
USENIX Association

Proceedings of the General Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Dynamic Instrumentation of Production Systems

Bryan M. Cantrill, Michael W. Shapiro and Adam H. Leventhal
Solaris Kernel Development

Sun Microsystems
{bmc, mws, ahl}@eng.sun.com

Abstract

This paper presents DTrace, a new facility for dynamic
instrumentation of production systems. DTrace features
the ability to dynamically instrument both user-level and
kernel-level software in a unified and absolutely safe
fashion. When not explicitly enabled, DTrace has zero
probe effect — the system operates exactly as if DTrace
were not present at all. DTrace allows for many tens
of thousands of instrumentation points, with even the
smallest of systems offering on the order of 30,000 such
points in the kernel alone. We have developed a C-like
high-level control language to describe the predicates
and actions at a given point of instrumentation. The lan-
guage features user-defined variables, including thread-
local variables and associative arrays. To eliminate the
need for most postprocessing, the facility features a scal-
able mechanism for aggregating data and a mechanism
for speculative tracing. DTrace has been integrated into
the Solaris operating system and has been used to find
serious systemic performance problems on production
systems — problems that could not be found using pre-
existing facilities.

1 Introduction

As systems grow larger and more complicated, perfor-
mance analysis is increasingly performed by the system
integrator in production rather than by the developer in
development. Trends towards componentization and ap-
plication consolidation accelerate this change: system
integrators increasingly combine off-the-shelf compo-
nents in ways that the original developers did not antic-
ipate. Performance analysis infrastructure has generally
not kept pace with the shift to in-production performance
analysis: the analysis infrastructure is still focussed on
the developer, on development systems, or both. And
where performance analysis infrastructureis designed
for production use, it is almost alwaysprocess-centric
— and therefore of little help in understanding systemic
problems.

To be acceptable for use on production systems, perfor-

mance analysis infrastructure must have zero probe ef-
fect when disabled, and must be absolutely safe when
enabled. That is, its mere presence must not make the
system any slower, and there must be no way to acciden-
tally induce system failure through misuse. To have sys-
temic scope, the entire system must be instrumentable,
and there must exist ways to easily coalesce data to high-
light systemic trends.

We have developed a facility for systemic dynamic in-
strumentation that can gather and coalesce arbitrary
data on production systems. This facility — DTrace
— has been integrated into Solaris and is publicly
available[12]. DTrace features:

• Dynamic instrumentation. Static instrumentation
always induces some disabled probe effect; to
achieve the zero disabled probe effect required for
production use, DTrace usesonly dynamic instru-
mentation. When DTrace is not in use, the system
is just as if DTrace were not present at all.

• Unified instrumentation. DTrace can dynamically
instrument both userand kernel-level software,
and can do so in aunified manner whereby both
data and control flow can be followed across the
user/kernel boundary.

• Arbitrary-context kernel instrumentation. DTrace
can instrument virtually all of the kernel, including
delicate subsystems like the scheduler and synchro-
nization facilities.

• Data integrity. DTrace always reports any errors
that prevent trace data from being recorded. In the
absence of such errors, DTraceguaranteesdata in-
tegrity: there are no windows in which recorded
data can be silently corrupted or lost.

• Arbitrary actions. The actions taken at a given point
of instrumentation are not defined or limiteda pri-
ori — the user can enable any probe with an arbi-
trary set of actions. Moreover, DTrace guarantees

absolute safety of user-defined actions: run-time er-
rors such as illegal memory accesses are caught and
reported.

• Predicates. A logical predicate mechanism allows
actions to be taken only when user-specified condi-
tions are met, thereby pruning unwanted dataat the
source. DTrace thus avoids retaining, copying and
storing data that will ultimately be discarded.

• A high-level control language. Predicates and ac-
tions are described in a C-like language — dubbed
“D” — that supports all ANSI C operators and
allows access to the kernel’s variables and native
types. D offers user-defined variables, including
global variables, thread-local variables, and asso-
ciative arrays. D also supports pointer dereferenc-
ing; coupled with the run-time safety mechanisms
of DTrace, structure chains can be safely traversed
in a predicate or action.

• A scalable mechanism for aggregating data.
DTrace allows data to be aggregated based on an ar-
bitrary tuple of D expressions. The mechanism co-
alesces data as it is generated, reducing the amount
of data that percolates through the framework by a
factor of the number of data points. By allowing ag-
gregation based on D expressions, DTrace permits
users to aggregate by virtually anything.

