prop-
erties of client-side code in the Web content can be used
as features to detect malicious webpages. To extract
webpage content features (CONTs), we count the num-
bers of HTML tags, iframes, zero size iframes, lines, and
hyperlinks in the webpage content. We also count the
number for each of the following seven suspicious native
JavaScript functions: escape(), eval(), link(), unescape(),
exec(), link(), and search() functions. As suggested by a
study of Hou et al. [18], these suspicious JavaScript func-
tions are often used by attacks such as cross-site script-
ing and Web-based malware distribution. For example,
unescape() can be used to decode an encoded shellcode
string to obfuscate exploits. The counts of these seven
suspicious JavaScript functions form features No. 6 to
No. 12 in Table 3. The last feature in this table is the
the sum of these function counts, i.e., the total count of
these suspicious JavaScript functions. All the features in
Table 3 are from the previous work [18].

Table 3: Webpage content features (CONT)
No. Feature Type
1 HTML tag count Integer
2 Iframe count Integer
3 Zero size iframe count Integer
4 Line count Integer
5 Hyperlink count Integer

6∼12 Count of each suspicious JavaScript function Integer
13 Total count of suspicious JavaScript functions Integer

The CONTs may not be effective to distinguish phish-
ing websites from benign websites because a phishing
website should have similar content as the authentic web-
site it targets. However, this very nature of being sensi-
tive to one malicious type but insensitive to other mali-
cious types is very much desired in identifying the type
of attack that a malicious URL attempts to launch.

3.4 DNS Features
The DNS features are related to the domain name of
a URL. Malicious websites tend to be hosted by less

reputable service providers. Therefore, the DNS infor-
mation can be used to detect malicious websites. Ra-
machandran et al. [33] showed that a significant portion
of spammers came from a relatively small collection of
autonomous systems. Other types of malicious URLs are
also likely to be hosted by disreputable providers. There-
fore, the Autonomous System Number (ASN) of a do-
main can be used as a DNS feature.

Table 4: DNS features (DNS)
No. Feature Type
1 Resolved IP count Integer
2 Name server count Integer
3 Name server IP count Integer
4 Malicious ASN ratio of resolved IPs Real
5 Malicious ASN ratio of name server IPs Real

All the five DNS features listed in Table 4 are novel
features. The first is the number of IPs resolved for
a URL’s domain. The second is the number of name
servers that serves the domain. The third is the number of
IPs these name servers are associated with. The next two
features are related to ASN. As we have mentioned in
Section 3.1, our method maintains a benign URL list and
a malicious URL list. For each URL in the two lists, we
record its ASNs of resolved IPs and ASNs of the name
servers. For a URL, our method calculates hit counts
for ASNs of its resolved IPs that matches the ASNs in
the malicious URL list. In a similar manner, it also cal-
culates the ASN hit counts using the benign URL list.
Summation of malicious ASN hit counts and summation
of benign ASN hit counts are used to estimate the mali-
cious ASN ratio of resolved IPs, which is used as an a
priori probability for the URL to be hosted by a disrep-
utable service provider based on the precompiled URL
lists. ASNs can be extracted from MaxMind’s database
file [14].

3.5 DNS Fluxiness Features
A newly emerging fast-flux service network (FFSN) es-
tablishes a proxy network to host illegal online services
with a very high availability [17]. FFSNs are increas-
ingly employed by attackers to provide malicious con-
tent such as malware, phishing websites, and spam cam-
paigns. To detect URLs which are served by FFSNs,
we use the discriminative features proposed by Holz et
al. [17], as listed in Table 5.

Table 5: DNS fluxiness features (DNSF)
No. Feature Type
1∼2 φ of NIP , NAS Real
3∼5 φ of NNS , NNSIP , NNSAS Real

We lookup the domain name of a URL and repeat the
DNS lookup after TTL (Time-To-Live value in a DNS
packet) timeout given in the first answer to have consec-
utive lookups of the same domain. Let NIP and NAS be
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the total number of unique IPs and ASNs of each IP, re-
spectively, and NNS , NNSIP , NNSAS be the total num-
ber of unique name servers, name server IPs, and ASNs
of the name server IPs in all DNS lookups. Then, we can
estimate fluxiness using the acquired numbers. For ex-
ample, fluxiness of the resolved IP address is estimated
as follows,

φ = NIP /Nsingle,

where φ is the fluxiness of the domain and Nsingle is the
number of IPs that a single lookup returns. Similarly, all
of the other fluxiness features are estimated.

