
Interactive Performance Measurement with VNCplay

Nickolai Zeldovich Ramesh Chandra
Computer Science Department

Stanford University

{nickolai, rameshch}@cs.stanford.edu

Abstract

Today many system benchmarks use throughput as a mea-
sure of performance. While throughput is appropriate
for benchmarking server environments, response time is
a better metric for evaluating desktop performance. Cur-
rently, there is a lack of good tools to measure interactive
performance; although several commercial GUI testing
tools exist, they are not designed for performance mea-
surement.

This paper presents VNCplay, a cross-platform tool for
measuring interactive performance of GUI-based systems.
VNCplay records a user’s interactive session with a sys-
tem and replays it multiple times under different system
configurations; interactive response time is evaluated by
comparing the times at which similar screen updates oc-
cur in each of the replayed sessions. Using VNCplay we
studied the effect of processor speed and disk load on in-
teractive performance of Microsoft Windows and Linux.
These experiments show that the same user session can
have widely varying interactive response times in different
environments while maintaining the same total running
time, illustrating that response time is a better measure of
interactive performance than throughput. The experimen-
tal results make a case for a response time measurement
tool like VNCplay.

1 Introduction

Most performance evaluation studies today use through-
put benchmarks to quantify system performance. How-
ever, throughput is not an appropriate performance met-
ric for user desktops. User interface studies [12] have
shown that response time, rather than throughput, is the
right measure of interactive performance. We believe that
the lack of research studies on interactive performance is
due to the lack of tools that measure response time.

In designing VNCplay, we came up with the following
characteristics that a good tool for benchmarking interac-

tive performance should have. First, it should be able to
record an interactive session and replay it multiple times
under different environments, so that the same repeatable
workload can be used to meaningfully compare interac-
tive performance. Second, the tool should be able to ex-
tract a measurement of response time from replayed ses-
sions to quantify the observed performance. Finally, it is
desirable that the tool not be tied to a specific platform or
GUI toolkit, so that researchers can compare the perfor-
mance of various systems.

We developed a tool, called VNCplay, that satisfies the
above criteria. This tool was developed out of a need to
evaluate the interactive performance of the Collective sys-
tem [10, 2]. There are several commercial GUI testing
tools that provide some amount of recording and replay
capability [15, 17, 14]. However, they are mainly intended
for testing and do not replay reliably when the system is
slow. Furthermore, they only support specific toolkits and
do not have a facility for extracting measurements from
the replays.

VNCplay uses the VNC remote display protocol [9] for
recording and replaying sessions. Since VNC servers are
available for many platforms, VNCplay supports a wide
variety of systems. In addition, we developed an analysis
technique to extract useful response time measurements
from the replay sessions. We used VNCplay to evaluate
the effect of processor speed and disk I/O on response
times of interactive applications. This evaluation shows
that throughput benchmarks are not sufficient in measur-
ing interactivity and validates the need for a tool such as
VNCplay.

The rest of the paper describes VNCplay in more de-
tail. A short user’s view of VNCplay is presented in Sec-
tion 2. Section 3 explains the design and implementa-
tion of VNCplay. In Section 4 we demonstrate the use of
VNCplay in evaluating the interactive performance of Mi-
crosoft PowerPoint and OpenOffice Impress over a range
of CPU speeds and I/O loads, as well as evaluating the in-
teractive performance of different Linux disk I/O sched-
ulers. Section 5 describes some ideas for future work.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 189

Related work is discussed in Section 6 and we conclude
in Section 7.

2 User’s View of VNCplay

Using VNCplay to record and replay interactive sessions
is as easy as using a VNC client. To record a session, a
user runs

$ vncplay record server:port trace.vnc

This command brings up a VNC client connected to
the specified server. The user performs the workload to
be recorded, and closes the VNC client at the end of the
workload. In case of the command shown, the user’s
workload is saved into the file trace.vnc. To replay a
recorded workload, the user runs

$ vncplay play server:port trace.vnc out.rfb

The workload from trace.vnc will be replayed against
the specified VNC server, and the entire session output
will be saved into a log file out.rfb for later review or
analysis. A view-only VNC client (one that will not ac-
cept keyboard and mouse input from the user) will be dis-
played while the replay is taking place, to provide the user
with visual feedback. To allow for unattended session re-
play, the password for the VNC server can be saved to a
file and passed to vncplay by specifying the –pwfile option
on the command line.

