
1

Towards Linux Open Telecom Platforms

Ibrahim.Haddad@Ericsson.com
Open Systems Lab – Ericsson Research

http://www.Linux.Ericsson.ca

2 0 40

USENIX

2

Outline

• From proprietary to open platforms

• Open, standardized, and components-based platforms

• Carrier Grade Linux: architecture, working group,
requirements

• Examples of needed features

• Challenges…

3

Yesterday vs. Today

Traditionally …

Communications and data service
networks were built on proprietary
platforms that had to meet very
specific requirements in areas of:

– availability,
– reliability,
– performance, and
– service response time.

Today …

Communications service providers
are challenged to meet their
needs cost-effectively for new
services and new architectures
while maintaining highly available,
scalable, secure, and reliable
systems that have predictable
performance and that are easy to
maintain and upgrade.

4

Proprietary vs. Open Platforms

• Proprietary platforms are:
– closed systems,

– expensive to develop, and

– often lacking support of the current and upcoming standards.

• The current trend is to deliver the next generation
communication services using carrier grade
platforms that are designed and implemented using
common-off-the-shelf SW and HW components as
building blocks.

5

Proprietary to Open and Standardized
Solutions

Standards-BasedProprietary

Network Element

Proprietary Hardware

Proprietary
Applications

Proprietary HA
Middleware

Proprietary Real-time
Operating System

Network Element

Standard HA Hardware

Proprietary and 3rd

Party Applications

HA Middleware

Standard Carrier Grade
Operating System

Application Interface

Hardware Interface

SA Forum
Interfaces

PICMG ATCA

Carrier Grade
Linux

From proprietary to open, standardized, & component based HW and SW Solutions

6

Motivations for Open Platforms

• There are many motivations behind the trend of migrating
towards open platforms that are based on open standards:
– Ensure portability, and integration capabilities,
– Ensure interoperability with third-party software,
– Make application development easier,
– Provide faster time to market,
– Ensure lower costs using COTS components, and
– Help focus on core competencies to allow faster

innovation.

7

Linux Kernel
with Carrier Grade Enhancements

Standard Interfaces
(LSB, POSIX...)

High Availability Interfaces Service Interfaces

Hardened Device Drivers Co-Processor Interfaces
Hardware Configuration &
Management Interfaces

Platform
Management
Middleware

Applications

Application
Management
and High
Availability
Services
Middleware

Database
Communication
Directory
Protocols

S
y
ste

m
 M

a
n

a
g

e
m

e
n

t

High Availability Hardware Platforms

S
o

ftw
a
re

 D
e
v
e
lo

p
m

e
n

t T
o

o
ls

Who is defining what?

1

2

Hardware Platform
Interface Specification

Application Interface
Specification

Scope of

HA HW (ATCA)

3

4 1

2

3

4

3

8

Carrier Grade Linux

What, who, why, architecture, specs, roadmap,
etc.

9

What is Carrier Grade?

• Carrier Grade is a term for public network
telecommunications products that require a reliability
percentage up to 5 or 6 nines
– 5 nines (99.999%) -- associated with Carrier Grade servers

• Less than 5 minutes of downtime per year
– 6 nines (99.9999%) -- associated with Carrier Grade switches

• Less than 30 seconds of downtime per year

• Carrier Grade Linux is a flavor of Linux targeted for
communication platforms.

10

CGL Working Group

An industry forum to support and accelerate
the development of Linux functionality for

telecommunication applications

MEMBER COMPANIES

11

CGL Architecture

Solution-specific components to be defined by vendors

Scope of the Carrier Grade Linux Working Group

Applications

Middleware Components

High Availability Hardware Platforms

High Availability ComponentsHA Platform
Interfaces

HA Application
Interfaces

Java CORBA Databases ...

Linux OS
with Carrier Grade Enhancements

Standard Interfaces
(LSB, POSIX...)