3.6 Network Features
Attackers may try to hide their websites using multiple
redirections such as iframe redirection and URL short-
ening. Even though also used by benign websites, the
distribution of redirection counts of malicious websites is
different from that of redirection counts of benign web-
sites [31]. Therefore, redirection count can be a useful
feature to detect malicious URLs. In a HTTP packet,
there is a content-length field which is the total length of
the entire HTTP packet. Hackers often set malformed
(negative) content-length in their websites in a buffer
overflow exploit. Therefore, content-length is used as
a network discriminative feature. Benign sites tend to be
more popular with a better service quality than malicious
ones. Web technologies tend to make popular websites
quick to look up and faster to download. In particular,
benign domains tend to have a higher probability to be
cached in a local DNS server than malicious domains,
esp. those employing FFSNs and dynamic DNS. There-
fore, domain lookup time and average download speed
are also used as features to detect malicious URLs. The
network features listed in Table 6 except the third and
fifth features are novel features.

Table 6: Network features (NET)
No. Feature Type
1 Redirection count Integer
2 Downloaded bytes from content-length Real
3 Actual downloaded bytes Real
4 Domain lookup time Real
5 Average download speed Real

4 Evaluation

In this section, we evaluate the performance of our
method for both malicious URL detection and attack type
identification. We also study the effectiveness of differ-
ent groups of features. The main findings of our experi-
ments include:

• Link popularity. Link popularity first used in our
method is highly discriminative for both malicious
URL detection (over 96% accuracy) and attack
type identification (over 84% accuracy). Google’s

search engine was not suitable to estimate link pop-
ularity since it reported just a partial list of link pop-
ularity.

• Link distribution. Malicious URLs are mainly
linked by malicious URLs of the same attack type:
about 56% of malicious URLs were found to be
linked only by the malicious URLs of the same at-
tack type.

• Multi-labels. In our collected malicious URLs,
over 45% belong to multiple types of threat. There-
fore, malicious URLs should be classified with a
multi-label classification method in order to pro-
duce a more accurate result on the nature of attack.

• Identification. Our method has achieved an accu-
racy rate of over 93% in attack type identification. It
is worth mentioning that novel features used in our
method including malicious SLD hit ratio in LEX,
three malicious link ratios in LPOP, two malicious
ASN ratios in DNS were found to be highly effec-
tive in distinguishing different attack types.

4.1 Methodology and Data Sets
Real-life data was collected from various sources to eval-
uate our method:

• Benign URLs. 40,000 benign URLs were collected
from the following two sources as used in previ-
ous work [49, 43, 21, 22]: 1) randomly selected
20,000 URLs from the DMOZ Open Directory
Project [10] (manually submitted by users), 2) ran-
domly selected 20,000 URLs from Yahoo!’s di-
rectory (generated by visiting http://random.
yahoo.com/bin/ryl)3.

• Spam URLs. The spam URLs were acquired from
jwSpamSpy [19] which is known as an e-mail spam
filter for Microsoft Windows. We also used a pub-
licly available Web spam dataset [3].

• Phishing URLs. The phishing URLs were ac-
quired from PhishTank [29], a free community
site where anyone can submit, verify, track and
share phishing data.

• Malware URLs. The malware URLs were obtained
from DNS-BH [11], a project creates and maintains
a list of URLs that are known to be used to propa-
gate malware.

The data set of malicious URLs is simply the union of
the three individual data sets of malicious types. A total
of 32,000 malicious URLs was collected. A malicious
URL may launch multiple types of attack, i.e., belongs
to multiple malicious types. The malicious data sets col-
lected above were marked with only single labels. URLs

3Many URLs from 1) and 2) did not have any sub-path. We adjusted
the ratio of benign URLs with a sub-path to be half of benign URLs.
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of multi-labels were found by querying both McAfee
SiteAdvisor4 [23] and WOT5 (Web of Trust) [41] for
each URL in the malicious URL data set. The two sites
provide reputation of a submitted website URL including
the detailed malicious types it belongs to. Their informa-
tion was relatively accurate, although they had made er-
rors (e.g., SiteAdvisor has incorrectly labeled web-
sites6 and WOT was manipulated by attackers to generate
incorrect labels7). We use (λi) with a single index i to
represent a single type: spam (λ1), phishing (λ2), mal-
ware (λ3). Multi-labels are represented by the set of their
associated indexes, e.g., λ1,3 represents a URL of both
spam and malware. Table 7 shows the resulting distribu-
tion of multi-label URLs, where LSAd and LWOT rep-
resent the results reported by SiteAdvisor and WOT,
respectively, and LBoth denotes their intersection. From
Table 7, about half of the malicious URLs were classified
to be multi-labels: 45% by SiteAdvisor and 46%
by WOT. Comparing the labeling results by both LSAd

and LWOT , 91% of the URLs were labeled consistently
whereas 9% of URLs were labeled inconsistently by the
two sites.

