USENIX Association

Proceedings of the General Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27-July 2, 2004

THE ADVANCED COMPUTING §YSTEMS ASSOCIATION

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Handling Churnin a DHT

Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz
University of California, Berkeley and Intel Research, Berkele
{srhea,geels,kubitrgr@cs.berkeley.edu, troscoe @intel-research.net

Abstract churn is nodesession timethe time between when a node

joins the network until the next time it leaves. Median
This paper addresses the problenchéirn—the continu- session times observed in deployed networks range from
ous process of node arrival and departure—in distributgd long as an hour to as short as a few minutes.
hash tables (DHTSs). We argue that DHTs should performin this paper we explore the performance of DHTS in
lookups quickly and consistently under churn rates atlegsich dynamic environments. DHTs may be better able
as high as those observed in deployed P2P systems sudBcate rare files than existing unstructured peer-ta-pee
as Kazaa. We then show through experiments on an efgtworks [18]. Moreover, it is not hard to imagine that
ulated network that current DHT implementations canngther proposed uses for DHTs will show similar churn
handle such churn rates. Next, we identify and explorgtes to file-sharing networks—application-level multicas
three factors affecting DHT performance under churn: ref a low-budget radio stream, for example. In spite of this
active versus periodic failure recovery, message timegubmise, we show that short session times cause a vari-
calculation, and proximity neighbor selection. We workty of negative effects on two mature DHT implementa-
in the context of a mature DHT implementation callelions we tested. Both systems exhibit dramatic latency
Bambog using the ModelNet network emulator, whiclyrowth when subjected to increasing churn, and in one
models in-network queuing, cross-traffic, and packet logsiplementation the network eventually partitions, cagsin
These factors are typically missing in earlier simulatioBubsequent lookups to return inconsistent results. The re-
based DHT studies, and we show that careful attentigtainder of this paper is dedicated to determining whether
to them in Bamboo’s design allows it to function effeca DHT can be built such that it continues to perform well
tively at churn rates at or higher than that observed in P2B churn rates increase.
file-sharing applications, while using lower maintenance We demonstrate that DHTs can in fact handle high
bandwidth than other DHT implementations. churn rates, and we identify and explore several factors
that affect the behavior of DHTs under churn. The three
. most important f rs we identify are:
1 Introduction ost important factors we identify are

e reactive versus periodic recovery from failures
The popularity of widely-deployed file-sharing services
has recently motivated considerable research into peer-t
peer systems. Along one line, this research has focuseg
on the design of better peer-to-peer algorithms, espgciall
in the area of structured peer-to-peer overlay networksRy reactive recoverywe mean the strategy whereby a
distributed hash tables (e.qg. [20, 22, 24, 27, 30]), which i@HT node tries to find a replacement neighbor immedi-
will simply call DHTs. These systems map a large idemtely upon noticing that an existing neighbor has failed.
tifier space onto the set of nodes in the system in a detdfe show that under bandwidth-limited conditions, reac-
ministic and distributed fashion, a function we alternatetive recovery can lead to a positive feedback cycle that
call routing or lookup DHTs generally perform theseoverloads the network, causing lookups to have high la-
lookups using onlyO(log V) overlay hops in a network tency or to return inconsistent results. In contrast, a DHT
of N nodes where every node maintains otlylog N) node may recover from neighbor failure at a fixed, pe-
neighbor links, although recent research has explored ttoalic rate. We show that this strategy improves perfor-
tradeoffs in storing more or less state. mance under churn by allowing the system to avoid posi-
A second line of research into P2P systems has focusied feedback cycles.

on observing deployed networks (e.g. [5, 9, 13, 25]). A The manner in which a DHT chooses timeout values
significant result of this research is that such networks aharing lookups can also greatly affect its performance un-
characterized by a high degree of churn. One metric adr churn. If a node performing a lookup sends a message

o® calculation of message timeouts during lookups

choice of nearby over distant neighbors

to a node that has left the network, it must eventually time-
out the request and try another neighbor. We demonstrate
that such timeouts are a significant component of lookup
latency under churn, and we explore several methods of
computing good timeout values, including virtual coordi-
nate schemes as used in the Chord DHT.

Finally, we considerproximity neighbor selection
(PNS), where a DHT node with a choice of neighbors
tries to select those that are most nearby itself in net-
work latency. We compare several algorithms for discov-
ering nearby neighbors—including algorithms similar to
those used in the Chord, Pastry, and Tapestry DHTs—to

show the tradeoffs they offer between latency reduc“%ure 1: Neighbors in Pastry and BambooA node’s
and added bandwidth. neighbors are divided into iteaf set shown as dashed

~ We have augmented the Bamboo DHT [23] such thgfows, and itsouting table shown as solid arrows.
it can be configured to use any of the design choices

described above. As such, we can examine each de-

sign decision independently of the others. Moreover, viraplementations under such churn. In Section 4, we study
examine the performance of each configuration by rugach of the factors listed above in isolation, and describe
ning it on a large cluster with an emulated wide-area nétew Bamboo uses these techniques. In Section 5, we sur-
work. This methodology is particularly important withvey related work, and in Section 6 we discuss important
regard to the choice of reactive versus periodic recovdnture work. We conclude in Section 7.

as described above. Existing studies of churn in DHTs

(e.g. [7, 8, 16, 19]) have used simulations that—unlike

our emulated network—did not model the effects of ne2 I ntroduction to DHT Routing

work queuing, cross traffic, or message loss. In our ex-

perience, these effects are primary factors contributinglh this section we present a brief review of DHT rout-
DHTSs’ inability to handle churn. Moreover, our measuréng, using Pastry [24] as an example. Tgeometryand
ments are conducted on an isolated network, where tbating algorithmof Bamboo are identical to Pastry; the
only sources of queuing, cross traffic, and loss are ti#ference (and the main contribution of this paper) lies in
DHTs themselves; in the presence of heavy backgroumalv Bamboo maintains the geometry as nodes join and
traffic, we expect that such network realities will exaceleave the network and the network conditions vary.

bate the ability of DHTs to handle even lower levels of DHTs are structured graphs, and we use the term geom-
churn. etry to mean the pattern of neighbor links in the overlay

Of course, this study has limitations. Building and tesetwork, independent of the routing algorithms or state
ing a complete DHT implementation on an emulated netanagement algorithms used [12].
work is a major effort. Consequently, we have limited our- Each node in Pastry is assigned a numeric identifier in
selves to studying a single DHT on a single network topd#, 216°), derived either from the SHA-1 hash of the IP
ogy using a relatively simple churn model. Furthermoraddress and port on which the node receives packets or
we have not yet studied the effects of some implemenfesm the SHA-1 hash of a public key. As such, they are
tion decisions that might affect the performance of a DH#¥ell-distributed throughout the identifier space.
under churn, including the use of alternate routing tableln Pastry, a node maintains two sets of neighbors, the
neighbors as in Kademlia and Tapestry, or the use of l#éaf setand therouting table (see Figure 1). A node’s
erative versus recursive routing. Nevertheless, we belidwaf set is the set dfk nodes immediately preceding and
that the effects of the factors we have studied are dramétifowing it in the circular identifier space. We denote this
enough to present them as an important early study in e byZ, and we use the notatial; with —k < i < kto
effort to build a DHT that successfully handles churn. denote the members @f whereLy is the node itself.