To obtain interactive performance metrics from re-
played sessions, the user first runs an analysis stage on
the session log files, which takes some time to run (on our
computer it takes approximately as long as replaying each
of the sessions):

$ vncplay analyze out1.rfb ... > analyze.out

The command shown above produces intermediate
analysis results in analyze.out, which can be then used
to generate graphs like the ones presented later in this pa-
per. For example, a cumulative distribution function of
response times can be generated by

$ vncanalyze cdf analyze.out > cdf.out

The resulting cdf.out can be plotted by a tool like gnu-
plot [5].

3 Design and Implementation

VNCplay consists of three components: a recorder, a re-
player, and an analyzer. The recorder and replayer pro-

vide reliable replay of interactive sessions. The analyzer
takes replayed sessions and extracts interactive perfor-
mance metrics from them. All of the components are
based on a modified version of the TightVNC [13] Java
client. The following sections describe some details of
the design and implementation of VNCplay.

3.1 Recording and Playback

Based on our past experience with interactive session re-
play tools, such as [15, 7, 19, 1], we observed that one
of the biggest problems that all of the tools have in com-
mon is correctly replaying mouse clicks. Most tools re-
play each input event, such as a mouse click, at exactly
the same time that it occurred during recording. When re-
playing a session on a slower system, such an approach
is not appropriate, as it can easily lead to mouse clicks
being delivered to the wrong application. For example,
suppose that during recording, the user brings up a win-
dow and clicks on a button in that window. During replay
on a slower system, the window might take a few more
seconds to appear. A purely time-based replay tool would
click on the background image, where the button should
have been, without waiting for the window and button to
appear, resulting in different behavior in the replay than
in the recorded session. This is not acceptable; therefore
VNCplay’s recorder and replayer focus largely on reliable
delivery of mouse events. Section 5 discusses reliable re-
play of sessions with both keyboard and mouse input.

The VNC recorder acts like a normal VNC client, ex-
cept that it records the user’s activity into a VNC replay
log, such as the one shown in Figure 1. The log con-
tains input events (mouse clicks and movements, and key
presses) along with timestamps of when these events oc-
curred. For each mouse click event, a snapshot of the
screen is taken by the recorder and written to the replay
log. These screen snapshots will enable the VNC replayer
to reliably deliver the associated mouse click events.

During playback, the replayer connects to a VNC server
as a client, and reads events from the VNC replay log.
Events from the replay log are processed according to
their timestamps; input events such as key presses and
mouse movements are sent to the VNC server directly. For
mouse clicks, the VNC replayer waits for the screen im-
age to match the corresponding screen snapshot in the re-
play log before sending the mouse click event. The screen
snapshot captures the visual state of the system when the
user clicked the mouse during recording. By waiting for
the screen image to match the snapshot, we ensure that the
system has reached the same state during replay as during
recording, at which time the mouse click can be safely
delivered.

The replayer records all of the screen updates received
from the server during replay into a log file [8] for later

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association190

OK

Message

A
Keypress Mouse Click

Event

Time 500 msec 800 msec

. . .

. . .
Keypress

B

100 msec

Mouse Motion Screen Snapshot

200 msec0 msec

Figure 1: Example of a replay log used to record and play back VNC sessions. Keys ”A” and ”B” were pressed at 0
and 100 msec respectively, the mouse cursor was moved at 200 msec, a screen snapshot was taken at 500 msec, and a
mouse click happened at 800 msec.

analysis or debugging. This allows the analysis of the re-
played session to be performed at a later time offline, as it
can be computationally intensive.

3.2 Reliable Playback

To reliably replay the same session multiple times, the
system must behave repeatably – that is, at each replay,
it should start from the same state, and given the same in-
put, it should provide the same output. In working with
VNCplay, we have found that complex desktop environ-
ments, such as Windows or Linux, are not fully deter-
ministic from the point of view of VNC. This section de-
scribes some of the problems we encountered in achieving
reliable session playback, and workarounds we have im-
plemented to address them.