Table 7: The collected data set of multi-labels
Label Attribute LSAd LWOT LBoth

λ1 spam 6020 6432 5835
λ2 phishing 1119 1067 899
λ3 malware 9478 8664 8105
λ1,2 spam, phishing 4076 4261 3860
λ1,3 spam, malware 2391 2541 2183
λ2,3 phishing, malware 4729 4801 4225
λ1,2,3 spam, phishing, malware 2219 2170 2080

Once the URL data sets were built, three crawlers were
used to crawl features from different sources. A web-
page crawler crawled the webpage content features and
the network features by accessing each URL in the data
sets. We implemented a module to the webpage crawler
using the cURL library [9] to detect redirections (includ-
ing URL shortening) and find original URLs automati-
cally. A link popularity crawler crawled the link popular-
ity features from the five search engines, Altavista,
AllTheWeb, Google, Yahoo!, and Ask, for each
URL and collected inlink information. A DNS crawler
crawled and calculated the DNS features and DNS fluxi-
ness features by sending queries to DNS servers.

Two-fold cross validation was performed to evaluate
our method: the URLs in each data set were randomly
split into two groups of equal size: one group was se-
lected as the training set while the other was used as
the testing set. Ten rounds of two-fold cross validation
were used to obtain the performance for both malicious

4The SiteAdvisor is a service to report safety of websites using
a couple of webpage analysis algorithms.

5The WOT is a community-based safe surfing tool that calculates the
reputation of a website through a combination of user ratings and data
from trusted sources.

6http://en.wikipedia.org/wiki/McAfee_SiteAdvisor
7http://mashable.com/2007/12/04/web-of-trust/

URL detection and attack type identification. The SVM-
light [35] software package was used as the support vec-
tor machine implementation in our evaluation.

4.2 Malicious URL Detection Results
The following metrics were used to evaluate the detec-
tion performance: accuracy (ACC) which is the propor-
tion of true results (both true positives and true negatives)
over all data sets; true positive rate (TP, also referred to
as recall) which is the number of the true positive clas-
sifications divided by the number of positive examples;
false positive rate (FP) and false negative rate (FN) which
are defined similarly.

4.2.1 Detection Accuracy

By applying all the discriminative features on the data
sets described in Section 4.1, our malicious URL detec-
tor produced the following results: 98.2% for the ac-
curacy, 98.9% for the true positive rate, 1.1% for the
false positive rate, and 0.8% for the false negative rate.
We also conducted the same experiments using only the
20,000 benign URLs collected from Yahoo!’s direc-
tory. The results were similar: 97.9% for the accuracy,
98.2% for the true positive rate, 0.98% for the false pos-
itive rate, and 1.08% for the false negative rate.

To study the effectiveness of each feature group, we
performed detection using only each individual feature
group. The resulting accuracy and true positive rate are
shown in Figure 2. We can clearly see in this figure that
LPOP is the most effective group of features in detecting
malicious URLs in terms of both detection accuracy and
true positive rate.
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Figure 2: Detection accuracy and true positives for each
group of features.

We also compared the performance of each feature
group on detecting each type of malicious URLs by mix-
ing the corresponding malicious URL data set with the
benign URL data set. The resulting accuracies and true
positive rates are shown in Table 8.