The rest of this paper is structured as follows: in the In contrast, the routing table is a set of hodes whose
next section we review how DHTs perform routing odentifiers share successively longer prefixes with the
lookup, with particular reference to Pastry, whose routirspurce node’s identifier. Treating each identifier as a se-
algorithm Bamboo also uses. In Section 3, we review eqdence of digits of basg” and denoting the routing ta-
isting studies of churn in deployed file-sharing networkble entry at rowi and columni by R;[i], a node chooses
describe the way we model such churn in our emulatisl neighbors such that the entry &t[i] is a node whose
network, and quantify the performance of mature DHi@lentifier matches its own in exactlydigits and whose

110...

10...

111..
if (L—x < D < Ly)
nexthop =L; s.t.|D — L;| is minimal
elseif (R;[D[l]] # null)

nexthop = R [D[l]] 00...
else
nexthop =L; s.t.|D — L;| is minimal
010...

Figure 2: The Bamboo routing algorithm.The code
shown chooses the next routing hop in for a message with
destinationD, whereD matches the identifier of the local
node in the first digits. Figure 3: Recursive lookup.To find the node closest to
identifier 011, the node whose identifier starts with1
sends a lookup message to its neighbor whose first digit
(1+ 1)th digitis. In the experiments in this paper, Bamis 0. This node then forwards the query to its neighbor
boo uses binary digit$ (= 1), though it can be configuredwhose first two digits aré1, and from there the node is
to use any base. forwarded to the neighbor whose first three digits@re

The basic operation of a DHT is to consistently map
identifiers onto nodes from any point in the system, a 111..

function we callrouting or lookup Pastry achieves con-
sistent lookups by directing each identifier to the node
with the numerically closest identifier. Algorithmically, 00

routing proceeds as shown in Figure 2. To route a message
with key D, a node first checks whethér lies within its \

011...

leaf set, and if so, forwards it to the numerically closest
member of that set (modul®'6%). If that member is the 010..
local node, routing terminates. IP does not fall within
the leaf set, the node computes the lerigtiithe longest 011...
matching prefix betwee and its own identifier. Let

D[] denote thath digit of D. If R[D[l]] is not empty, riqre 4: |terative lookup. An iterative lookup involves

the message is forwarded on to that node. If neither g <5 e nodes as a recursive one, but instead of forward-

these conditions is true, the message is forwarded to Sthe message, each intermediate node responds to the
member of the node’s leaf set numerically closesDto source with the address of the next hop.

Once the destination node is reached, it sends a message
back to the originating node with its identifier and network
address, and the lookup is complete.

We note that a node can often choose between ma&igwork of 65,536 nodes. This resilience is important in
different neighbors for a given entry in its routing tabandling failures in general and churn in particular, and'
ble. For example, a node whose identifier begins withs the reason we chose the Pastry geometry for use in
1 needs a neighbor whose identifier begins with, #ut Bamboo. We could also have used a pure ring geome-
such nodes make up roughly half of the total network. ff @S in Chord, extending it to account for proximity in
such situations, a node can choose between the posdi§ighbor selection as described in [12].
candidates based on some metReoximity neighbor se- The manner in which we have described routing so
lectionis the term used to indicate that nodes in a DHf-g_r is Commomy Ca||edecursiverouting (Figure 3) In
use network latency as the metric by which to choose %‘ntragt, |Ookups may also be perform@'aﬁvew As
tween neighbor candidates. shown in Figure 4, an iterative lookup involves the same

Using this design, Pastry and Bamboo perform lookupsdes as a recursive one, but the entire process is con-
in O(log V) hops [24], while the leaf set allows forwardrolled by the source of the lookup. Rather than asking
progress (in exchange for potentially longer paths) in theneighbor to forward the lookup through the network on
case that the routing table is incomplete. Moreover, the behalf, the source asks that neighbor for the network
leaf set adds a great deal sthtic resilienceo the geom- address of the next hop. The source then asks the newly-
etry; Gummadi et al. [12] show that with a leaf set of 18iscovered node the same question, repeating the process
nodes, even after a random 30% of the links are brokentil no further progress can be made, at which point the
there are still connected paths between all node pairs itoakup is complete.

f— Lifetime——— First Author | Systems Observed Session Time

Session Saroiu [25] Gnutella, Napster| 50%< 60 m?n.

Time _ Chu [9] Gnutella, Napster| 31%< 10 min.

time Sen [26] FastTrack 50% < 1 min.

Bhagwan [5] Overnet 50% < 60 min.

Join Leave Join Leave Gummadi [13] Kazaa 50%< 2.4 min.

Figure 5: Metrics of churn. With respect to the routing Table 1: Observed session times in various peer-to-peer
and lookup functionality of a DHT, theession timesf syst.emsThe median session time ranges from an hour to
nodes are more relevant than thdtimes a minute.

3 TheProblem of Churn 31 Empirical studies

Elsewhere [23] we have surveyed published studies of de-

There have been very few large-scale DHT-based applipivyed file-sharing networks. Table 1 shows a summary
tion deployments to date, and so it is hard to derive goofiobserved session times. At first sight, some of these
requirements on churn-resilience. However, P2P filgalues are surprising, and may be due to methodological
sharing networks provide a useful starting point. Thepeoblems with the study in question or malfunctioning of
systems provide a simple indexing service for locatinge system under observation. However, it is easy to im-
files on those peer nodes currently connected to the ngje a user joining the network, downloading a single file
work, a function which can be naturally mapped onto(@r failing to find it), and leaving, making session times
DHT-based mechanism. For example, the Overnet filgf-a few minutes at least plausible. To be conservative,
sharing system uses the Kademlia DHT to store suchtagn, we would like a DHT to be robust for median ses-
index. While some DHT applications (such as file stogion times from as much as an hour to as little as a minute.
age as in CFS [10]) might require greater client availabil-
ity, others may show similar churn rates to file-shari .
networks (such as end-system multicast or a rendezvr?ug Experimental M ethodology
service for instant messaging). As such, we believe tf@gr platform for measuring DHT performance under
DHTs should at least handle churn rates observed in gpurn is a cluster of 40 IBM xSeries PCs, each with
day'’s file-sharing networks. To that end, in this section Wsual 1GHz Pentium Il processors and 1.5GB RAM, con-
survey existing studies of churn in deployed file-sharingected by Gigabit Ethernet, and running either Debian
networks, describe the way we model such churn in 0@NU/Linux or FreeBSD. We use ModelNet [28] to im-
emulated network, and quantify the performance of mgose wide-area delay and bandwidth restrictions, and the
ture DHT implementations under such churn. Inet topology generator [3] to create a 10,000-node wide-

Studies of existing file-sharing systems mainly use tvegea AS-level network with 500 client nodes connected to
metrics of churn (see Figure 5). A nodesssion timés 250 distinct stubs by 1 Mbps links. To increase the scale
the elapsed time between it joining the network and subs$the experiments without overburdening the capacity of
quently leaving it. In contrast, a noddifetimeis the time ModelNet by running more client nodes, each client node
between it entering the network for the first time and leamins two DHT instances, for a total of 1,000 DHT nodes.
ing the network permanently. The sum of a node’s sessiorOur control software uses a set of wrappers which com-
times divided by its lifetime is often called isvailabil- municate locally with each DHT instance to send requests
ity. One representative study [5] observed median sessionl record responses. Running 1000 DHT instances on
times on the order of tens of minutes, median lifetimes @is cluster (12.5 nodes/CPU) produces CPU loads below
the order of days, and median availability of around 30%ne, except during the highest churn rates. Ideally, we