We found that a snapshot of the entire screen is often
difficult to match during replay; non-deterministic ele-
ments like the system clock or tooltips are usually dif-
ferent between recording and replay, and get in the way of
perfect reproducibility. VNCplay uses screen snapshots to
ensure that mouse clicks are delivered to the same UI ele-
ment during replay as during recording. For this purpose,
we have found that it suffices to take a snapshot of just the
screen area around the mouse cursor. For example, if dur-
ing recording the user clicks on an “OK” button, we only
need to take a snapshot of the button to ensure that we
click on it correctly during replay. In our current imple-
mentation, we use a square area of about 10 pixels by 10
pixels around the cursor for screen snapshots. This sig-
nificantly improves VNCplay’s ability to reliably replay
sessions, by avoiding non-deterministic tooltips and other
changing screen elements.

VNCplay attempts to deliver mouse click events reli-
ably during playback, but other events, such as mouse mo-
tion, are simply replayed at the pace at which they were
recorded. This resulted in some surprising behavior in a
situation where mouse motion does matter. Some GUI
elements, such as menus, change appearance when the

mouse is located over them – for example, the menu item
that the mouse is pointing to might be highlighted. When
a menu is slow to open, VNCplay will move the mouse
cursor to where it expects the menu item to appear, before
the menu item actually appears on the screen. As it turns
out, in Windows, menu items “notice” that the mouse is
pointing to them and highlight themselves only when the
mouse moves. Thus, if the mouse is already pointing to a
menu item by the time the menu item is drawn, the menu
item will fail to notice that it should be highlighted. In
turn, VNCplay will be unable to match the screen snap-
shot taken during recording, which shows a highlighted
menu item, and replay will stall. To fix this problem,
the replayer wiggles the mouse cursor by one pixel while
waiting for a screen snapshot to match. This triggers “on-
mouse-motion” callbacks in such GUI elements, allowing
VNCplay to proceed with playback.

VNC is a very simple remote frame buffer protocol, in
which the server provides periodic screen updates to the
client at arbitrary intervals; it is up to the server to decide
when a screen update should be sent to the client. The
VNC protocol provides a kind of “eventual consistency”
guarantee: when an image appears on the server’s screen
and stays there, a screen update containing that image will
eventually be sent to the client. In particular, consider the
effect of this remote frame buffer model on the updates
seen by a VNC client during the rendering of a complex
user interface. A VNC client might receive a screen up-
date for every intermediate step of rendering the screen
image, such as the steps shown in Figure 2, or it might
only see one screen update representing the final state –
such as step 3 in the figure.

This behavior of VNC screen updates complicates the
process of taking a screen snapshot in VNCplay, because
a screen snapshot is something that we expect to see each
and every time we replay the recorded session. If the
recorder takes a snapshot using an intermediate screen
update, during replay the VNC server might not send us

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 191

OK

MessageMessage

(2)(1) (3)

Figure 2: Three consecutive screen updates, as a dialog box is being rendered, that could be combined by the VNC
server. VNC quiescing ensures that only the last screen update in such a sequence is used for a screen snapshot.

the same intermediate screen update, instead choosing to
send only the final state and thereby preventing the re-
player from matching the screen snapshot. For example,
if we take a screen snapshot using step 1 or 2 in Figure 2
during recording, the server may choose to only send us
the third screen update from the figure, preventing the re-
player from successfully matching the screen snapshot.
This means that if replay is to be reliable, screen snap-
shots taken by the VNC recorder should not be intermedi-
ate screen states.

To get around the problem of intermediate screen states,
we implement VNC protocol quiescing during recording.
When the recorder decides to take a screen snapshot, it
temporarily blocks input events from being sent to the
VNC server, and waits a short period of time for the sys-
tem to process all prior user input and come to some fi-
nal state; in other words, quiesce. After the screen has
quiesced, the recorder takes a screen snapshot, and any
blocked input events are sent to the VNC server. This
technique produces screen snapshots which can be reli-
ably observed during playback, and allows for robust re-
play of sessions. We have measured the time required for
the operating system and the VNC server to quiesce un-
der workloads such as a user using Microsoft PowerPoint
or Word. On a 100 Mbps local area network, the VNC
screen image quiesces within 100 milliseconds; VNCplay
conservatively waits for 150 milliseconds before taking a
screen snapshot.