As expected, the lexical features (LEX) are effective
on detecting phishing URLs, but did a poor job to de-
tect spam and malware URLs. This is because the lat-
ter types do not show very different textual patterns as
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Table 8: Detection accuracy and true positive rate (%) of
individual feature groups for each malicious type

Dataset Metric
Feature group

LEX LPOP CONT DNS DNSF NET

Spam
ACC 73.0 97.2 82.8 77.4 87.7 72.1
TP 72.4 97.4 74.2 75.9 86.3 77.4

Phishing
ACC 91.6 98.1 77.3 76.3 71.8 77.2
TP 86.1 95.1 82.8 76.9 70.1 78.2

Malware
ACC 70.3 96.2 86.2 78.6 68.1 73.3
TP 74.5 93.2 88.4 75.1 74.2 78.2

compared with benign URLs. A different sensitivity to a
different malicious type is exactly what we want to dis-
tinguish one malicious type from other malicious types
(phishing from spam and malware for the specific case
of lexical features) in the attack type identification to be
reported in Section 4.3. These partially discriminative
features (effective only for some types of attack) and the
features that are effective for all the malicious types form
the set of discriminative features for our malicious URL
detector.

The link popularity features (LPOP) outperformed all
the other groups of features for detecting any type of
malicious URLs. Table 8 shows that the webpage con-
tent features (CONT) are useful in distinguishing malware
URLs from benign ones. This is because malware URLs
usually have malicious tags or scripts in their Web con-
tent to infect visitors. From Table 8, it seems that the
webpage content features are also effective in detecting
spam and phishing URLs as malicious URLs from a mix-
ture of malicious and benign URLs. That might be par-
tially due to the fact that many spam or phishing URLs
also belonged to malware, as we have seen in Section 4.1.
Note that a URL is claimed to be malicious no matter
which malicious type it is detected to belong to.

From Table 8, the DNS fluxiness features (DNSF) were
effective to detect spam URLs. This should be due to the
fact that FFSNs were widely used by spam campaigns, as
shown by Moore et al. [25]. Malicious network behav-
iors such as redirections using multiple proxies can be
employed by any type of threat. That can explain similar
performance of the network features (NET) for detecting
each type of malicious URLs.

4.2.2 Link Popularity Feature Analysis

In this section, we study the effectiveness of the link
popularity features in detail, and show the effective-
ness of our method for two unfavorable scenarios when
the link popularity features are not effective:1) the case
when malicious websites have high manipulated popu-
larity scores; and 2) the case when newly-setup benign
websites do not have high popularity scores.

First, we studied the distribution of the link popular-
ity for each data set. In our data sets, malicious URLs
had typically much smaller LPOP than benign URLs. A
majority, more precisely 60.35%, of the malicious URLs
had 0 link popularity. On the other hand, only a very

small portion of benign URLs had almost 0 link popular-
ity. This confirms the observation in Section 4.2.1 that
LPOP is effective to differentiate malicious URLs from
benign URLs.

Next we studied the quality of the link populari-
ties retrieved from the five different search engines:
Altavista, AllTheWeb, Google, Yahoo!, and
Ask. The distribution of LPOP for each search engine
over 20,000 benign URLs randomly selected from the
collected 40,000 benign URLs is shown in Figure 3, and
the distribution over the 32,000 malicious URLs is shown
in Figure 4. The x-axis in both figures is the index of the
URLs sorted by the link popularity.
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Figure 3: LPOP of benign URLs for each search engine.
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Figure 4: LPOP of malicious URLs for each search en-
gine.

The larger the gap between benign URLs and ma-
licious URLs a search engine reports, the more accu-
rate that the link popularity is in distinguishing mali-
cious URLs from benign URLs. Google tends to re-
port a lower link popularity for both benign and mali-
cious URLs and thus should produce higher false posi-
tives and lower false negatives. Table 9 shows the mea-
sured metrics for the malicious URL detection using only
LPOP reported by each individual search engine. From
the table, Google yielded high false positives (12.3%)
and low false negatives (2.1%). AllTheWeb showed a
link popularity distribution similar to that of Yahoo!.
They had similar performance on malicious URL detec-
tion. This is not a surprise since AlltheWeb started to
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use Yahoo!’s database since March 20048.
The result using Google was a surprise to us. We ex-

pected that Googlewould report the same, if not higher,
link polarity than other search engines since it should
have more comprehensive information of the Web. It
turned out that Google just reported a partial list of
link popularity, as their official website described9. The
Google Webmaster Tool provides more comprehensive
external link information, but we could not use it since it
is available only for the owner’s website.

Table 9: Detection accuracy, false positives and false
negatives using only LPOP reported by each individual
search engine (%)

Metric AllTheWeb Altavista Ask Google Yahoo!