With respect to the lookup functionality of a DHT, wavould measure larger networks, but 1000-node systems
argue that session time is the most important metric. Evalneady demonstrate problems that will surely affect large
temporary loss of a routing neighbor weakens the cames.
rectness and performance guarantees of a DHT, and urln an experiment, we first bring up a network of 1000
available neighbors reduce a node’s effective connegtivihodes, one every 1.5 seconds, each with a randomly as-
forcing it to choose suboptimal routes and increasing thigned gateway node to distribute the load of bootstrap-
destructive potential of future failures. Since nodes &re ping newcomers. We then churn nodes until the system
ten unavailable for long periods, remembering neighbgysrformance levels out; this phase normally lasts 20-30
that have failed is of little value in performing lookupsminutes but can take an hour or more. Node deaths are
While remembering neighbors is useful for applicatiortBned by a Poisson process and are therefore uncorrelated
like storage [6], it is of little value folookupoperations. and bursty. A new node is started each time one is killed,

maintaining the total network size at 1000. This model

%) T
of churn is similar to that described by Liben-Nowell et 5 100 ‘
all [17]. In a Poisson process, an event ratorresponds 8 80 5.2 h 1.6 h
to a median inter-event period of2/\. For each event “_al 60 31h
we select a node to die uniformly at random, so eachgz 4q |
node’s session time is expected to spérevents, where S .
- .) 20 ¢ Consistent 23 min
N is the network size. Therefore a churn rate\aforre- o Completed-
. . . O | L
sponds to a median node session time of 0 50 100 150 200
tmed = N1In2/\. Time (minutes)

For example, a 1000-node network churning with medidigure 6:FreePastry under churriThe percentage of suc-

session times of one hour will see one node arrive (aoelssful lookups in a 1000-node FreePastry network under

one leave) every 5.2 seconds. In our experiments, we ushdrn. Session times for each 30-minute churn period are

churn rates ranging from 8/second to 4/minute, equalitmlicated by arrows, and each churn period is separated

median session times from 1.4 minutes to 3 hours. from the next by 10 minutes of no churn. The churn rate
Each live node continually performs lookups for identdoubles with each successive period.

fiers chosen uniformly at random, timed by a Poisson pro-

cess with rate 0.1/second, for an aggregate system load of

100 lookups/second. Each lookup is simultaneously pBgth systems, it is still possible that alternative configu-

formed by ten nodes, and we report both whether it cof@tions could have improved their performance. More-

pletes and whether it is consistent with the others for tR¥er, both systems have seen subsequent development,

same key. If there is a majority among the ten results foRAd newer versions may show improved resilience under

given key, all nodes in the majority are said to see a cdHurn.

sistent result, and all others are considered inconsistent

If there is no majority, all nodes are said to see inconsisr'eePastry We tested FreePastry 1.3, the Rice Univer-
tent results. This metric of consistency is more strict thgﬂy implementation of Pastry [1]. Figure 6 shows one
that required by some DHT applications. However, boflect of churn on a network of 1000 FreePastry nodes,
MIT's Chord and our Bamboo implementation show &fhich we ran using the default 24-node leaf sets and log-
least 99.9% consistency under 47-minute median Sessipfhm hase of 16. We do not enforce proximity between a
times [23], so it does not seem unreasonable. new node and its gateway, as suggested for best FreePas-
_There are two ways in which lookups fail in our testgy herformance; this decision only effects the proximity
First, we do not perform end-to-end retries, so a l00ky 5 node's neighbors, not the efficiency of its routing.
may fail to complete if a node in the middle of the lookup ¢ g ¢jear from Figure 6 that while successful lookups
path leaves the network before forwarding the lookup rgze mostly consistent, FreePastry fails to complete a ma-
_que_st to the next node. We_ observed this behavior p”mﬁfﬁty of lookup requests under heavy churn. A likely
lly in FreePastry as described below. Second, a 100KUR, 3 nation for this failure is that nodes wait so long on
may return |ncon.3|stent results. Such failures occur E|tr|180kup requests to time out that they frequently leave the
because a node is not aware of the correct node to forwggdhyoric with several requests still in their queues. This
the lookup to, or because it erroneously believes thg cBBhavior is probably exacerbated by FreePastry's use of
rect node has Ie_ft the network (bec_ause of Congest|0nJ3(/a RMI over TCP as its message transport, and the way
poorly chosen t|meouts)._ Al DHT |m_plementat|0ns Wehat FreePastry nodes handle the loss of their neighbors.
have tested show some inconsistencies under churn, \Rt,esent evidence to support these ideas in Section 4.1.
carefully chosen timeouts and judicious bandwidth USad8ye make a final comment on this graph. FreePas-
can minimize them. try generally recovers well between churn periods, once
o again correctly completing all lookups. The difficulty
3.3 ExistingDHTs with real systems is that there is no such quiet period; the

. . . network is in ntinual f churn.
In this section we report the results of testing two ma-et orkis in a continuay state of chu

ture DHT implementations under churn. Our intent here

is not to place a definitive bound on the performance BfIT Chord We tested MIT's Chord implementa-
either implementation. Rather, it is to motivate our wortion [4] using a CVS snapshot from 8/4/2003, with the de-
by demonstrating that handling churn in DHTSs is both dault 10-node successor lists and with the location cache
important and a non-trivial problem. While we have disgdisabled (using theF option), since the cache causes poor
cussed these experiments extensively with the authorgpefformance under churn.

(%))

4 Handling Churn

‘ " Chord —+—
O Bamboo (No POI\IS) rrrrr et
g Bamboo (PNS)--a- Having briefly described the way in which DHTs perform
% lookups, and having given evidence indicating that their
5 2 I ability to do so is hindered under churn, we now turn to
= 1 the heart of this paper: a study of the factors contribut-
pap y
0 ing to this difficulty, and a comparison of solutions that

8 16 32 64 128 can be used to overcome them. In turn, we discuss re-
Median Session Time (min) . T . .
active versus periodic recovery from neighbor failure, the
calculation of good timeout values for lookup messages,

Figure 7:Chord under chumShown is the mean Iatencyand techniques to achieve proximity in neighbor selection.

of lookups in a 1000-node MIT Chord network under in1"he remainder of this paper focuses only on the Bamboo
creasing levels of churn. Churn increases to the left. . .) .
DHT, in which we have implemented each alternative de-
sign choice studied here. Working entirely within a sin-
gle implementation allows us to minimize the differences

In contrast to FreePastry, almost all lookups in a Chobgtween experiments comparing one design choice to an-
network complete and return consistent results. Chor@41€r.
shortcoming under churn is in lookup latency, as shown
in Figure 7, which shows the result of running Chord U1 Reactivevs. Periodic Recovery
der the same workload as shown in Figure 6, but wheré '
we have averaged the lookup latency over each churn pgrly implementations of Bamboo suffered performance
riod. Shown for comparison are two lines representigggradation under churn similar to that of FreePastry.
Bamboo’s performance in the same test, with and withiT Chord’s performance, however, does not degrade in
out proximity neighbor selection (PNS). Under all churthe same way. A significant difference in its behavior is a
rates, Bamboo is using slightly under 750 bytes per sefesign choice about how to handle detected node failures.
ond per node, while Chord is using slightly under 2,400we will call the two alternative approaches reactive and

We discuss in detail the differences that enable Bamb%%md'c recovery.
to outperform Chord in Sections 4.2 and 4.3, but some of
the difference in latency between Bamboo and Chordrgactiverecovery In reactive recovery, a node reacts to
due to their routing styles. Bamboo performs lookups rgre loss of one if its existing leaf set neighbors (or the ap-
cursively, whereas Chord routes iteratively. Chord coulgarance of a new node that should be added to its leaf
easily be changed to route recursively; in fact, newer velet) by sending a copy of its new leaf set to every node
sions of Chord support both recursive routing and PNif.it. To save bandwidth, a node can only send differ-
Note, however, that Chord’s latency grows more quickBhces from the last message, but the total number of mes-
under increasing churn than does Bamboo's. In Segges is stillD(k2) for a leaf set ofk nodes. This algo-
tion 4.2, we will show evidence to support our belief thafthm converges quickly, is used in FreePastry, and was
this growth is due to Chord’s method of choosing timgrsed in early versions of Bamboo. MSPastry uses a more
outs for lookup messages and is independent of the lookghdwidth-efficient, but more complex, variant of reactive
style employed. recovery [7].