3.3 Performance Analysis

The main metric that we wish to obtain from the interac-
tive replay experiments is the response time for each input
event. We implemented an analyzer that compares a set of
replayed sessions and extracts interactive response times
for various input events.

The analyzer looks for similar screen updates between
the replayed sessions; for example, if the user opens a
menu in the recorded session, the analyzer would find the
times at which the menu opened in the different replays.

For each matching screen update, it finds the nearest pre-
ceeding input event in all of the sessions, and assumes
that this input event caused the screen update. The time
difference between the screen update and the input event
in each session is taken as the interactive response time
for that input event in that session.

To make the analyzer run in acceptable space and time,
we had to make a few optimizations. First, the resolution
of all screen updates is scaled down (currently by a fac-
tor of four in each dimension). This reduces the size of
each screen update by a factor of 16, without impacting
the accuracy of screen matching – the features we want
to match are larger than 4 pixels. Next, screen updates
that happen at the same time are coalesced, reducing the
number of screen updates that need to be scanned. Lastly,
only significant screen updates are analyzed to find cor-
responding matches – currently the threshold we use is
at least 2% pixel difference from the previous analyzed
update. This optimization prevents the analyzer from an-
alyzing periods of little or no activity (for example, only
mouse movement). As a result of these optimizations, the
analyzer can compare two typical interactive sessions on
a 2.4GHz Pentium IV computer with 1GB of memory in
about the same time it takes to replay the sessions.

4 Evaluation

This section describes our experience using VNCplay to
evaluate interactive performance of Microsoft Windows
and Linux. We subject these systems to various workloads
and compare the interactive performance under these sce-
narios.

We performed four sets of experiments. The first two
experiments measure effect of processor speed and disk
I/O on interactive performance. The third experiment
demonstrates that VNCplay can reliably replay interactive
sessions over a wide range of system response times by
running workloads on a system with an extremely slow
disk, which increases the total runtime by a factor of 10.
Finally, the fourth experiment shows that we can measure

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association192

interactive performance of a conventional Linux machine
without the use of VMware, by evaluating the interac-
tive performance effects of different disk I/O schedulers
in Linux 2.6.

For the first three experiments, we used VMware’s
GSX Server [16] to run the system to be measured.
VMware simplifies the task of making an identically-
configured system for each experimental run. It also pro-
vides an efficient and platform-independent VNC server
that is connected to the virtual machine’s console. These
experiments were done on a Thinkpad T42p laptop with
a 2.0 GHz Pentium M processor, 1GB of memory and a
7200rpm 60GB hard drive.

For experiments with VMware virtual machines, we
used the VNC recorder to record a user session in a vir-
tual machine containing Microsoft Windows XP and Mi-
crosoft Office 2003, and another virtual machine contain-
ing Fedora Core 1 Linux and OpenOffice. Both sessions
lasted about 6 minutes and consisted of a user creating a
presentation, either in PowerPoint or OpenOffice Impress.
These sessions was replayed in a variety of environments
and the resulting session logs analyzed for interactive per-
formance.

4.1 Effect of Processor Speed

We used the Enhanced Speedstep capabilities of the Pen-
tium M processor to vary the processor speed from 300
MHz to 2.0 GHz and replayed both the PowerPoint and
OpenOffice sessions in each of these scenarios. A point
to note here is that the Pentium M processor running at
a reduced speed does not accurately simulate the perfor-
mance of an older processor that normally runs at that
speed. This is because other characteristics of the pro-
cessor, such as cache size and memory bus speed, remain
unchanged.

Figures 3 and 4 show the total running time of the
PowerPoint and OpenOffice sessions for various proces-
sor speeds. The running time stays more or less the same,
with the difference between fastest and slowest times be-
ing less than 1%.