ACC 95.1 95.6 84.0 85.7 95.9
TP 95.3 96.3 85.7 86.7 95.7
FP 2.7 2.7 8.4 12.3 2.1
FN 2.2 1.6 7.6 2.1 2.1

Unpopular legitimate link classification. From the
results reported above, we can conclude that LPOP is the
most effective discriminative feature for detecting mali-
cious URLs. It outperforms all the other feature groups
by a large margin. However, LPOP alone may be inef-
fective for certain types of URLs, for example, to dis-
tinguish malicious URLs from a group of unpopular or
newly setup benign URLs which also have low LPOP
scores. This is the worst scenario for our malicious URL
detector since the most effective feature, LPOP, is inef-
fective in this case. To conduct a test on the performance
for this worst scenario, we used only the benign and ma-
licious URLs which had zero LPOP to evaluate the per-
formance of our detector. We obtained the following re-
sults on malicious URL detection: 91.2% for the accu-
racy, 4.0% for false positives, and 4.8% for false nega-
tives. The accuracy remains high even under this worst
scenario.

Popularity-manipulated link classification. As de-
scribed in Section 3.2, some malicious URLs have high
LPOP scores because their links are manipulated using a
link farm [16]. We have developed five features, i.e., dis-
tinct domain link ratio, max domain link ratio, spam link
ratio, phishing link ratio, and malware link ratio, to de-
tect link manipulated malicious URLs. To make our de-
tector light-weight and feasible in real-time applications,
we used sampled link information instead of the whole
link information to calculate each of these features. To
evaluate the performance when the links are manipu-
lated, we collected malicious URLs which had high LPOP
scores (LPOP > 10). Among the 32,000 malicious URLs
we collected, only 622 URLs could be selected. Their
distinct domain link ratio and max domain link ratio are
shown against those of benign URLs in Figure 5. This
figure indicates that the popularity-manipulated mali-
cious URLs show a different pattern from those of benign

8AlltheWeb was taken over by Yahoo!.
9http://sites.google.com/site/webmasterhelpforum/

en/faq--crawling--indexing---ranking\#links

URLs. Moreover, about 90% of these malicious URLs
have more than 10% malicious link ratio (spam link ra-
tio, phishing link ratio, and malware link ratio), whereas
about 5% of benign URLs have more than 10% mali-
cious link ratio. About 56% of these malicious URLs
were linked exclusively by malicious URLs of the same
type. Consequently, we obtained 90.03% accuracy in de-
tecting link-manipulated malicious URLs with the afore-
mentioned five features.
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Figure 5: Distinct domain link ratio and max domain link
ratio for benign and malicious URLs.

4.2.3 Error Analysis

In this section, both false positives and negatives are fur-
ther studied to understand why these errors happened in
order to further improve our method.

False positives. A false positive is when a benign
URL is misclassified as malicious. False positives can
be broadly categorized as follows:

• Disreputable URL. A benign URL is likely mis-
classified by our detector if it fits into two or more
of the following three cases: 1) the URL’s domain
has a very low link popularity (LPOP errors), 2) the
URL contains a malicious SLD (LEX errors), and
3) the URL’s domain is hosted by malicious ASNs
(DNS errors). In this case, a benign URL can be
considered as a disreputable URL. More than 90%
of the false positives belonged to the disreputable
case (e.g., 208.43.27.50/˜mike).

• Contentless URL. Some benign URLs had no con-
tent on their webpages. In this case, CONT would
fail (e.g., 222.191.251.167, 1traf.com, and
3gmatrix.cn).

• Brand name URL. Some benign URLs contained a
brand name keyword even they were not related to
the brand domain. These URLs could be misclas-
sified as malicious (e.g., twitterfollower.
wikispaces.com).

• Abnormal token URL. We observed several
benign URLs which had unusual long domain
tokens typically appearing in phishing URLs (e.g.,
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centraldevideoscomhomensmaduros.
blogspot.com).

False negatives. A false negative is when a mali-
cious URL is undetected. Most false negatives were
hosted by popular social networking sites which had a
high link popularity and most URLs they hosted were
benign. Most of the false negative URLs were of spam
or phishing type. They generated features similar to
those of benign URLs. More than 95% of the false
negatives belonged to this case (e.g., blog.libero.
it/matteof97/ and digilander.libero.it/
Malvin92/?). This will be further discussed in Sec-
tion 4.4.

