
Under the Hood:
Open Source Business Models in Context

Stephen R. Walli
Vice-president, Open Source Development Strategy

Notes: Introduce my background. When I say open source I mean free and open
source software, I understand the difference, and assume you do too. We will talk
about patents at several points, and to be clear, I don’t believe software patents are
particularly useful.

There is [still] huge confusion over the
OSS business model today

Notes: Everyone wants to categorize things. Is it an OSS company? Closed
source? Really a services play or a hardware company? Maybe it’s a hybrid-
OSS company. These are the wrong questions. It ignores the fundamentals of
a business with a value proposition to a customer.

We continue to think OSS is “New” and
“Special”

Notes: The discussion degenerates into political rhetoric and zealotry.
We can’t apply “normal” rules around a business for success because we think we need
new rules. Not unlike the Internet boom-and-bust.
I am talking about business here – not communities, or the value of communities – but
businesses that grow up around the community or are associated with the community. .

This makes our businesses
susceptible to the FUD of larger

organizations and holds back larger
enterprise (customers and vendors

alike) from participating

Economics Works:
OSS communities and businesses
demonstrate the same economic

behaviours as any other human social
endeavour in a marketplace

Notes: We have known how communities and economics worked since You had a
campfire and I wanted to sit beside it. Before the bazaar and the marketplace, I
would argue that that campfire was the first economic transaction. As Bob Young
pointed out, “A community is just a collection of people with something in common –
they don’t have to like each other.”

Understanding the context of OSS in
business will allow us to grow
businesses faster using well

understood business tools practices

Notes: Again: We are not talking about turning our communities
into businesses … but rather when there are businesses around
code communities we understand how that should work.

First let’s talk about standards …

No one comments on standards and
commoditization

Notes: This one fascinates me. We’ve had standards in our industry forever and
no one comments on the commoditization effects of standards.
We hear, “OSS is going to destroy the value of software”, but standards appear to
be “business as usual”.

Standards exist to encourage multiple
implementations

Notes: Standards are about encouraging multiple implementations. As r0ml
recently pointed out, you are giving up features to gain choice of vendor. A
proprietary spec is by definition the opposite. It’s about encouraging things to
attach to the other side of the interface to develop a rich ecosystem of add-on
products.

Don’t confuse de facto technology with
de jure standards

Notes: De jure standards – there’s a process to create, participate, ensure fair
discourse, prevent anti-competitive practices, and reap old work.
It could be a government based organization, an industry or trade organization,
or a consortium of companies. There is a narrowing of focus/expertise as you
travel that spectrum. Standards are a tool to commoditize a segment of a market
to enable the growth of the market overall. I believe standards should be based
on existing practice and experience … and we’ll see why.
De facto technologies are market dominant products. They reduce choice.

Patents exist to protect a single
implementation – by definition they

serve a different need on the economic
spectrum from standards

Notes: It is the same problem as OSS and patents … one is encouraging
multiple products or uses while the other protects a single use.
There are rules in every standards org on how to deal with patents when you
find one in your midst. The new OASIS rules are actually exceptionally good –
talked about why.

Open Source Software is “just software”

Notes: When r0ml and I have discussions around “open source” lately, we often ask
the simplifying question up front. “This would be different from commercial software
how?” It’s not that there aren’t differences, but it gets one away from thinking
everything is different.

Good software is developed by good
software developers – Quality is a

function of community and leadership –
distributed community forces discipline
Notes: Since 1980 I have had the privilege of working with some brilliant software teams.
The best teams all had at least one and generally two completely anal software
disciplinarians that don’t know how not to build software without reading every line of
every checkin, automating the build, doing nightly builds, automating the test
environment, capturing the decisions in some form (email, web pages, and wikis), doing
full config mgmt over version control. etc.

Why are there 90K projects on sourceforge but only a handful of truly successful ones? I
believe the distributed community forces a hard line on the project – be disciplined or die.

There are a number of papers done over the last few years that have demonstrated that
code inspection of ANY kind (formal or informal) finds more bugs than test. .

The software architecture reflects the
componentized, composible, well

defined interfaces of its UNIX heritage

Notes:When we get to Christensen we’ll talk about this some more, but the idea here is that
there is a place for monolithic stacks, but once a marketplace matures and the incumbent
over delivers then componentization takes over. Also: disruptive business models start
when someone takes inexpensive off-the-shelf parts and assembles them into
underperforming solutions compared to the “norm” but these items find a new niche and
begin their own sustained innovation growth as a technology.