• Speculative tracing. DTrace has a mechanism for
speculatively tracing data, deferring the decision to
commit or discard the data to a later time. This fea-
ture eliminates the need for most post-processing
when exploring sporadic aberrant behavior.

• Heterogeneous instrumentation. Tracing frame-
works have historically been designed around a
single instrumentation methodology. In DTrace,
the instrumentation providers are formally sepa-
rated from the probe processing framework by a
well-specified API, allowing novel dynamic instru-
mentation technologies to plug into and exploit the
common framework.

• Scalable architecture. DTrace allows for many
tens of thousands of instrumentation points (even
the smallest systems typically have on the order
of 30,000 such points) and provides primitives for
subsets of probes to be efficiently selected and en-
abled.

• Virtualized consumers. Everything about DTrace is
virtualized per consumer: multiple consumers can
enable the same probe in different ways, and a sin-
gle consumer can enable a single probe in different

ways. There is no limit on the number of concur-
rent DTrace consumers.

The remainder of this paper describes DTrace in detail.
In Section 2, we discuss related work in the area of dy-
namic instrumentation. Section 3 provides an overview
of the DTrace architecture. Section 4 describes some of
the instrumentation providers we have implemented for
DTrace. Section 5 describes the D language. Section 6
describes the DTrace facility for aggregating data. Sec-
tion 7 describes the user-level instrumentation provided
by DTrace. Section 8 describes the DTrace facility for
speculative tracing. Section 9 describes in detail a pro-
duction performance problem that was root-caused us-
ing DTrace. Finally, Section 10 discusses future work
and Section 11 provides our conclusions.

2 Related work

The notion of safely augmenting operating system ex-
ecution with user-specified code has been explored in
extensible systems like VINO[10] and SPIN[2]. More
generally, the notion of augmenting execution with code
has been explored in aspect-oriented programming sys-
tems like AspectJ[6]. However, these systems were de-
signed to allow the user toextendthe system or appli-
cation where DTrace is designed to allow the user to
simply understandit. So where the extensible systems
allow much more general purpose augmentation, they
have many fewer (if any) primitives for understanding
system behavior.

Systems like ATOM[11] and Purify[3] instrument pro-
grams for purposes of understanding them, but these
systems fundamentally differ from DTrace in that they
are static — they operate by instrumenting the binary
off-line and running the instrumented binary in lieu of
the original binary. Moreover, these static instrumenta-
tion systems don’t provide systemic insight: they can-
not integrate instrumentation from disjoint applications,
and they are generally unable to instrument the operating
system whatsoever. Even in the confines of their domain
of single application instrumentation, these systems are
inappropriate for production environments: in these en-
vironments, application restart represents an unaccept-
able lapse in service.

There is a large body of work dedicated to systemic
and dynamic instrumentation. Some features of DTrace,
like predicates, were directly inspired by other work[8].
Some other features, like the idea of a higher-level lan-
guage for system monitoring, exist elsewhere[1, 4, 9] —
but DTrace has made important new contributions like
thread-local variables and associative arrays. Other fea-

tures, like aggregations, exist only in rudimentary form
elsewhere[1, 4]; DTrace has advanced these ideas sig-
nificantly. And some features, like speculative tracing,
don’t seem to exist in any form in any of the prior work.

2.1 Linux Trace Toolkit

The Linux Trace Toolkit (LTT) is designed around a
traditional static instrumentation methodology that in-
duces a non-zero (but small) probe effect for each in-
strumentation point[16]. To keep the overall disabled
probe effect reasonably low, LTT defines only a limited
number of instrumentation points — comprising approx-
imately 45 events. LTT cannot take arbitrary actions
(each statically-defined event defines an event-specific
“detail”), and lacks any sort of higher-level language to
describe such actions. LTT has a coarse mechanism for
pruning data, whereby traced events may be limited only
to those pertaining to a given PID, process group, GID
or UID, but no other predicates are possible. As LTT has
few mechanisms for reducing the data flow via pruning
or coalescing, substantial effort has naturally gone into
optimizing the path of trace data from the kernel to user-
level[17].