4.3 Attack Type Identification Results

To evaluate the performance of attack type identification,
the following metrics given in [37] for multi-label classi-
fication were used: 1) micro and macro averaged metrics,
and 2) ranking-based metrics with respect to the ground
truth of multi-label data.

Identification metrics. Additional notation is first in-
troduced. Assume that there is an evaluation data set of
multi-label examples (xi, Yi), i = 1, ...m, where xi is
a feature vector, Yi ⊆ L is the set of true labels, and
L = {λj : j = 1...q} is the set of all labels.

• Micro-averaged and macro-averaged metrics.
To evaluate the average performance across multi-
ple categories, we apply two conventional methods:
micro-average and macro-average [45]. The micro-
average gives an equal weight to every data set,
while the macro-average gives an equal weight to
every category, regardless of its frequency. Let tpλ,
tnλ, fpλ, and fnλ denote the number of true pos-
itives, true negatives, false positives, and false neg-
atives, respectively, after evaluating binary classifi-
cation metrics B (accuracy, true positives, etc.) for
a label λ. The micro-averaged and macro-averaged
version of B can be calculated as follows:

Bmicro = B(
M∑
λ=1

tpλ,
M∑
λ=1

tnλ,
M∑
λ=1

fpλ,
M∑
λ=1

fnλ),

Bmacro =
1

M

M∑
λ=1

B(tpλ, tnλ, fpλ, fnλ).

• Ranking-based metrics. Among several ranking-
based metrics, we employ the ranking loss and av-
erage precision for the evaluation. Let ri(λ) denote
the rank predicted by a label ranking method for a
label λ. The most relevant label receives the highest
rank, while the least relevant label receives the low-
est rank. The ranking loss is the number of times
that irrelevant labels are ranked higher than relevant

labels. The ranking loss, denoted as RLoss, is cal-
culated as follows:

Rloss =
1

m

m∑
i=1

1

|Yi||Y i|
|{(λa, λb) : ri(λa) > ri(λb),

(λa, λb) ∈ Yi × Y i}|

where Y i is the complementary set of Yi with re-
spect to L. The average precision, denoted by Pavg ,
is the average fraction of labels ranked above a par-
ticular label λ ∈ Yi which are actually in Yi. It is
calculated as follows:

Pavg =
1

m

m∑
i=1

1

|Yi
|
∑
λ∈Yi

|{λ′ ∈ Yi : ri(λ
′) ≤ ri(λ)}|

ri(λ)
.

Table 10: Multi-label classification results (%)
Label

Averaged Ranking-based
ACC micro TP macro TP Rloss Pavg

LSAd 90.70 87.55 88.51 3.45 96.87
RAkEL LWOT 90.38 88.45 89.59 4.68 93.52

LBoth 92.79 91.23 89.04 2.88 97.66
LSAd 91.34 86.45 87.93 3.42 95.85

ML-kNN LWOT 91.04 88.96 89.77 3.77 96.12
LBoth 93.11 91.02 89.33 2.61 97.85

Identification accuracy. We performed the multi-
label classification by using three label sets, LSAd,
LWOT and LBoth mentioned in Section 4.1. The re-
sults for two different learning algorithms, RAkEL al-
gorithm and ML-kMN, are shown in Table 10, where
micro TP and macro TP are micro-averaged true positives
and macro-averaged true positives, respectively. The fol-
lowing results were obtained: the average accuracy was
92.95%, whereas the average precision of ranking of the
two algorithms was 97.76%. The accuracy on the label
set LBoth was always higher than that on either LSAd or
LWOT . This implies that more accurate label set pro-
duces a more accurate result for identifying attack types.
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Fig. 6 shows effectiveness of each feature group in
identifying attack types. Among the top ten most ef-
fective features, eight are novel features. They are three
SLD hit ratio features in LEX, three malicious link ratios
in LPOP, and two malicious ASN ratios in DNS. From this
figure, even the link popularity features were also rather
effective in distinguishing different attack types. In addi-
tion, no single feature group was highly effective in iden-
tifying attack types: they all yielded an accuracy lower
than 85%. The combination of all the groups of features,
however, yielded a much improved performance.

4.4 Evadability Analysis
Existing methods can be evaded by capable attackers.
Similarly, our features are also evadable to a certain de-
gree. However, it is an improvement if we can raise the
bar of evasion difficulty by either increasing the evasion
cost or decreasing the effectiveness of threat. To study
evadability of our method, we discuss in this subsection
the robustness of our method against known evasions and
also possible evasion tactics.