However, the interactive response times of individual
events are very different for different processor speeds.
Figures 5 and 6 show a CDF plot of the response times
for sessions replayed under two different configurations:
a simulated 300 MHz system and a 2.0 GHz system. The
CDF plot shows the fraction of time that the system’s re-
sponse to user input was within a given value. For in-
stance, a point with an x-axis value of 1 second and y-axis
value of 90% would indicate that 90% of the time, the
interactive response time was within 1 second.

These figures clearly show that both PowerPoint and
OpenOffice running at 300 MHz respond much slower
than running at 2.0 GHz, and a user would find it to be sig-

 200

 250

 300

 350

 400

 450

 500

 200 400 600 800 1000 1200 1400 1600 1800 2000

T
ot

al
 R

un
tim

e
(s

ec
on

ds
)

CPU Frequency (MHz)

Figure 3: Total running time of a Microsoft PowerPoint
session at various processor speeds

 200

 250

 300

 350

 400

 450

 500

 200 400 600 800 1000 1200 1400 1600 1800 2000

T
ot

al
 R

un
tim

e
(s

ec
on

ds
)

CPU Frequency (MHz)

Figure 4: Total running time of a Linux OpenOffice ses-
sion at various processor speeds

nificantly sluggish. For example, in the Linux OpenOffice
environment the response time at the 40th percentile when
running at 300 MHz is about five times the response time
as when running at 2.0 GHz. The slowdown is further il-
lustrated by Figures 7 and 8. These figures show the ratio
of response times of events in OpenOffice and PowerPoint
running at 300 MHz, to the response times of the same
events while running at 2.0 GHz. The OpenOffice plot
shows that most of the events are slowed down by a factor
of two to factor of five, while for PowerPoint the slow-
down is much more modest. This shows that OpenOffice
running under Linux requires more CPU resources than
PowerPoint under Windows XP.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 193

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

P
er

ce
nt

ag
e

of
 R

es
po

ns
e

T
im

es

Response Time (msec)

2.0 GHz
300 MHz

Figure 5: CDF plot of interactive response times for Mi-
crosoft PowerPoint under different conditions: on a 2.0
GHz machine and on a simulated 300 MHz machine.
Each line shows the fraction of interactive response times
(vertical axis) that are within a certain value (horizontal
axis).

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

P
er

ce
nt

ag
e

of
 R

es
po

ns
e

T
im

es

Response Time (msec)

2.0 GHz
300 MHz

Figure 6: CDF plot of interactive response times for Linux
OpenOffice under different conditions: on a 2.0 GHz ma-
chine and on a simulated 300 MHz machine. Each line
shows the fraction of interactive response times (vertical
axis) that are within a certain value (horizontal axis).

Note that inspite of the significant differences in re-
sponse times between the 300 MHz and the 2.0 GHz runs,
the total run time is the same in both OpenOffice and Pow-
erPoint. This is because the interactive sessions consist
of considerable amount of idle time between events (i.e.,
user think time). The extra latency in the 300 MHz ses-

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 e
ve

nt
s

Ratio of Response Times

Figure 7: Histogram of the ratio of interactive response
times for Linux OpenOffice on a simulated 300 MHz ma-
chine and a 2.0 GHz machine.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10 20 30 40 50 60

F
ra

ct
io

n
of

 e
ve

nt
s

Ratio of Response Times

Figure 8: Histogram of the ratio of interactive response
times for Microsoft PowerPoint on a simulated 300 MHz
machine and a 2.0 GHz machine.

sions is absorbed by this idle time, leaving the total run-
ning time unchanged. This clearly demonstrates that total
run time (and hence throughput benchmarks) are not ap-
propriate for studying interactive responsiveness of sys-
tems and makes a case for tools like VNCplay.