High Availability Interfaces Service Interfaces

Hardened Device Drivers Co-Processor Interfaces
Hardware Configuration and

Management Interfaces

12

Carrier Grade Linux (CGL) Summary

• CGL Working Group Started January, 2002

• CGL Version 1.1 – Released October 2002
– CGL 1.1 based distributions are already available in the market

• CGL Version 2.0 – Released October 2003
– CGL 2.0 based distribution are expected to be available by Q1 2005

• CGL Version 3.0 – First public draft was released in May 2004

13

CGL Specs Requirement Categories

• Standards: CGL specifies standards, important to Carrier Grade
servers, that are required for compliance.

– Examples: LSB, POSIX, IETF RFCs, and SA Forum compliance, etc.

• Platform: Support interactions with the hardware platforms.

– Examples: Hot swap, hot insert, hot remove, hot device identity, Remote
boot, support for diskless systems, boot cycle detection, etc.

• Availability: Support heightened availability of carrier grade servers
and aim to improve the robustness of SW components and support
recovery from failure of HW or SW.

– Examples: Watchdog timer, Application heartbeat, RAID Support, Disk
and volume management, Hardened driver support, etc.

14

CGL Specs Requirement Categories …

• Serviceability: Support servicing and managing HW and SW on
carrier server systems.
– Examples: Resource monitoring, Kernel dumps, etc.

• Tools: Support auxiliary capabilities not directly involved in normal
execution of carrier server systems.
– Examples debuggers used to develop modules, drivers, applications, etc.

• Performance: Support performance levels necessary for the
environments expected to be encountered by carrier server systems.
– Examples: Soft real time support, Raid 0 support, Application (pre)

loading, etc.

• Security: Features for building secure systems. “one size fits all” is
not achievable; therefore, not all features will always be used together.

15

CGL Specs Requirement Categories …

• Clustering: Requirements that support the use of multiple carrier
server systems to provide a horizontally-scaled environment
supporting increased throughput and to support higher levels of
service availability through redundant resources and recovery
capabilities.

• Scalability: Requirements that support vertical and horizontal scaling
of carrier server systems such
– Addition of HW resources results in acceptable increases in capacity.

16

Integration with Mainstream Linux Kernel

• Integration with the kernel takes
time

• Some of the enhancements will
be or are already proposed for
kernel 2.7 integration

• Others will follow in later kernel
releases

• All enhancements are available
from their SourceForge or
project web sites

Linux Kernel

Serviceability

Process
Management

Clustering
Support

Standards

Reliability

Memory
Management

Security

Performance

Availability

Enhancing the Linux
Kernel with Carrier
Grade Characteristics

17

Examples of Needed Features for Server
Nodes Operating in Mission Critical

Environments

TIPC, DigSig, AEM

18

TIPC: Transparent Inter-Process
Communication Protocol

Contact info:
Jon Maloy

JonMaloy@users.sourceforge.net

19

Linux Inter-Cluster Communication Protocol

• TIPC is a specially designed protocol for intra-cluster
communication.

– Supports inter cluster communication too.

– Provides a framework for supervising and reporting topology changes.

– It is provided as a portable source code package, ~14000 lines C code

– It has been used as a part of Ericsson products for years, deployed at hundreds of
sites around the globe.

• TIPC is a useful toolbox for anyone wanting to develop/use
HA/Carrier Grade Linux clusters.

– It provides the necessary infrastructure for cluster, network and software
management functionality.

– It provides a good support for designing scalable, distributed, site independent,
highly available, and high-performance applications.

20

TIPC Status

• TIPC & Linux Kernel:

– TIPC is supported on both 2.4 and 2.6 kernel series

– After receiving feedback, TIPC code was changed to make it more suitable for
inclusion in the kernel.

– TIPC was released to Open Source on February 3, 2003 and announced on LKML
on June 28, 2004 (http://lwn.net/Articles/91634/)

• TIPC & CGL:

– TIPC meets several Priority 1 and Priority 2 Cluster Communication
Requirements in CGL 2.0.

• General Interest in TIPC:

– TIPC received a lot of interest from commercial sector and Linux Distributors.

– The IETF ForCES (Forwarding and Control Element Separation) working group is
interested in using TIPC as the standard transport protocol for distributed routers.