Robust against known evasions. 1) Redirection: One
possible evasion tactic is to hide the original URL using
multiple redirections (also known as a “drive-by website
attack” such as Iframe redirection) or a URL shortening
service which makes a webpage available under a very
short URL in addition to the original URL. Our method
is robust against this kind of URL hiding and embed-
ding evasions because our webpage crawler can auto-
matically detect redirections and find the original URLs.
2) Link manipulation: As mentioned in Section 4.2.2,
our method is robust against the link manipulation at-
tack (more than 90% of link-manipulated URLs were de-
tected). 3) Fast-flux hosting: The DNSF features used in
our method can detect fast-fluxed domains.

URL obfuscation. If an attacker (or a domain gen-
eration algorithm in malware, e.g., Conficker Worm)
generates a domain name and path tokens with random
length and counts, most statistical features in LEX will be
evaded. Therefore, it is easy to evade the statistical fea-
tures in LEX except our unique feature “malicious SLD
hit ratio” since a plenty of domains have to be registered
to evade the malicious SLD hit ratio. Evading brand
name presence feature is easy but such an evasion will
make a malicious URL less likely to be clicked, result-
ing in a reduced effectiveness of attack. URL obfuscation
using IDN (Internationalized Domain Names) spoofing
can also be used to evade our detector. For exam-
ple, http://www.p&#1072;ypal.com represents
http://www.paypal.com. Such an evasion can be
easily prevented by adding a module to deobfuscate a
URL to find the resulting URL in our webpage crawler.

JavaScript obfuscation. Malicious javascript of-
ten utilizes obfuscation to hide known exploits, embed
redirection URLs, and evade signature-based detection
methods. Particularly, JavaScript obfuscation can make
the webpage crawler mislead webpage content features
(CONT). To extract webpage content features accurately,

the webpage crawler should have an automated deob-
fuscation functionality. The Firefox JavaScript deob-
fuscator add-on10 inspired by “The Ultimate Deobfusca-
tor” [5] can be used in our webpage content crawler as a
JavaScript deobfuscation module.

Social network site. Utilizing social network sites
(e.g., Twitter) to attack can reduce the effectiveness
of LEX, LPOP, DNS, and NET features. A possible solution
against this evasion tactic is to adopt features which can
differentiate hacker’s fake accounts from normal users.
For example, we can use the number of incoming linked
accounts (e.g., “followers” in Twitter) as a feature to
detect faked accounts. Such a feature is still evadable
with more sophisticated attacks which build a fake so-
cial network to link each other. Like the five link ratio
features in LPOP to deal with the link popularity manip-
ulation, similar linked account ratio features can be used
to deal with a fake social network. Other countermea-
sures against social spam and phishing [20] can also be
combined with our detector.

As mentioned in this section, it may cost little to evade
a single feature group. However, evading all the features
in our method would cost much more and also reduce the
effectiveness of attack.

5 Related Work

This section reviews the related work of our method.
They can be classified into two categories depending on
how the classifier is built: machine learning methods
which use machine learning to build classifiers, and other
methods which build classifiers with a priori knowledge.

5.1 Non-machine learning approaches
Blacklisting. One of the most popular approaches is to
build a blacklist to block malicious URLs. Several web-
sites provide blacklists such as jwSpamSpy [19], Phish-
Tank [29], and DNS-BH [11]. Several commercial prod-
ucts construct blacklist using user feedbacks and their
proprietary mechanisms to detect malicious URLs, such
as McAfee’s SiteAdvisor [23], WOT Web of Trust [41],
Trend Micro Web Reputation Query Online System [36],
and Cisco IronPort Web Reputation [7]. URL blacklist-
ing is ineffective for new malicious URLs. The very na-
ture of exact match in URL blacklisting renders it easy to
be evaded. Moreover, it takes time to analyze malicious
URLs and propagate a blacklist to end users. Zhang et
al. [46] proposed a more effective blacklisting approach,
“predictive blacklists”, which uses a relevance ranking
algorithm to estimate the likelihood that an IP address is
malicious.

VM execution. Wang et al. [39] detected drive-
by exploits on the Web by monitoring anomalous state
changes in a Virtual Machine (VM). SpyProxy [26] also
uses a VM-based Web proxy defense to block suspicious

10The Firefox add-on shows JavaScript runs on a webpage, even if
the JavaScript is obfuscated and generated on the fly [28].
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Web content by executing the content in a virtual ma-
chine first. The VM-based approaches detect malicious
webpages with a high accuracy, but only malware ex-
ploiting pages can be detected.