To compare across a range of processor speeeds, we
plot the 25th, 50th, and 75th percentile response time la-
tencies at various processor speeds in Figures 9 and 10.
From these figures, we see that there is a minimum pro-
cessor speed (between 300 MHz and 600 MHz) below
which the interactive performance of office workloads de-

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association194

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 200 400 600 800 1000 1200 1400 1600 1800 2000

25
th

/5
0t

h/
75

th
 P

er
ce

nt
ile

 R
es

po
ns

e
T

im
e

(m
se

c)

CPU Frequency (MHz)

Figure 9: 25th/50th/75th percentiles of the interactive
event latencies for Microsoft PowerPoint at various pro-
cessor speeds

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 200 400 600 800 1000 1200 1400 1600 1800 2000

25
th

/5
0t

h/
75

th
 P

er
ce

nt
ile

 R
es

po
ns

e
T

im
e

(m
se

c)

CPU Frequency (MHz)

Figure 10: 25th/50th/75th percentiles of the interactive
event latencies for Linux OpenOffice at various processor
speeds

grades rapidly. Increases in processor speed beyond this
point provide a gradually diminishing increase in returns,
as is to be expected.

4.2 Effect of Disk I/O

We measure the effect of disk I/O on the interactive per-
formance of Microsoft Windows and Linux systems by
injecting background disk activity and replaying the Pow-
erPoint and OpenOffice sessions. We wrote a small util-
ity that performs background disk I/O at a specified rate.

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100

T
ot

al
 R

un
tim

e
(s

ec
on

ds
)

Disk IO rate

Figure 11: Total running time of the PowerPoint session
at various disk I/O rates

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100

T
ot

al
 R

un
tim

e
(s

ec
on

ds
)

Disk IO rate

Figure 12: Total running time of the OpenOffice session
at various disk I/O rates

Each disk I/O is a 32 KB read from the disk.
Figures 11 and 12 show the total run times for various

disk I/O rates. As in the previous experiment, the dif-
ferences in total run times are very small. In Figures 13
and 14 we can see the distribution of interactive response
times in two sessions: one with no extra background disk
activity and the other with a rate of 100 disk I/Os per sec-
ond. The response times for the latter session are higher
than the ones in the former session. Although the interac-
tive response times of the system are noticeably different
in the two cases, the total runtime remains the same, un-
derscoring the need for an interactive performance mea-
surement tool like VNCplay.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 195

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

P
er

ce
nt

ag
e

of
 R

es
po

ns
e

T
im

es

Response Time (msec)

2.0 GHz, no additional disk IO
2.0 GHz with 100 disk IOs/sec

Figure 13: CDF plot of interactive response times for Mi-
crosoft PowerPoint under different conditions: on a 2.0
GHz machine with no additional disk IO and on the same
machine experiencing 100 additional disk IOs per second.
Each line shows the fraction of interactive response times
(vertical axis) that are within a certain value (horizontal
axis).

4.3 Reliable Session Playback

To verify that our tools can replay interactive sessions
in extreme environments, we simulated an environment
with an extremely slow disk subsystem. In particular, we
moved the virtual disks of our experimental virtual ma-
chine onto an NFS file server connected by a simulated 1.5
Mbps down / 384 Kbps up DSL network link with 40ms
round-trip latency. We then replayed a PowerPoint ses-
sion and a similar Word session on this virtual machine.
Although the total running time of the sessions increased
from 6 minutes to approximately an hour, the sessions
nonetheless completed successfully. This suggests that
our replay mechanism is robust against large variations
in system response time.

4.4 Replay without VMware

In the above experiments, we used VMware to run the
system to be measured. In some experiments this might
not be appropriate and the system might need to run on
physical hardware. In this section, we demonstrate the
use of VNCplay in one such scenario: measurement of the
effect of different linux disk I/O schedulers on interactive
performance. This experiment needs to be performed on
physical hardware since VMware’s high overhead for disk
I/O can bias the experimental results.

The test machine in this case was a 2.2GHz Xeon ma-

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

P
er

ce
nt

ag
e

of
 R

es
po

ns
e

T
im

es

Response Time (msec)

2.0 GHz, no additional disk IO
2.0 GHz with 100 disk IOs/sec

Figure 14: CDF plot of interactive response times for
Linux OpenOffice under different conditions: on a 2.0
GHz machine with no additional disk IO and on the same
machine experiencing 100 additional disk IOs per second.
Each line shows the fraction of interactive response times
(vertical axis) that are within a certain value (horizontal
axis).

chine with 4GB of memory, running Fedora Core 3. The
system was configured to run a standard graphical login
session on a VNC server for the purpose of this experi-
ment. For each replay session, a test user account was cre-
ated from scratch and the machine was rebooted to clear
the buffer cache. This ensures that the test machine is
brought back to the same state at the beginning of each
experimental run.