2.2 DProbes

DProbes is a facility originally designed for OS/2 that
was ported to Linux and subsequently expanded[9]. Su-
perficially, DProbes and DTrace have some similar at-
tributes: both are based on dynamic instrumentation
(and thus both have zero probe effect when not enabled)
and both define a language for arbitrary actions as well
as a simple virtual machine to implement them. How-
ever, there are significant differences. While DProbes
uses dynamic instrumentation, it uses a technique that
is lossy when a probe is hit simultaneously on differ-
ent CPUs. While DProbes has user-defined variables, it
lacks thread-local variables and associative arrays. Fur-
ther, it lacks any mechanism for data aggregation, and
has no predicate support. And while DProbes has made
some safety considerations (for example, invalid loads
are handled through an exception mechanism), it was not
designed with absolute safety as a constraint; misuse of
DProbes can result in a system crash.1

2.3 K42

K42 is a research kernel that has its own static instru-
mentation framework[14]. K42’s instrumentation has
many of LTT’s limitations (statically defined actions, no

1Examples of such misuse include erroneously specifying a non-
instruction boundary to instrument or specifying an action that incor-
rectly changes register values.

facilities for data reduction, etc.), but — as in DTrace —
thought has been given in K42 to instrumentation scala-
bility. Like DTrace, K42 has lock-free, per-CPU buffer-
ing — but K42 implements it in a way that sacrifices the
integrity of traced data.2 Recently, the scalable tracing
techniques from K42 have been integrated into LTT, pre-
sumably rectifying LTT’s serious scalability problems
(albeit at the expense of data integrity).

2.4 Kerninst

Kerninst is a dynamic instrumentation framework that
is designed for use on commodity operating system
kernels[13]. Kerninst achieves zero probe effect when
disabled, and allows instrumentation of virtually any text
in the kernel. However, Kerninst is highly aggressive in
its instrumentation; users can erroneously induce a fatal
error by accidentally instrumenting routines that are not
actually safe to instrument.3 Kerninst allows for some
coalesence of data, but data may not be aggregated based
on arbitrary tuples. Kerninst has some predicate support,
but it does not allow for arbitrary predicates and has no
support for arbitrary actions.

3 DTrace Architecture

The core of DTrace — including all instrumentation,
probe processing and buffering — resides in the kernel.
Processes become DTraceconsumersby initiating com-
munication with the in-kernel DTrace component via the
DTrace library. While any program may be a DTrace
consumer,dtrace(1M) is the canonical DTrace con-
sumer: it allows generalized access to all DTrace facili-
ties.

3.1 Providers and Probes

The DTrace framework itself performs no instrumenta-
tion of the system; that task is delegated to instrumen-
tationproviders. Providers are loadable kernel modules
that communicate with the DTrace kernel module using
a well-defined API. When they are instructed to do so
by the DTrace framework, instrumentation providers de-
termine points that they can potentially instrument. For
every point of instrumentation, providers call back into
the DTrace framework to create aprobe. To create a
probe the provider specifies the module name and func-
tion name of the instrumentation point, plus a semantic

2For example, rescheduling during data recording can silently cor-
rupt the data buffer.

3In particular, Kerninst on SPARC makes no attempt to recognize
text as being executed at TL=1 or TL>1 — two highly constrained
contexts in the SPARC V9 architecture. Instrumenting such text with
Kerninst induces an operating system panic. This has been communi-
cated to Miller et al.; a solution is likely forthcoming[7].

name for the probe. Each probe is thus uniquely identi-
fied by a 4-tuple:

< provider,module, function, name >

Probe creation doesnot instrument the system: it simply
identifies a potential for instrumentation to the DTrace
framework. When a provider creates a probe, DTrace
returns aprobe identifierto the provider.

Probes are advertised to consumers, who can enable
them by specifying any (or all) elements of the 4-tuple.
When a probe is enabled, anenabling control block
(ECB) is created and associated with the probe. If there
are no other ECBs associated with the probe (that is,
if the probe is disabled), the DTrace framework calls
the probe’s provider to enable the probe. The provider
dynamically instruments the system in such a way that
when the probe fires, control is transferred to an entry
point in the DTrace framework with the probe’s identi-
fier specified as the first argument. A key attribute of
DTrace is that there are no constraints as to the context
of a firing probe: the DTrace framework itself is non-
blocking and makes no explicit or implicit calls into the
kernel at-large.

When a probe fires and control is transferred to the
DTrace framework, interrupts are disabled on the cur-
rent CPU, and DTrace performs the activities specified
by each ECB on the probe’s ECB chain. Interrupts are
then reenabled and control returns to the provider. The
provider itself need not handle any multiplexing of con-
sumers on a single probe — all multiplexing is handled
by the framework’s ECB abstraction.