Periodic recovery In contrast, in periodic recovery a
node periodically shares its leaf set with each of the mem-
bers of that set, each of whom responds in kind with its
own leaf set. The process takes place independently of
the node detecting changes in its leaf set. As a simple op-
To summarize this section, we note that we have observilization, a node picks one random member of its leaf
several effects of churn on existing DHT implementaet to share state with in each period. This change saves
tions. A DHT may fail to complete lookup requests abandwidth, but still converges i@ (log k) phases, where
together, or it may complete them but return inconsistenis the size of the leaf set. (Further details can be found
results for the same lookup launched from different sourelssewhere [23].) This algorithm is the one currently used
nodes. On the other hand, a DHT may continue to retusmp Bamboo, and the periodic nature of this algorithm is
consistent results as churn rates increase, but it mayrsuteared by Chord’s method of keeping its successor list
from a dramatic increase in lookup latency in the proces®rrect.

331 Summary

w
~ 8 ‘ ‘ ~ 6 ‘ ‘
2 Reactive > Reactive
9 7T Periodic - $ 5t Periodic-
= 6 L E
% 5 [47 min 23 min - 4
< 2l 2 5| 47min 23min
£ 5
-'g 3t © o
()
S 2+ o
c 1+
g 1 £
O L L L L L (o] O L L L L L
0 10 20 30 40 50 0 10 20 30 40 50
Time (minutes) Time (minutes)

Figure 8:Reactive versus periodic recoveijlithout churn, reactive recovery is very efficient, as mgesaare only
sent in response to actual changes. At reasonable chus) hawever, periodic recovery uses less bandwidth, and
lower contention for the network leads to lower latencies.

4.1.1 Positivefeedback cycles 4.1.2 Scalability

Reactive recovery runs the rlsk of creating a positive fee kriodic and reactive recovery. To see why, consider a
pack cycle as follqws. _C_on5|der a node WhOS§ acCeBYe A that joins a network, and Ig8 be the node in the
link to t_he netvyork IS sufﬁmently congested that tmeou isting network whose identifier most closely matches
cause it to believe that one of its neighbors has fa|led.t at of A. As in Pastry,A retrieves its initial leaf set by

the node is recovering reactively, recovery operatiops %’ntactingB, andB addsA to its leaf set immediately af-
gm,dand the ?Oge Vtv'" a|?|('j Evc_arr;].motged pdackets tct)' s gL, confirming its IP address and port (with a probe mes-
ready congested network link. This added congestion Wi . oy - i 4's arrival propagates through the network,

increase the likelihood that the node will mistakenly o ther nodec may still route messages that should go

clude that other neighbors have failed. If this process Q84 to B instead, but will just forward these messages

tinqes, the nod_e will eventually cause congestion collap&?to A. Likewise, shouldA fail, B will still be in C’s

on its access link. leaf set, so once routing messagesittime out, C' and
Observations of these cycles in early Bamboo (and ether nearby nodes will generally all agree ttiats the

amination of the Chord code) originally led us to praaext best choice.

pose periodic recovery for handling churn. By decou- while both periodic and reactive recovery achieve

pling the rate of recovery from the discovery of failuresoughly identical correctness, there is a large differénce

periodic recovery prevents the feedback cycle describ@@ bandwidth consumed under different churn rates and

above. Moreover, by lengthening the recovery period wilgaf set sizes. (A commonly accepted rule of thumb is

the observation of message timeouts, we can introducghat to provide sufficient resilience to massive node fail-

negative feedback cycle, further improving resilience. ure, the size of a node’s leaf set should be logarithmic

Another way to mitigate the instability associated wit}! the system size.) Under low churn, reactive recovery
reactive recovery is to be more conservative when detd&ery efficient, as messages are only sent in response
ing node failure. We have found one effective approath actual qhanges, whereas penodlc_ recovery is wasteful.
to be to conclude failure only after 15 consecutive me&S Churn increases, however, reactive recovery becomes

sage timeouts to a neighbor. Since timeouts are backdare expensive, and this behavior is exacerbated by in-
off multiplicatively to a maximum of five seconds, it is un€€asing leaf set size. Not only does a node see more fail-
likely that a node will conclude failure due to congestioT€S When its leaf set is larger, but the set of other nodes
One drawback with this technique, however, is that neighMust notify about the resulting changes in its own leaf
bors that have actually failed remain in a node’s routirR§t IS 1arger. In contrast, periodic recovery aggregates al
table for some time. Lookups that would route throuﬁanges in each period into a single message.

these neighbors are thus delayed, resulting in long lookug-igure 8 shows this contrast in Bamboo using leaf sets
latencies. To remedy this problem, a node stops routiag24 nodes, the default leaf set size in FreePastry. In
through a neighbor after seeing five consecutive mess#gjé figure, we ran Bamboo using both configurations for
timeouts to that neighbor. We have found these chand@® 20-minute churn periods of 47 and 23 minute median
make reactive recovery feasible for small leaf sets af@ission times separated by five minutes with no churn.
moderate churn. We note that during the periods of the test where there

gperiments show little difference in correctness between

is no churn, reactive recovery uses less than half of ttimeouts such that a late response is indicative of node
bandwidth of periodic recovery. On the other hand, undkilure, rather than network congestion or processor load.
churn its bandwidth use jumps dramatically. As discussed
above, Bamboo does not suffer from positive feedback @/2.1 Techniques
cles on account of this increased bandwidth usage. Never- o)
theless, the extra messages sent by reactive recovery Mg discuss and study three alternative timeout calculation
pete with lookup messages for the available bandwidgiffategies. In the first, we fix all timeouts at a conser-
and as churn increases we see a corresponding incréade value of five seconds as a control experiment. In
in lookup latency. Although not shown in the figure, thihe second, we calculate TCP-ster timeouts using direct
number of hops per lookup is virtually identical betweefi€asurement of past response times. Finally, we explore
the two schemes, implying that the growth in bandwidth #§in9 indirect measu_rements from a virtual coordinate al-
most likely due to contention for the available bandwidt§Crithm to calculate timeouts.

Since our goal is to handle median session times down _ _ .
to a few minutes with low lookup latency, we do not exI CP-style timeouts: If a DHT routes recursively, it
plore reactive recovery further in this work. The remairfarely communicates with nodes other than its direct

der of the Bamboo results we present are all obtained 0€ighbors in the overlay network. Since the number of
ing periodic recovery. these neighbors is logarithmic in the size of the network,

and since each node periodically probes each neighbor
)) for availability, a node can easily maintain a past history
4.2 Timeout Calculation of each neighbor’s response times for use in calculating
In this section, we discuss the role that timeout calcutetif "€oUts- In Bamboo, we have implemented this strat-
egy following the style of the early TCP work [15], where

on lookup messages plays in handling churn. Lo . X
To understand the relative importance of timeouts ineé'fu?h node maintains an exponentially weighted mean and

DHT as opposed to a more traditional networked syste}“’il,”ance of the response “T“e_for each neighbor. Specifi-
consider a traditional client-server system such as the ”Y' the estimate round-trip timeout (RTO) for a neigh-
worked file system (NFS). In NFS, the server does n pr 1S calculated as

often fail, and when it does there are generally few op- RTO = AVG + 4 x VAR,

tions for recovery and no alternative servers to fail ove
to. If a response to an NFS request is not received in
expected time, the client will usually try again with an ex-
ponentially increasing timeout value.