Rule-based anti-phishing. Several rule-based anti-
phishing approaches have been proposed. Zhang et
al. [49] proposed a system to detect phishing URLs with
a weighted sum of 8 features related to content, lexical
and WHOIS data. They used the Google Web search as
a filter for phishing pages. Garera et al. [13] used logis-
tic regression over manually selected features to classify
phishing URLs. The features include heuristics from a
URL such as Google’s page rank features. Xiang and
Hong [43] proposed a hybrid phishing detection method
by discovering inconsistency between a phishing identity
and the corresponding legitimate identity. PhishNet [30]
provides a prediction method for phishing attacks using
known heuristics to identify phishing sites.

5.2 Machine learning-based approaches
Detection of single attack type. Machine learning has
been used in several approaches to classify malicious
URLs. Ntoulas et al. [27] proposed to detect spam
webpages through content analysis. They used site-
dependent heuristics, such as words used in a page or title
and fraction of visible content. Xie et al. [44] developed
a spam signature generation framework called AutoRE
to detect botnet-based spam emails. AutoRE uses URLs
in emails as input and outputs regular expression signa-
tures that can detect botnet spam. Fette et al. [12] used
statistical methods to classify phishing emails. They
used a large publicly available corpus of legitimate and
phishing emails. Their classifiers examine ten differ-
ent features such as the number of URLs in an e-mail,
the number of domains and the number of dots in these
URLs. Provos et al. [31] analyzed the maliciousness of
a large collection of webpages using a machine learning
algorithm as a pre-filter for VM-based analysis. They
adopted content-based features including presence of ob-
fuscated javascript and exploit sites pointing iframes.
Hou et al. [18] proposed a detector of malicious Web
content using machine learning. In particular, we bor-
row several webpage contents features from their fea-
tures. Whittaker et al. [40] proposed a phishing website
classifier to update Google’s phishing blacklist automat-
ically. They used several features obtained from domain
information and page contents.

Detection of multiple attack types. The classifica-
tion model of Ma et al. [21, 22] can detect spam and
phishing URLs. They described a method of URL clas-
sification using statistical methods on lexical and host-
based properties of malicious URLs. Their method de-
tects both spam and phishing but cannot distinguish these
two types of attack.

Existing machine learning-based approaches usually
focus on a single type of malicious behavior. They all
use machine learning to tune their classification models.
Our method is also based on machine learning, but a new

and more powerful and capable classification model is
used. In addition, our method can identify attack types
of malicious URLs. These innovations contribute to the
superior performance and capability of our method.

Other related work. Web spam or spamdexing aims
at gaining an undeservedly high rank from a search
engine by influencing the outcome of the search en-
gine’s ranking algorithms. Link-based ranking algo-
rithms, which our link popularity is similar to, are widely
used by search engines. Link farms are typically used
in Web spam to affect link-based ranking algorithms of
search engines, which can also affect our link popularity.
Researches have proposed methods to detect Web spams
by using propagating trust or distrust through links [15],
detecting bursts of linking activity as a suspicious sig-
nal [34], integrating link and content features [4], or var-
ious link-based features including modified PageRank
scores [6]. Many of their techniques can be borrowed
to thwart evading link popularity features in our detector
through link farms.

6 Conclusion

The Web has become an efficient channel to deliver vari-
ous attacks such as spamming, phishing, and malware.
To thwart these attacks, we have presented a machine
learning method to both detect malicious URLs and iden-
tify attack types. We have presented various types of
discriminative features acquired from lexical, webpage,
DNS, DNS fluxiness, network, and link popularity prop-
erties of the associated URLs. Many of these discrim-
inative features such as link popularity, malicious SLD
hit ratio, malicious link ratios, and malicious ASN ra-
tios are novel and highly effective, as our experiments
found out. SVM was used to detect malicious URLs, and
both RAkEL and ML-kNN were used to identify attack
types. Our experimental results on real-life data showed
that our method is highly effective for both detection and
identification tasks. Our method achieved an accuracy
of over 98% in detecting malicious URLs and an accu-
racy of over 93% in identifying attack types. In addition,
we studied the effectiveness of each group of discrimi-
native features on both detection and identification, and
discussed evadability of the features.
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