21

DigSig: Distributed Digital Signature

Contact info:
Makan Pourzandi

Makan@users.sourceforge.net

22

Distributed Signature Verification (DigSig)

• DigSig is part of a larger project called the Distributed
Security Infrastructure (DSI).

• DSI started as a research project in Ericsson in 2001 to
provide a security framework for real-time distributed
applications running on large scale carrier grade Linux
clusters.

• DSI was released to Open Source in January 2003 under
the GPL license.

23

DigSig

• DigSig is a kernel module that inserts digital signatures inside the ELF
binary and verifies this signature before loading the binary.

– It is based on the Linux Security Module (LSM) hooks.

• The DigSig approach has been to use the existing solutions like GPG
and BSign.

• The local administrator signs binaries they trusts with their private key.

• DigSig guarantees two things:

– If you signed a binary, nobody else can modify that binary without being
detected, and

– Nobody can run a binary which is not signed, or badly signed.

24

DigSig Status

• DigSig & Linux Kernel:

– DigSig is supported on kernel series 2.5 and 2.6

– It was announced on LKML on Sept 17, 2003
http://lwn.net/Articles/49640

• DigSig & CGL:

– DigSig meets a Priority 1 security requirement in OSDL CGL 2.0.

• General Interest in DigSig:

– Patched by Hardened Gentoo Linux distribution developers to be
used as a secondary kernel module with SE Linux.

– Submitted to SE Linux mailing list.

– There is a lot of interest from commercial companies

25

Kernel Asynchronous Event Mechanism

Contact info:
Frederic Rossi

FJRossi@users.sourceforge.net

26

Why we need support for Asynchronous Event
Mechanism?
• Communication Applications Requirements include:

– A high–response rate,
– A minimum down-time,
– Scalability w.r.t external requests and hardware,
– Soft Real-Time capabilities (Hard Real-Time capabilities in some cases)

• Carrier Grade Platform Requirements include:
– Live software upgrade, hardware hot-swap,…
– Large database, fail-over, memory utilization…
– Huge number of processes, fault detection and prevention, application

restart, process reload,…

Carrier Grade systems must handle many events quickly

27

Asynchronous Event Mechanism Project

• AEM implements a native support for asynchronous
events in the Linux kernel and aims to bring carrier-
grade characteristics to Linux in areas of scalability
and soft real-time responsiveness.

– AEM targets applications scalability

• AEM is implemented as a kernel patch and a set of
modules.

– It was released to Open Source in January 2003 under the GPL
license.

28

AEM Status

• AEM & Linux Kernel:

– AEM is supported on both Linux Kernel series 2.4 and 2.6.

– AEM was announced on LKML

– Received a lot of feedback, and undergone a lot of
design/implementation changes since then.

• AEM & CGL:

– AEM implements a Priority 1 requirement of OSDL CGL 2.0:
Efficient Low-Level Asynchronous Events

• Currently …

– AEM is undergoing testing and stabilization.

29

Conclusion!

30

Challenges

• The migration of Carrier Grade servers towards Linux is
dependent on:
– The availability of kernel mechanisms and features needed by such

servers operating in mission critical environments, and

– The integration of these mechanisms into the kernel (including AEM,
TIPC, DigSig)

• Other challenges include:
– Changing ways of working, as part of interacting with Open Source and

following more open working methods
– Avoiding duplicated efforts
– Harmony and synergy among all efforts
– Building enablers together

31

Thank you.
Questions?

Ibrahim Haddad
Researcher
Research and Innovation

Ericsson Canada Inc.
8400 Decarie Blvd Phone: 1.514.345.7900 x5484
Town of Mount Royal Fax: 1.514.345.6105
Quebec H4P 2N2 Web: http://www.linux.ericsson.ca
Canada Email:Ibrahim.Haddad@Ericsson.com

32

Resources

• Ericsson Open Systems Lab
http://www.linux.ericsson.ca

• TIPC
http://tipc.sourceforge.net
http://www.ietf.org/internet-drafts/draft-maloy-tipc-00.txt

• DSI
http://tipc.sourceforge.net

• AEM
http://aem.sourceforge.net

• OSDL
http://www.osdl.org

33

Backup slides

34

Linux for Telecom Platforms

Will next generation & multimedia communication services be
delivered using Linux-based open standard platforms?