In a peer-to-peer system under churn, in contrast, E@-m‘?O“‘S frF’m V|r'tue_1] coo.rdlnateg In contrast o re-
quests will be frequently sent to a node that has left tf'>'Ve routing, W'th lterative routing a node.must poten-
system, possibly forever. At the same time, a DHT witiplly have a goo_d timeout fomny_othgr node n th_e net
routing flexibility (static resilience) has many alternatwork' Howe_ver, IN Some Scenarios |terat|v§ fouting does
paths available to complete a lookup. Simply backijgave attractive properties. For example, since the source

off the request period is thus a poor response to a req st Iookup .re.quest controls the entire Process of itera-
timeout; it is often better to retry the request throughtE(e routing, it is easy to explore several different lookup
different neighbor paths in parallel. For only a constant increase in band-

A node should ensure that the timeout for a requesthf\ th used, this technique prevents a single timeout from
g

judiciously selected before routing to an alternate nei g\?ylngl a IoocI;up [16]. id h .
bor. If it is too short, the node to which the original was Irtual coordinatesprovide one approach to computing

sent may be yet to receive it, may be still processing it, grpeouts without previously measuring the response time

the response may be queued in the network. If so injeEg_every node in the system. In this scheme, a distributed
’ chine learning algorithm is employed to assign to each

ing additional requests may result in the use of additiorf4f
bandwidth without any beneficial result—for example, i pde coordinates in a virtual -metnc space.such tha'.c the
the case that the local node’s access link is congest, |8'tan_ce betvve_e n two node; in the space is proportional
Conversely, if the timeout is too long, the requesting no&%the'r latency in the underlying network.

; o Bamboo includes an implementation of the Vivaldi co-
te t t f f de that’ . -
may Was'e ime Walting for a response om & noce %dmate system employed by Chord [11]. Vivaldi keeps

has left the network. If the request rate is fixed at too l0 all ihted £ th ; "
a value, these long waits cause unbounded queue gro%qhexponen lally-weighted average of the error of pas

on the request node that might be avoided with Shor{gpnd—triptimes calculated with the coordinates, and com-
timeouts putes the RTO as

For these reasons, nodes should accurately choose RTO=v+6xa+15

lhere AVG is the observed average round-trip time and
KR is the observed mean variance of that time.

thermore, they perform within a factor of two of TCP-

&> 2l F\i/’ésgk?isféj | style_measurement_s unt_il the median churn rate_drops_to

:); TCP-style - 23 minutes. F_‘ast this p0|_nt, their pe_rformance q_LuckIy di-

S 151] verges, but virtual coordinates continue to provide mean

S ; lookup latencies under two seconds down to twelve-

g r *® minute median session times.

2 5l ._ B T Finally, we note the similarity in shape of Figure 9 to
R e Figure 7, where we compared the performance of Chord

0

to Bamboo, suggesting that the growth in lookup latency
under Chord at high churn rates is due to timeout calcula-
tion based on virtual coordinates.

2 4 8 16 32 64 128256
Median Session Time (min)
Figure 9:TCP-style versus virtual coordinate-based time-

outs in BambooTimeouts chosen using Vivaldi are com4.3 Proximity Neighbor Selection

petitive with TCP-style timeouts for moderate churn rates. .]
Perhaps one of the most studied aspects of DHT design

has been proximity neighbor selection (PNS), the process
whereuv is the predicted round-trip time andis the aver- of choosing among the potential neighbors for any given
age error. The constant term of 15 milliseconds is addedtaiting table entry according to their network latency to
avoid unnecessary retransmissions when the destinatiaiméschoosing node. This research is well motivated. The

the local host. stretchof a lookup operation is defined as the latency of
the lookup divided by the round-trip time between the
422 Results lookup source and the node discovered by the lookup in

the underlying IP network. Dabek et al. present an argu-
TCP-style timeouts assume a recursive routing algorithment and experimental data that suggest that PNS allows
and a virtual coordinate system is necessary only whaiDHT of N nodes to achieve median stretch of only 1.5,
routing iteratively. While we would ideally compare théndependent of the size of the network and despite using
two approaches by measuring each in its intended emWiflog N') hops [11]. Others have proved that PNS can be
ronment, this would prevent us from isolating the effectsed to provide constant stretch in locating replicas un-
of timeouts from the differences caused by routing styleter a restricted network model [21]. This is the first study
Instead, we study both schemes under recursive rooftwhich we are aware, however, to compare methods of
ing. If timeouts calculated with virtual coordinates proachieving PNS under churn. We first take a moment to
vide performance comparable to those calculated in tiscuss the common philosophy and techniques shared by
TCP-style under recursive routing, we can expect tkach of the algorithms we study.
virtual coordinate scheme to not be prohibitively expen-
sive ungjer' |teraF|ve rou'tmg. While other issues may 8731 Commonalities
main with iterative routing under churn (e.g. congestion
control—see Section 6), this result would be a useful or@ne of the earliest insights in DHT design was the sepa-
Figure 9 shows a direct comparison of the three timeaation of correctness and performance in the distinction
calculation methods under increasing levels of churn. ietween neighbors in the leaf set and neighbors in the
all cases in this experiment, the Bamboo configuratiorsuting table [24, 27]. So long as the leaf sets in the
differed only in choice of timeout calculation methodsystem are correct, lookups will always return correct re-
Proximity neighbor selection was used, but the latensylts, although they may take(N) hops to do so. Leaf
measurements for PNS used separate direct probing setimaintenance is thus given priority over routing table
not the virtual coordinates. maintenance by most DHTs. In the same manner, we note
Even under light levels of churn, fixing all timeoutshat so long as each entry in the routing table sase
at five seconds causes lookup timeouts to pull the megppropriate neighbor (i.e. one with the correct identifier
latency up to more than twice that of the other configprefix), lookups will always complete i@ (log N) hops,
rations, confirming our intuition about the importance @ven though they make take longer than if the neighbors
good timeout values in DHT routing under churn. Mordyad been chosen for proximity. We say such lookups are
over, by comparing Figure 9 to Figure 7, we note that uafficient even though they may not have low stretch. By
der high churn timeout calculation has a greater effect this argument, we reason that it is desirable to fill a routing
lookup latency than the use of PNS. table entry quickly, even with a less than optimal neigh-
Virtual coordinate-based timeouts achieve very simillor; finding a nearby neighbor is a lower priority.
mean latency to TCP-style timeouts at low churn. Fur- There is a further argument to treating proximity as a

lower priority in the presence of churn. Since we expect
our set of neighbors to change over time as part of the
churn process, it makes little sense to work too hard to
find the absolute closest neighbor at any given time; we
might expend considerable bandwidth to find them only

to see them leave the network shortly afterward. As Su‘l"—t?gure 10:Sampling neighbors’ neighbort. A joins us-
our general apprc_;ac_h s to run each of the algorlthms_ (i{ﬁ@ D as its gateway, its initial level-O neighbors are the
scribed belowperiodically. In the case where churn is ame as those dd: assume that these are all within the
high, this technique allows us to retune the routing tab shed line. A cor;tacts a level-0 neighbor, e.g, and
as the network changes. When churn is low, rerunniBgy < it for its level-0 neighborsd would learn abouB3 in

the algorithms makes up for latency measurement el manner. However. there may be no path fromiite
caused by transient network conditions in previous uNSyaq) neight;ors to tho,se of