UNIX has always been a modular architecture, there are standards around it, and this is
reflected in the software communities that started there.

The ability to build LAMP stacks is very powerful when you’re a startup or when you need a
new product quickly to complement other offerings.

Participation reflects a normal
asymmetric value proposition – you get

more than you give
Notes: It’s not about money. It is about economics. I get more than I give. When I work
on Apache and give back bug reports or bug fixes or new functionality, and I download
the next rev, I get a 100 times more back than I gave.

Marten Mickos recently said: “The early community is willing to trade time to save
money. The late community is willing to trade money to save time.” (LinuxWorld, Feb
2005)

It’s not about altruism. People value their skill sets differently in different contexts: A
writer may be a marcomm/tech writer during the day, helping a child with a school writing
project, teaching an ESL class in the evenings, and writing a sonnet to a loved one. In
every case they’re a writer. In each case they’re valuing their skill set differently. It’s
about the economics at that first campfire level.

The great thing we’ll see (hopefully) is that it also works for company participation.

Open Source Licensing is ultimately what
makes it “Open Source Software”

Notes: I DON’T go into a long discussion about licensing in this talk.
The audience already knows more than is necessary.

It’s not a stack. It’s a network.

Notes: Everyone wants to have the discussion around how “Open Source will
eat it’s way up the stack until software becomes valueless.” Getting away from
the stack metaphor actually allows us to see the opportunities and challenges
better. It gives us flexibility in our thinking.

Customers have a network for their solutions
Vendors have a network for their products

 Business is about matching networks

Notes: Computer people understand networks as a mathematical concept and
immediately seem to grok this metaphor. This discussion worked well at
USENIX. MBAs and lawyers don’t have the same understanding of networks
and don’t necessarily “get it”, based on old presentations I’ve given to them.
(Oddly enough Christensen does use “networks” of products in the first book to
advantage.)

Source
code

Expertise

Programming
Lang. RDBMS

HW

Tools

OS

CRM
Data

App
Data

The enterprise application is actually a
network …

Animation:
• start with source code
• add the other bubbles
• add the data stores
• add all the edges

Notes: Build out the animation. Node size is related to import of decision to enterprise
group. Node size is “arbitrary” – every enterprise weights these decisions differently.
Use the PL/I examples: forced to PL/I twice because that was the value placed by the IT
dept. on IBM history/expertise over the DEC projects.

… and the enterprise application
network isn’t “simple”

Animation:
• start with one
network
• add other blue nets.
• add green nets.
• add all the internetw
edges

Notes:
It’s a network of related
networks. I use the
green to represent an
acquisition.

It’s not a stack – it’s a network.

Hardware

Applications

Tools

RDBMS

App Server

OS

i.e. the “stack” is a view through the network.

Hardware

Apps

Tools

RDBMS

App Server

OS

Notes: When vendors talk about OSS eating it’s way up the stack, they might better be
relating where they see themselves in the food chain. A “stack” is merely an ordered
viewpoint through the network. For example, a chip manufacturer has a very different view
of this “stack” -- invert it! The value is in the hardware! This loosens up the thinking …
fewer restrictions on the way you view the challenges and opportunities.

Animation: 1. Start with left side “stack”. 2. Add the middle split stack. 3. Add the
bubbles. 4. Add the right side network.

Customers develop procurement
“standards” based on the architecture

of their “networks” to simplify the
complexity (i.e. to reduce choice)

Let’s shift gears for a moment to the
vendor network …

Geoff Moore’s Technology Adoption
Life Cycle

Geoffrey Moore, Crossing the Chasm, HarperBusiness, (Revised) 2002

Geoff Moore’s Technology Adoption Life Cycle (circa 1991)

C
ha

sm

Early
Majority

(avoid risk)

Late
Majority

Early Adopters
and the Bleeding

Edge

Main Street

Luddites

To
rn

ad
o

The best “whole”
product wins

Notes: Walk people through the simple version of the Technology Adoption Life Cycle. Talk
about the risk profile in the early majority. Use the B&N and Win2K beta example around
CIOs. The company that wins in the tornado market provides the best “whole” product.