35

Motivations for Linux

• Cost: Linux is available for free. No runtime royalties.
• Availability of source code: We have full access to the source code

allowing us to tailor the kernel to our needs.
• Open development process: The development process of the

kernel is open to anyone to participate and contribute.
– The process is based on the concept of “release early, release often”.

• Peer review & testing resources: With access to the source code,
people using a wide variety of platforms & compiler combinations can
compile, link, and run the code on their systems to test for portability,
compatibility and bugs.

• Vendor independent: No longer locked-in to a specific vendor.
• Openness: In terms of hw, languages, interoperability, 3rd party sw.

36

Motivations for Linux …

• High innovation rate: New features are usually implemented on
Linux before they are available on commercial or proprietary systems.

• Open for all:

– People can contribute to Linux the required “hooks” for efficient
integration of the upper-layer HA middleware.

– People can rapidly fix faults or add features to the kernel.
• Other contributing factors:

– Support for a broad range of processors & peripherals
– Availability of commercial support
– High performance networking,
– A proven record of being a stable, and reliable server platform.

37

CGL Working Method

Technical
Specifications

CGL
Distributions

CGL Marketing
WG

CGL Marketing
WG

Marketing
Requirements

(MRD)
CGL Technical

WG
CGL Technical

WG

CGL
Registration

WG

CGL
Registration

WG

Carriers,
ISP,
etc.

Open Source
POC Projects

2 3 4

5

5

Network
Equipment
Providers

Middleware
Providers

Independent
Software
Vendors

Platform
Providers

Linux
Distributors

OSDL Members 6

7

8

1 Collect Input/Market
Requirements

CGL Steering Group

Open Source
Development
Community

7

Mutual
Contribution

Register Distro

Special Interest
Groups (Clustering,

Security, etc)

Special Interest
Groups (Clustering,

Security, etc)

OSDL
Members

Contributions

38

CGL Benefits

• For NEPs and platform providers:
– Lower cost
– Faster TTM
– Leverage COTS hardware
– Flexible service models

• For Linux vendors
– Consolidated customer requirements
– Customer and community support for open source developments
– Exchange consideration for reference implementations

• For member companies (in general)
– chance to communicate members' customers requests to tune the requirements as

they go into the ecosystem
– to reduce individual investments in the development of capabilities
– to leverage open source expertise in working with the development community

39

What does OSDL/CGL expect from the
community

• From the development community at large: Nothing.
Making demands on the development community is not
only like pushing a chain, it creates animosity.

• From the member companies:
– well defined capabilities that represent real customer requirements

– sample/reference implementations that deserve consideration for
acceptance in the open source community.

– cooperation with other member companies in determining common
objectives and capability requirements.

40

Changes to TIPC

• Code style, code and directory structure

• Memory management, lock handling, and debug support has been completely
rewritten.

• Adhering to the standard mechanisms and techniques used in the
Linux kernel (for example TIPC now relies entirely on the linux native memory
management)

• Changing configuration support,

• The API has been rewritten, and is now as conformant to POSIX

• We have modified the protocol header and added the framework for providing
reliable multicast, among other things.

• We have also added an “unreliable transfer mode" which can be set per
socket.

• etc…

41

Distributed Security Infrastructure

Primary Security
Server Node

Node 1 Node 2 Node 3

DSMSS DSM DSM

Proc123 Proc978 Proc222

K
er

n e
l

Security Broker

Secondary

Data TrafficIn
si

d e
 th

e
C

l u
s t

er

Security and
O&M/IDS

O
ut

si
d e

 th
e

C
lu

st
er

SS Security Server

SM Security Manager

Authenticated
Encrypted
Communications

SMSMSM

DSM Distributed Security
Module

42

DigSig …

• The DigSig approach has been
to use the existing solutions like
GPG and BSign rather than
reinventing the wheel.