Our general approach to finding nearby neighbors thus
takes the following form. First, we use one of the algo-
rithms below to find nodes that may be near to the localThere are some cases, however, where global sampling
node. Next, we measure the latency to those nodes.wifl take unreasonably long to find the closest possible
we have no existing neighbor in the routing table entneighbor. For example, consider two nodes separated
that the measured node would fill, or if it is closer thafilom the core Internet by the same, high latency access
the existing routing table entry, we replace that entry; otfink, as shown in Figure 11. The relatively high latency
erwise we leave the routing table unchanged. Althougben by these two nodes to all other nodes in the network
the bandwidth cost of multiple measurements is high, theakes them attractive neighbors for each other; if they
storage cost to remember past measurements is low. Amae different first digits in a network with logarithm base
compromise, we perform only a single latency measuteso, they can drastically reduce the cost of the first hop
ment to each discovered node during any particular rungffmany routes by learning about each other. However,
an algorithm, but we keep an exponentially weighted aie time for these nodes to find each other using global
erage of past measurements for each node, and we s&@pling is proportional to the size of the total network,
this average value in deciding the relative closenessapfd so they may not find each other before their sessions
nodes. This average occupies only eight bytes of meend. It is this drawback of global sampling that leads us
ory for each measured node, so we expect this approagionsider other techniques.
to scale comfortably to very large systems.

>0

Neighbors neighbors The next technique we consider
4.3.2 Techniques is sampling our neighbors neighbors, a process called

. . , . routing table maintenancm the Pastry work [24] ofo-
The techniques for proximity neighbor selection that we,, tuningin our earlier work [23]. In this technique, we

study here are global sampling, sampling of our neiglsntact an existing routing table neighbor at levef our
bors’ neighbors, and sampling of the nodes that have oy iing table and ask for its levélneighbors. Like us,
neighbors as their neighbors. We describe each of th@sgse hodes share a prefix lof- 1 digits with the con-

techniques in turn. tacted neighbor and are thus appropriate for use in our
routing table as well. As in global sampling, having dis-
Global sampling In global sampling (calledlobal tun- covered these new nodes, we probe them for latency and
ing in our earlier work [23]), we use the lookup functionuse them if they are closer than our existing neighbors.
ality of the DHT to find new neighbors. For arouting table The motivation for sampling neighbors’ neighbors is
entry that requires a neighbor with prefixwe perform a illustrated in Figure 10; it relies on the expectation that
lookup for a random identifier with prefix The node re- proximity in the network is roughly transitive. If a node
turned by this lookup will almost always have the desiratiscovers one nearby node, then that node’s neighbors are
prefix. (As an example of why this is not always the cagerobably also nearby. In this way, we expect that a node
note that a lookup of identifier 0 may return a node whosan “walk” through the graph of neighbor links to the set
identifier starts with 1 if the node with the largest idersf nodes most near it.
tifier in the ring is numerically closer to 0 than the node To see one possible shortcoming of sampling our neigh-
with the smallest identifier.) Given enough samples, &lbrs’ neighbors, consider again Figure 11. While the two
nodes with prefiyp will eventually be probed. The moti-isolated nodes would like to discover each other, it is un-
vation for this technique comes from Gummadi et al., wHikely that any other nodes in the network would prefer
showed that sampling only around 16 nodes for each rotitem as neighbors; their isolation makes them unattrac-
ing table entry provides almost optimal proximity [12]. tive for routing lookups that originate elsewhere, except

(1) function nearesieighbors () =
2 S = highestnonemptyrt_level ();

L C (©)] [= longestmatchingprefix (S);
N g (4) whilel >=0
(5) forall nin S
Figure 11:Sampling neighbors’ inverse neighbolodes (S; gfgf:;%egirt;;?'ghborsb;
A and B are isolated from the remainder of the networﬁ< - ' ’

by a long latency, and are initially unaware of each other.

Such a situation is possible if, for example, two Euro- Figure 12:The Tapestry nearest neighbor algorithm.

pean nodes join a network of primarily North American

nodes. As such, they make unattractive neighbors for

other nodes, but they would still like to find each other. {fery nearby level-0 neighbors, they will be unlikely to find

they both have” as a neighbor, they can find each othemach other among their neighbors’ inverse neighbors.

by askingC for its inverse neighbors. To remedy this final problem, we can perform the sam-
pling of nodes in a manner similar to that used by the

_ Tapestry nearest neighbor algorithm (and the Pastry op-
in the rare case that they are the result of those lookupg,izeq join algorithm). Pseudo-code for this technique

As such, since neighbor links in DHTS are rarely symmek spown in Figure 12. Starting with the highest level
ric, itis unlikely that there is a path through the graph @f jis routing table, a node contacts the neighbors at that
neighbor links that will lead one isolated node to the oth§g,e| and retrieves their neighbors (or inverse neighbors)
despite their relative proximity. The latency to each newly discovered nodes is measured,
and all but thek closest are discarded. The node then
Neighbors inverse neighbors The latter argument decrement$and retrieves the levélneighbors from each
presents an obvious alternative approach. Instead of sawn-discarded node. This process is repeated LirtiD.
pling our neighbors’ neighbors, why not sample thoggdong the way, each discovered neighbor is considered as
nodes which have the same neighbors as the local nodeandidate for use in the routing table. To keep the cost of
This technique was originally proposed in the Tapestilyis algorithm low, we limit it to having at most three out-
nearest neighbor algorithm [14]; we call it sampling owstanding messages (neighbor requests or latency probes)
neighbors’ inverse neighbors. To motivate this techniquat,any time.
consider again Figure 11. Although the two remote nodesNote that although this process starts by sampling from
are unlikely to be neighbors of many other nodes, givéime routing table, the set of nodes on which it recurses is
that their existing neighbors are mostly nearby, they amet constrained by the prefix-matching structure of that ta-
likely to choose the same neighbors from outside their idale. As such, it does not suffer from the small rendezvous
lated domain. For this reason, they are likely to find easbt problem discussed above. In fact, under certain net-
other in the set of their neighbors’ inverse neighbors. work assumptions, it has been proved that this process
Normally, a DHT node would not record the set diinds a node’s nearest neighbor in the underlying network.
nodes that use it as a neighbor. Actively managing such a
list, in fact, requires additional probing bandwidth. Cur-
rently, the Bamboo implementation does actively manaf;lég'3 Results

this set, but it could be easily approximated at each nogi€srder to compare the techniques described above, it is
by keeping track of the set of nodes which have sent{t,qrtant to consider not only effective they are at finding
I|venes§ prob_es' in t.he Igst minute or so. We plan to lmp%arby neighbors, but also at what bandwidth cost they do
ment this optimization in our future work. so. For example, global sampling at a high enough rate
relative to the churn rate would achieve perfect proxim-
Recursivesampling Consider Figure 11 one final timejty, but at the cost of a very large number of lookups and
and assume that we are using a single-bit digits and tl&iency probes. To make this comparison, then, we ran
the two remote nodes begin with different digits, i.e. @ach algorithm (and some combinations of them) at var-
and 1 respectively. The node whose identifier starts witliqus periods, then plotted the mean lookup latency under
will have only one neighbor whose identifier begins with ¢ghurn versus bandwidth used. The results for median ses-
(its level-0 neighbor). Likewise, the node whose identifisfon times of 47 minutes are shown in Figure 13, which is
starts with 1 will have only one neighbor that starts witsplit into two graphs for clarity.
0. The set of neighbors in whose inverse neighbor setd-igure 13(a) shows several interesting results. First, we
the two isolated neighbors can find each other is thus vergte that only a little bit of global sampling is necessary
small. As such, until the two isolated nodes have foumal produce a drastic improvement in latency versus the