It’s about providing the core value
proposition plus all the complements

you can reasonably provide

whole product = core + complements

The different ways to develop and drive
complements

• “Buy” or “build” and bundle
• Training programs (and train-the-trainer)
• Certifications
• Consulting services
• Publish interfaces to add value to the ecosystem
• Development tools
• Partnerships with other companies
• Hardware appliances

The whole product reflected as core and complements
i.e. the network again from a vendor’s perspective

Core
product

Dev
Tools

Training

Consulting
Services

SW
add-on

HW
Devices

Training
Services

SW
add-on

SW
add-on

Notes: Blue bubble represents a partnership with another company.

Another way to think about this is the
vendor wants to provide as many

complements as they can to their core
product offering, covering as much of
the customer’s solution network as is

feasible to present the best (most
valuable) solution in the customer’s

eyes
Notes: As long as the sum of the revenues across the network is greater than the sum of
the costs/investments, the company remains profitable.

Business is all about matching networks …
Notes: Different vendors
have different product
network pitches,
emphasizing different
aspects of the product
offering – indeed they must
differentiate or look just like
the competition (e.g Redhat
and security, vs. SuSE and
management.)

This is why different
vendors create standards
around nodes they each
might share in their network
while competing on the rest
of the offering network.
This is why a vendor might
get testy when a standard
appears on their core
revenue stream node but
other vendors are happy to
participate in standardizing
a shared complement.

Animate: 1. Start with the enterprise networks. 2.
Add red vendor network. 3. Add blue vendor
network.

From this network view we can apply a
more sophisticated IP strategy

Core
product

Dev
Tools

Training

Consulting
Services

SW
add-on

HW
Devices

Training
Services

SW
add-on

Intellectual Property:
Patents, Copyright, Trade Secrets, and
Trademark
i.e. tools that turn assets into legal property.

Intellectual Assets:
Ideas, Designs, Implementations,
Services, etc.
i.e. What your customer cares about.

Notes: Lawyers are also sticklers for language; they just happen to program in English.
“IP” has a very particular meaning to them. Distinguish between assets and property.
Think about the entire product offering network and what’s core vs. complement – then
think about an asset strategy and how best to use property.

Thinking about the IP tool investment

Core
product

Dev
Tools

Training

Consulting
Services

SW
add-on

HW
Devices

Training
Services

SW
add-on

Copyright

Patent

Trademark

Trade secret

Notes: Discuss lots of ways to “colour” the nodes of the “whole” product. Consider
all of them.

Publishing and other field salting
techniques

Notes: Everyone wants to get patents. VCs push and valuate. Lawyers make money. But
a small company is still lost against the big company portfolios. A patent is merely a ticket
to the negotiation. However, laying down a pattern of “prior art” may help prevent the big
company problem. Salt the fields around certain components in the network. Source code
is just another publication medium. Discussed the (likely apocryphal) example of the IBM
Systems Journal as a publication tactic.

Christensen and the Innovator’s Dilemma

Clayton Christensen, The Innovator’s Dilemma, HarperBusiness Essentials, 2003
Clayton Christensen, The Innovator’s Solution, Harvard Business School Press, 2003

Innovator’s Dilemma
M

at
ur

ity

Time

Minimum Expectation

Maximum Expectation

Notes: A basic walk through the primary thesis of Innovator’s Dilemma.

Dilemma #1
M

at
ur

ity

Time

Minimum Expectation

Maximum Expectation

Notes: It’s not a disruptive innovation; it’s a disruptive business model (per Christensen’s
story about Andy Grove’s observation). Walk through the basic premise using disk
drives, and steel mini-mills, and the retreat up-market. These things are assembled from
off-the-shelf parts and under perform BUT they find their niche then mature into the other
product’s space. Use Linux example as a teaching OS becoming something too
complex to teach BUT it now makes a great business server in scaled out farms.

Dilemma #2
M

at
ur

ity

Time

Minimum Expectation

Maximum Expectation

Notes: When you start delivering faster than your customer can absorb technological
innovation and therefore faster than they’re willing to pay for it, then standards “happen”.
This is the existing practice and experience play in standards. Your customers are too
willing – they want choice. Your competitors are too willing – it’s the thin edge of the
wedge. Think about componentization. Think about the LAMP stack.
Doesn’t work to the left of the red line – it’s too early. (Failed stds are attempted too early.)