• To reduce the overhead in the
kernel, DigSig took the minimum
code necessary from GPG.

– This helped reduce the amount
of code imported to the kernel
in source code of the original
(only 1/10 of the original
GnuPG 1.2.2 source code has
been imported to the kernel
module).

43

aem vs. epoll

• AEM and epoll are quite difference mechanisms:
– AEM provides a generic asynchronous support to applications
– epoll is a synchronous (polling) system call for read/write/exception

changes on standard descriptors.

• AEM provides many modules/functionalities that are not in the scope
of select/poll/epoll:
– POSIX timers
– File change notification
– TIPC asynchronous interface
– Asynchronous accept()
– Asynchronous closing socket notification
– Process death notification

– More coming soon …

44

On Performance …

• AEM targets application scalability
• epoll is a select/poll optimization

• Benchmarks:
– A benchmark is available on the web site of AEM

http://aem.sourceforge.net

– AEMhttpd is an adaptation of dphttpd written to benchmark epoll
and figures are available from:
http://lse.sourceforge.net/epoll/index.html

45

Support for Multi-FIP (Multiple Forwarding
Information Bases)

46

Background

• Routers are core elements of modern telecom networks.
– They propagate and direct billion of data packets everyday
– They must operate as fast as the medium in order to deliver excellent

quality of service and have a negligible effect on communications.
• The Linux IP stack works fine for home or small business routers.

– We are able to achieve around 2.000 routes/sec.
• However, with the high requirements and the new HW capabilities, it

appears as barely possible to use Linux as an efficient forwarding and
routing element of a high-end router for large network
(core/border/access router) or a high-end server with routing
capabilities.

• Our target with Linux is to achieve is a predictable performance
from 10.000 to 500.000 routes per second.

47

Support for Multi-FIP -- Problem Statement

• Lack of support for multi-FIB with overlapping interface's IP
address

• Lack of appropriate interfaces for addressing FIB

• Limited scalability of the routing table
• Lack of predictable performance: In environments that require

predictable performance, different kinds of problems arise:
– We are not able to predict access time, because of the chaining in

the hash table of the routing cache.
– The route cache and the routing table are not kept synchronized

most of the time (path MTU, just to name one).
– The route cache flush is executed regularly; therefore, any updates

on the cache are lost and they need to be rebuilt.

48

What is the solution?

• Solution: Provide support for multi-FIB with overlapping
IP address, as such, we can have on different VLAN or
different physical interfaces, independent network in the
same Linux box.

• Advantages: We can have one Linux box serving two
different customers using the same IP address. ISPs adopt
this approach by providing services for multiple customers
sharing the same server (server partitioning), instead of
using a server per customer.

49

Example

• We can have two HTTP servers serving two different
networks with potentially the same IP address. One HTTP
server will serve the network/FIB 10, and the other HTTP
server will serves the network/FIB 20.

I

P

S

T

A

C

K

FIB 20

FIB 10

Kernel User

HTTPD 10

HTTPD 20

50

How to achieve this?

• The way to achieve this is to have an ID (an identifier that
identifies the customer or user of the service) to
completely separate the routing table in memory.

• Two approaches exist:
1. Have separate routing tables, each routing table is looked up by

their ID; within that table the lookup is done on the prefix.

2. Have one table, and the lookup is done on the combined key

Key = ID + Prefix

51

Support for Multi-FIP -- What is needed?

• To support routing requirements of server nodes operating in high
performance mission critical environments, Linux should support:
1. An implementation of multi-FIB using tree (radix, patricia, etc.):

– It is very important to have predictable performance in
insert/delete/lookup from 10.000 to 500.000 routes.

– It is favorable to have the same data structure for both IPv4
and IPv6.

2. Socket and ioctl interfaces for addressing multi-FIB
3. Multi-FIB support for neighbors (arp)

• Affected areas in the kernel:
– Network layer (large changes): net/core, net/ipv4, net/ipv6
– Transport layer (minimal impact): socket, TCP, UDP, RAW,

NAT, IPIP, IGMP, etc.