For this experiment, we recorded a user session last-
ing about 8 minutes. This consisted of a user creating a
simple presentation in OpenOffice Impress, developing a
small program in the KDevelop integrated development
environment, and changing his desktop background. The
Linux system was configured with a different I/O sched-
uler on each experiment run, and we injected heavy back-
ground disk activity. The session was replayed to analyze
interactive performance. We tested the anticipatory, dead-
line, cfq, and noop schedulers that are present in the Linux
2.6 kernel.

Scheduler Total Runtime (min)
anticipatory 14.1

cfq 7.7
deadline 7.5

noop 7.4

Figure 15: Total running time of the user session with
various I/O schedulers

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association196

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

P
er

ce
nt

ag
e

of
 R

es
po

ns
e

T
im

es

Response Time (msec)

noop scheduler
anticipatory scheduler

cfq scheduler
deadline scheduler

Figure 16: CDF plot of interactive response times for a
desktop Linux workload using different disk I/O sched-
ulers and a heavy background disk I/O load.

Figure 15 shows the total runtime, and Figure 16 shows
the CDF plot of response times for sessions replayed un-
der the various schedulers. As these figures illustrate, the
anticipatory disk scheduler has the worst interactive per-
formance under heavy disk load. This can be easily ex-
plained by the anticipatory scheduling algorithm. After
having serviced a disk request from a process, the antici-
patory scheduler waits for a short period of time for sub-
sequent requests from the same process; any disk requests
so received are given high priority. Thus this algorithm
favors disk requests from background process with heavy
disk activity, and hurts the performance of interactive pro-
cesses.

From the results of our evaluation, we observe that la-
tency measurements rather than total runtime are an ap-
propriate metric of interactive performance. We also see
that VNCplay can robustly measure interactive latency
over a wide range of scenarios, including various plat-
forms such as Microsoft Windows and Linux, and wide
variations in system response time.

5 Future Work

There are a few areas in which our current recorder and
replayer fall short. Our current implementation does not
attempt to properly synchronize keyboard input events. To
make session replay robust across a wide range of work-
loads, we have worked around the problem by explicitly
inserting screen snapshots before keyboard input. This is
done by making additional mouse clicks in the application
before any keyboard input is sent.

Time-sensitive UI elements are another shortcoming of

our system we hope to address in the future. For instance,
Windows makes use of sub-menus that automatically ex-
pand when the mouse cursor hovers over a menu item for
some period of time. The VNC replayer does not wait for
the sub-menu item to appear before proceeding with the
replay, and thus can sometimes go astray when replay-
ing in a slow environment. In the current system, we ex-
plicitly click on each menu item, even if it has already
expanded automatically, to ensure that session can be re-
played reliably.

We are exploring the following idea to learn dependen-
cies between input events (both keyboard and mouse) and
output events from many replay sessions. After record-
ing an interactive session on a baseline system, we replay
the same workload on the baseline system with slight tim-
ing variations in the input. Using the runs that were suc-
cessful, VNCplay learns which output events must always
happen before an input event is sent, and which ones are
irrelevant for the purpose of dependencies. We believe
that this information can be used to make replay very ro-
bust.

An alternative approach to handling keyboard input is
to use a mouse-driven keyboard input tool like the Char-
acter Map in Windows.

6 Related Work

Industry benchmarks such as Winbench and Win-
stone [18] measure the time to complete a fixed workload,
but do not indicate how responsive the system is to user
input.

Several tools available today for replaying interactive
workloads are toolkit-specific [15, 17, 19, 14, 1]. In con-
trast, VNCplay is toolkit- and platform-agnostic. Most of
the above tools are intended for GUI testing and require
the user to manually insert delay statements for correct
replay on slower systems. In addition, to the best of our
knowledge, none of them provide response time measure-
ments for the replayed sessions. VNCplay provides such
measurements and can also be used to perform GUI test-
ing and task automation similar to the tools mentioned
above.