500

Global ——

@ No PNS -x & 340t
€ 450 | . NN oG £ '- Rand+NN e
= e NIN e = 3207 Rand+NIN ---e---
3 400 %o Global —+— o Rand+NN Recur-&--
c : S 300r¢
2 NN Recursive & o Rand+NIN Recur-—a---
S 350 NIN Recursive - S 280°
s &
& 300 o 260 e — —
* 0! = 240} ©
600 800 1000 1200 1400 600 800 1000 1200 1400
Bandwidth (bytes/s/node) Bandwidth (bytes/s/node)
(a) (b)

Figure 13: Comparison of PNS techniqgueSNo PNS” is the control case, where proximity is ignored. 664l
Sampling” uses the lookup function to sample all nodes ixkH&. “NN” is sampling our neighbor’s neighbors, and
“NIN” is sampling their inverse neighbors. The recursivesiens of “NN” and “NIN” mimic the nearest-neighbor
algorithms of Pastry and Tapestry, respectively. Notettiascales are different between the two figures.

configuration that is not using PNS. With virtually no in- Gummadi et al. [12] present a comprehensive analysis
crease in bandwidth, global sampling drops the mean td-the static resilience of the various DHT geometries. As
tency from 450 ms to 340 ms. we have argued earlier in this work, static resilience is an

Next, much to our surprise, we find that simple sanmportant first step in a DHT's ability to handle failures in
pling of our neighbor’s neighbors or inverse neighbors general and churn in particular.

not terribly effective. As we argued above, this result may | jsen-Nowell et al. [17] present a theoretical analysis
be in part due to the constraints of the routing table, byt structured peer-to-peer overlays from the point of view
we did not expect the effect to be so dramatic. On th¢ churn as a continuous process. They prove a lower
other hand, the recursive versions of both algorithms &§und on the maintenance traffic needed to keep such
at least as effective as global sampling, but not much mej&works consistent under churn, and show that Chord’s
so. This result agrees with the contention of Gummadi ggorithms are within a logarithmic factor of this bound.
al. that only a small amount of global sampling is neceghjs paper, in contrast, has focused more on the systems
sary to achieve near-optimal PNS. issues that arise in handling churn in a DHT. For example,
Figure 13(b) shows several combinations of the vaiire have observed what they call “false suspicions of fail-
ous algorithms. Global sampling plus sampling of neighyre”, the appearance that a functioning node has failed,

bors’ neighbors—the combination used in our earlighg shown how reactive failure recovery can exacerbate
work [23]—does well, offering a small decrease in lasych conditions.

tency without much additional bandwidth. However, the
other combinations offer similar results. At this point, i(t)f
seems prudent to say that the most effective technique i
combine global sampling with any other technique. Whi
there may be other differences between the techniques
revealed by this analysis, we see no clear reason to pr
one over another as yet.

Mahajan et al. [19] present a simulation-based analysis
Pastry in which they study the probability that a DHT
f\&%e will forward a lookup message to a failed node as
& function of the rate of maintenance traffic. They also
%Ltjsent an algorithm for automatically tuning the mainte-
&hce rate for a given failure rate. Since this algorithm
increases the rate of maintenance traffic in response to
losses, we are concerned that it may cause positive feed-
5 Reated Work back cycles like those we have observed in reactive re-
covery. Moreover, we believe their failure model is pes-

As we noted at the start of this paper, while DHTs ha@Mistic, as they do not consider hop-by-hop retransmis-
been the subject of much research in the last 4 yearsSns of lookup messages. By acknowledging lookup
s0, there have been few studies of the resilience of ré¥¢ssages on each hop, a DHT can route around failed
implementations at scale, perhaps because of the difficdl§ges in the middle of a lookup path, and in this work
of deploying, instrumenting, and creating workloads fd¥€ have shown that good timeout values can be computed
such deployments. However, there has been a substaf@aninimize the cost of such retransmissions.

amount of theoretical and simulation-based work. Castro et al. [7] presented a number of optimizations

they have performed in MSPastry, the Microsoft Researishmore Gaussian than the distribution of latencies mea-
implementation of Pastry, using simulations. Also, Li etured on the Internet. Unfortunately for our purposes,
al. [16] performed a detailed simulation-based analysistbese measured latency distributions do not include topol-
several different DHTs under churn, varying their paramegy information, and thus cannot be used to simulate the
ters to explore the latency-bandwidth tradeoffs present&ihd of network cross traffic that we have found important

It was their work that inspired our analysis of differenin this study. The existence of better topologies would be
PNS techniques. most welcome.

As opposed to the emulated network used in this studyln addition to more realistic network models, we would
simulations do not usually consider such network issuaso like to include more realistic models of churn in our
as queuing, packet loss, etc. By not doing so, they eittieture work. One idea that was suggested to us by an
simulate far larger networks than we have studied hereamnymous reviewer was to scale traces of session times
in [7, 19], or they are able to explore a far larger spacellected from deployed networks to produce a range of
of possible DHT configurations as in [16]. On the othethurn rates with a more realistic distribution. We would
hand, they do not reveal subtle issues in DHT desidike to explore this approach. Nevertheless, we believe
such as the tradeoffs between reactive and periodic recthat the effects of the factors we have studied are dramatic
ery. Also, they do not reveal the interactions of lookugnough that they will remain important even as our mod-
traffic and maintenance traffic in competing for networéls improve.
bandwidth. We are interested in whether a useful middleFinally, in this work we have only shown the resistance
ground exists between these approaches. of the Bamboaouting layer to churn, an important first

Finally, a number of useful features for handling chumstep verifying that DHTs are ready to become the domi-
have been proposed, but are not implemented by Bambaant building block for peer-to-peer systems, but a limited
For example, Kademlia [20] maintains several neighbarae. Clearly other issues remain. Security and possibly
for each routing table entry, ordered by the length of tiremonymity are two such issues, but we are unclear about
they have been neighbors. Newer nodes replace existirogv they relate to churn. We are currently studying the re-
neighbors only after failure of the latter. This design deailience to churn of the algorithms used by the Dstdr-
sion is aimed at mitigating the effects of the high “infardge layer. We hope that the existence of a routing layer
mortality” observed in peer-to-peer networks. that is robust under churn will provide a useful substrate

Another approach to handling churn is to introducean which these remaining issues may be studied.
hierarchy into the system, through stable “superpeers” [2,

29]. While an explicit hierarchy is a viable strategy for

handling load in some cases, this work has shown that Conclusion

a fully decentralized, non-hierarchical DHT can in fact

handle high rates of churn at the routing layer. In this work we have summarized the rates of churn ob-
served in deployed peer-to-peer systems and shown that
existing DHTs exhibit less than desirable performance at

6 FutureWork the higher end of these churn rates. We have presented
Bamboo and explored various design tradeoffs and their

As discussed in the introduction, there are several ottediects on its ability to handle churn.