Of course it’s more complex than this …
Minicomputers Unix Linux

time

time

PC

Animations: 1. Start with the back axis and minicomputer curve. 2. Add UNIX. 3.
Add Linux. 4. Add the front plane axis and the PC curve.

Notes: See next slide!

Notes for previous slide:
UNIX was about taking out DEC’s dominance in minicomputers.
UNIX in the late 80s was less secure, less robust, less scalable than
any VMS system. It didn’t stop us from buying it (especially in the
face of DEC’s underhanded treatment on 3rd party memory and
disks). And think about this in terms of Microsoft’s emphasis on
TCO, security, maturity, etc.

PCs happened in a different plain of competition. They competed
with non-consumption, i.e. UNIX didn’t loose the desktop to the PC.

Example from my history: 1985 we told the user we could deliver the
latest system with 3 people over 2 years and we could start in a year.
Then asked her about the PC on her credenza that she had hidden
in her budget and with which she was modeling data.

PC evolved to the point of being interesting as departmental servers
(sort of a next generation minicomputer), and then along came linux
as a better replacement for those expensive UNIX boxes.

Prior to the point where they begin to
over deliver, the market leader is often

offering the technology in a tightly
integrated fashion and best delivers to
consumer needs in this space where

the solutions typically are not yet good
enough

Christensen’s Next Great Observation:
Value moves to adjacent nodes in the

network when the node starts to
commoditize

Applying the Open Source and
Standards Business Tools

To buy vs build we add borrow and
share

Notes: Brief intro to where we’re going.
Think IBM and Apache and Linux
Think SAP and SAPDB
Think Sun and the Gnome desktop

Companies are economically rationale
in their community participation

Community participation is a market
conversation with your customer

Notes: The Cluetrain Manifesto by Doc Searles et al. Thesis #1: Markets are
conversations. When IBM joined the Apache community we all laughed. And then
we saw their “real” colours when they sold Websphere. But IBM plays by the rules.
Every Apache user is potentially a Websphere customer. WiX has been a huge
conversation with customers for Microsoft. It’s blogging for programmers.

Sponsor the community and you
“anchor” the conversation

Notes: It’s not about control. It’s about influence.
It’s about setting the rules for the community.
It’s about setting the rules for the conversation.
Think Sun and the JCP. Think IBM and Eclipse
I’ve cynically observed in the past that this is Sun pretending to do a standard
and IBM pretending to do an OSS project but the reality is despite the controls
in place they are having appropriate discussions with their (and each others’)
respective customers.

My Favourite Big Company Examples

Notes: Essentially walk through my favourite examples.
IBM and Apache (develop a complement quickly), Linux (manage the AIX curve,
essentially change the slope of Moore’s curve).
SAP and 100 people times 2 years to develop SAPDB then publish it for free
under the GPL: expand into the middle market by giving away the complement
to avoid the database tax, while salting the fields with the GPL, and then hand
off the community management to MySQL AB.
Sun acquired and developed a lot of accessibility technology, provided the
professional fit and finish to add it to the Gnome desktop, and got an entire
desktop in return.

The Slide

Notes: Talk about WiX, and its success. Talk about the opportunity for Microsoft with
source other than core product code. Talk about some of the war stories. Talk about
the positioning of Shared Source.

 Think of OSS as “just another tool” and
community as “just another customer
engagement” mechanism and it can

become a better way to serve
customers

Notes: Point out I am being deliberately off hand in this statement here.
OSS is a great way to start new businesses – whether you’re building complements to
a core offering, or starting an upstart disruptive business model from “cheap off the
shelf parts”. OSS is an aggressive way to publish and salt the fields around you while
making customers happy and having a conversation with them. Drive your competitors
nuts. It is also NOT a business panacea.

 If we don’t apply “business economic”
models to OSS we fall victim to the
continued “Summer of Love”, Anti-

establishment, “communist manifesto”
political labeling of those businesses

most threatened
Notes: If we don’t get this right,
the brands at the top of the
screen get labeled by the brands
at the bottom of the screen.

 Understanding the context of OSS in
business will allow us to grow faster
using well understood business tools

practices

 Commerce and Politics exists within
the State: THAT economic debate has

been going on since we had
government

Notes: Unfortunately, as long as we look like a political
movement that thinks it’s special, we will get boxed that way.

 Seeing OSS as a business tool as well
as a “movement” rebalances the

conversation

Questions?

stephe@optaros.com
http://stephesblog.blogs.com