Interest in the research community on quantifying in-
teractive performance has been relatively recent. Endo et.
al. [4, 3] make a case for using latency as a measure for
interactive performance. Recent work on measuring thin
client systems [11, 6] uses response time as a measure of
performance of thin client systems. However, there is no
general toolkit for measuring interactive response times,
and we developed VNCplay to fill this need.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 197

7 Conclusions

This paper presents a tool for reliably replaying interac-
tive user sessions by correlating screen updates with user
input while recording and obeying this ordering during re-
play. The interactive performance of the system in each of
the replayed sessions is analyzed by comparing the times-
tamps of matching screen updates across sessions. Our
evaluation of the tool suggests that it is useful for measur-
ing interactive performance of real systems.

8 Availability

The toolkit described in this paper is available for down-
load at:

http://suif.stanford.edu/vncplay/

9 Acknowledgements

This material is based upon work supported in part by the
National Science Foundation under Grant No. 0121481.
We thank Constantine Sapuntzakis and Monica Lam for
their input during the design and implementation of the
VNCplay tool.

References
[1] AutoIt version 3 home page. http://www.

autoitscript.com/autoit3/.

[2] CHANDRA, R., ZELDOVICH, N., SAPUNTZAKIS, C.,
AND LAM, M. S. The Collective: A cache-based system
management architecture. In Proceedings of 2nd USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI) (to appear).

[3] ENDO, Y., AND SELTZER, M. Improving interactive per-
formance using TIPME. In Proceedings of the 2000 ACM
SIGMETRICS international conference on Measurement
and modeling of computer systems (2000), pp. 240–251.

[4] ENDO, Y., WANG, Z., CHEN, B., AND SELTZER, M. Us-
ing latency to evaluate interactive system performance. In
Proceedings of the 1996 Symposium on Operating System
Design and Implementation (October 1996).

[5] gnuplot homepage. http://www.gnuplot.info/.

[6] NIEH, S. J. Y. J., AND NOVIK, N. Measuring thin-client
performance using slow-motion benchmarking. In Pro-
ceedings of the 2001 USENIX Annual Technical Confer-
ence (June 2001).

[7] Scriptable VNC session control. http://cyberelk.
net/tim/rfbplaymacro/.

[8] RFB proxy. http://cyberelk.net/tim/
rfbproxy/.

[9] RICHARDSON, T., STAFFORD-FRASER, Q., WOOD,
K. R., AND HOPPER, A. Virtual network computing.
IEEE Internet Computing 2, 1 (January/February 1998),
33–38.

[10] SAPUNTZAKIS, C., CHANDRA, R., PFAFF, B., CHOW,
J., LAM, M., AND ROSENBLUM, M. Optimizing the mi-
gration of virtual computers. In Proceedings of the Fifth
Symposium on Operating Systems Design and Implemen-
tation (December 2002).

[11] SCHMIDT, B. K., LAM, M. S., AND NORTHCUTT, J. D.
The interactive performance of SLIM: a stateless, thin-
client architecture. In Proceedings of the 17th ACM Sym-
posium on Operating System Principles (December 1999).

[12] SCHNEIDERMAN, B. Designing the User Interface:
Strategies for Effective Human-Computer Interaction,
third ed. Addison Wesley Longman, 1998.

[13] TightVNC web page. http://www.tightvnc.com/.

[14] Sun workshop visual replay. http://www.atnf.
csiro.au/computing/software/sol2docs/
manuals/visual/user_guide/Replay.html.

[15] Rational VisualTest. http://www.ibm.com/
software/awdtools/tester/robot/.

[16] VMware GSX server. http://www.vmware.com/
products/server/gsx_features.html.

[17] Mercury WinRunner. http://www.mercury.
com/us/products/quality-center/
functional-testing/winrunner/.

[18] Business Winstone. http://www.veritest.com/
benchmarks/bwinstone/.

[19] Xnee home page. http://www.gnu.org/
software/xnee/www.

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association198