limitations of this study that we think provide for impor- The design tradeoffs we studied in this work fall into

tant future work. At an algorithmic level, we would likethree broad categories: reactive versus periodic recov-

to study the effects of alternate routing table neighborsey from neighbor failure, the calculation of timeouts on

in Kademlia and Tapestry. We would also like to coneokup messages, and proximity neighbor selection. We

tinue our study of iterative versus recursive routing. Asave presented the danger of positive feedback cycles in

discussed by others [11], congestion control for iterativeactive recovery and discussed two ways to break such

lookups is a challenging problem. We have implementeycles. First, we can make the DHT much more cautious

Chord’s STP congestion control algorithm and are cuabout declaring neighbors failed, in order to limit the pos-

rently investigating its behavior under churn, but we dbility that we will be tricked into recovering a non-faylt

not yet have definitive results about its performance. node by network congestion. Second, we presented the

At a methodological level, we would like to broadetechnique of periodic recovery. Finally, we demonstrated
our study to include better models of network topologipat reactive recovery is less efficient than periodic recov
and churn. We have so far used only a single netwagky under reasonable churn rates when leaf sets are large,
topology in our work, and so our results should be nas they would be in a large system.
be taken as the last word on PNS. In particular, the dis-With respect to timeout calculation, we have shown that
tribution of internode latencies in our ModelNet topology CP-style timeout calculation performs best, but argued

that it is only appropriate for lookups performed recur{g] J. Chu, K. Labonte, and B. N. Levine. Availability and ity
sively. It has long been known that recursive routing pro- meé}sufl?mems of frz_eef'to'P‘i’%f file SyStemS-PI“W- of ITCom:
vides lower latency lookups than iterative, but this result] Sca as' 'Iiy and Traffic Eonlt(ro in 1P Nemorkg“yzooz'd

f . F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and |.i&io
presents a further _argument for recursive routing whété Wide-area cooperative storage with CFS. Amc. ACM SOSP
the lowest latency is important. However, we have also ¢t 2001
S_hown thaF while they are not.as effectlw_e as TCP'StSf_!ﬁ] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, Rni¥lor-
timeouts, timeouts based on virtual coordinates are quite ris. Designing a DHT for low latency and high throughput. In
reasonable under moderate rates of churn. This result in- Proc. NSD) 2004.
dicates that at least with respect to timeouts, iteratiue-ro[12] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker,
ing should not be infeasible under moderate churn. and . Stqcﬂa. The impact of DHT routing geometry on resilience

Concernin roximity neighbor selection, we have and proximity. InProc. ACM SIGCOMMAug. 2003.

h that gl E | y i 9 id '240/ du[é.B] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.{,ev
Sf Own at gio a_ samp |ng' can PVOY' €a ; ore " and J. Zahorjan. Measurement, modeling, and analysis of a peer
tion in latency for virtually no increase in bandwidth used. to-peer file-sharing workload. IRroc. ACM SOSPOct. 2003.

) 2] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Disute
By using an additional 40% more bandwidth, a 42% d ild biatowi d h istited
crease in latency can be achieved. Other techniques are object location in a dynamic network. Rroc. SPAA2002.
also effective, especially our adaptations of the Pasttly gm5s] V. Jacobson and M. J. Karels. Congestion avoidance anttal.
Tapestry nearest-neighbor algorithms, but not much more !n Proc. ACM SIGCOMM1988.
so than Simp|e g|0ba| samp”ng_ Mere|y Samp”ng ouite] J. L.i, J. Stribling, T. M. Gil, R Morris, and F. KaashaekCom-
neighbors’ neighbors or inverse neighbors is not very ef- g?é'é‘%g}ig%%rfance of distributed hash tables undemchiar
fe.Ctlve In comparison. Some cpmbmatlon of gIObaI. Sarﬁ{@ D. Liben-Nowell, H. Balakrishnan, and D. Karger. Ansily of
pling an any of the other techniques seems to provide

the evolution of peer-to-peer systems.RAroc. ACM PODGC July
best performance at the least cost. 2002.

[18] B.T.Loo, R. Huebsch, I. Stoica, and J. Hellerstein. Tase for a
hybrid P2P search infrastructure. Pnoc. IPTPS 2004.
8 ACk nOWIedgmentS [19] R. Mahajan, M. Castro, and A. Rowstron. Controlling tust of
reliability in peer-to-peer overlays. Rroc. IPTPS Feb. 2003.
We would like to thank a number of people for their helpo) p. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer i
with this work. Our shepherd, Atul Adya, and the anony- formation system based on the XOR metricPioc. IPTP$2002.
mous reviewers all provided valuable comments and guielt] C. Plaxton, R. Rajaraman, and A. Richa. Accessing neaopjes
ance. Frank Dabek helped us tune our Vivaldi implemen- of replicated objects in a distributed environmentPhoc. of ACM
tation, and he and Emil Sit helped us get Chord up anczi] iP:AJ“”e 199;.F o Handlen R_K I
: : - - 2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. |&he
runnl_ng. ,le,eWISe’ Peter Druschel pr'owded valuable d@ scalable content-addressable networkPtac. ACM SIGCOMM
bl_Jggmg insight for Fr_eePastry. David Becker helped us aug. 2001.
with ModelNet. Sylvia Ratnasamy, Scott Shenker, amgh) s Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Hagahum
lon Stoica provided valuable guidance at several stages of in a DHT. Technical Report UCB//CSD-03-1299, University of
this paper’s development. California, Berkeley, December 2003.
[24] A. Rowstron and P. Druschel. Pastry: Scalable, distetl object
location and routing for large scale peer-to-peer systemBrdc.

References of IFIP/ACM Middleware Nov. 2001.

[25] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement

[1] Freepastry 1.3. study of peer-to-peer file sharing systems.Phoc. MMCN Jan.

http://www.cs.rice.edu/CS/Systems/Pastry/. 2002.
[2] Gnutella.http://www.gnutella.com/. [26] S.SenandJ. Wang. Analyzing peer-to-peer traffic adarge net-
[3] Inettopology generator. works. InProc. of ACM SIGCOMM Internet Measurement Work-
http://topology.eecs.umich.edu/inet/. shop Nov. 2002.
[4] MIT Chord. http://wuw.pdos.1lcs.mit.edu/chord/. [27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.d&a-

ishnan. Chord: A scalable peer-to-peer lookup servicerfarhet
applications. IrProc. ACM SIGCOMMAug. 2001.

[28] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, and D. Becker. Scalability and accuracy in a lscge
network emulator. IiProc. OSD| Dec. 2002.

B. Y. Zhao, Y. Duan, L. Huang, A. D. Joseph, and J. D. Ktiia
icz. Brocade: Landmark routing on overlay networks. Piroc.
IPTPS March 2002.

(8] "\\"A TChaS,”O' mv\? Jone(sj' AA\;vMi Ke"“z”ecv IA- _ROWfS”O”IBO] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Jdseand
- Theimer, H. Wang, and A. Wolman. An evaluation of scal> = ; 'n "k hiatowicz. Tapestry: A resilient global-scale dagrfor

able application-level multicast built using peer-to-peeerlays. service deploymentEEE JSAG 22(1):41-53, Jan. 2004
Apr. 2003. ' T '

[5] R.Bhagwan, S. Savage, and G. Voelker. Understandinipmla
ity. In Proc. IPTPS Feb. 2003.

[6] C. Blake and R. Rodrigues. High availability, scalabterage,
dynamic peer networks: Pick two. 2003.

[7] M. Castro, M. Costa, and A. Rowstron. Performance and gpe [29]
ability of structured peer-to-peer overlays. Technicgd®&eMSR-
TR-2003-94, Microsoft, 2003.