3.2 Actions and Predicates

Each ECB may have an optional predicate associated
with it. If an ECB has a predicate and the condition
specified by the predicate is not satisfied, processing ad-
vances to the next ECB. Every ECB has a list of actions;
if the predicate is satisfied, the ECB is processed by it-
erating over its actions. If an action indicates data to be
recorded, the data is stored in the per-CPU buffer asso-
ciated with the consumer that created the ECB; see Sec-
tion 3.3. Actions may also update D variable state; user
variables are described in more detail in Section 5. Ac-
tions maynot store to kernel memory, modify registers,
or make otherwise arbitrary changes to system state.4

4There do exist some actions that change the state of the system,
but they change state only in a well-defined way (e.g. stopping the
current process, or inducing a kernel breakpoint). These destructive
actions are only permitted to users with sufficient privilege, and can be
disabled entirely.

3.3 Buffers

Each DTrace consumer has a set of in-kernel per-CPU
buffers allocated on its behalf and referred to by its con-
sumer state. The consumer state is in turn referred to by
each of the consumer’s ECBs; when an ECB action indi-
cates data to be recorded, it is recorded in the ECB con-
sumer’s per-CPU buffer. The amount of data recorded
by a given ECB is alwaysconstant. That is, different
ECBs may record different amounts of data, but a given
ECB always records the same quantity of data. Before
processing an ECB, the per-CPU buffer is checked for
sufficient space; if there is not sufficient space for the
ECB’s data recording actions, a per-bufferdrop countis
incremented and processing advances to the next ECB.

It is up to consumers to minimize drop counts by read-
ing buffers periodically.5 Buffers are read out of the
kernel using a mechanism that both maintains data in-
tegrity and assures that probe processing remains wait-
free. This is done by having two per-CPU buffers: an
active buffer and an inactive buffer. When a DTrace con-
sumer wishes to read the buffer for a specified CPU, a
cross-call is made to the CPU. The cross-call, which ex-
ecutes on the specified CPU, disables interrupts on the
CPU, switches the active buffer with the inactive buffer,
reenables interrupts and returns. Because interrupts are
disabled in both probe processing and buffer switching
(and because buffer switching always occurs on the CPU
to be switched), an ordering is assured: buffer switch-
ing and probe processing cannot possibly interleave on
the same CPU. Once the active and inactive buffers have
been switched, the inactive buffer is copied out to the
consumer.

The data record layout in the per-CPU buffer is anen-
abled probe identifier(EPID) followed by some amount
of data. An EPID has a one-to-one mapping with an
ECB, and can be used to query the kernel for the size
and layout of the data stored by the corresponding ECB.
Because the data layout for a given ECB is guaranteed to
be constant over the lifetime of the ECB, the ECB meta-
data can be cached at user-level. This design separates
the metadata stream from the data stream, simplifying
run-time analysis tools considerably.

3.4 DIF

Actions and predicates are specified in a virtual machine
instruction set that is emulated in the kernel at probe
firing time. The instruction set, “D Intermediate For-
mat” or DIF, is a small RISC instruction set designed
for simple emulation and on-the-fly code generation. It

5Consumers may also reduce drops by increasing the size of in-
kernel buffers.

features 64-bit registers, 64-bit arithmetic and logical in-
structions, comparison and branch instructions, 1-, 2-, 4-
and 8-byte memory loads from kernel and user space,
and special instructions to access variables and strings.
DIF is designed for simplicity of emulation. For exam-
ple, there is only one addressing mode and most instruc-
tions operate only on register operands.

3.5 DIF Safety

As DIF is emulated in the context of a firing probe, it is a
design constraint that DIF emulation be absolutely safe.
To assure basic sanity, opcodes, reserved bits, registers,
string references and variable references are checked for
validity as the DIF is loaded into the kernel. To prevent
DIF from inducing an infinite loop in probe context, only
forward branches are permitted. This safety provision
may seem draconian — it eliminates loops altogether —
but in practice we have not discovered it to present a
serious limitation.6

Run-time errors like illegal loads or division by zero can-
not be detected statically; these errors are handled by the
DIF virtual machine. Misaligned loads and division by
zero are easily handled — the emulator simply refuses
to perform such operations. (Any attempt to perform
such an operation aborts processing of the current ECB
and results in a run-time error that is propagated back to
the DTrace consumer.) Similarly, loads from memory-
mapped I/O devices (where loads may have undesirable
or dangerous side effects) are prevented by checking that
the address of a DIF-directed load does not fall within
the virtual address range that the kernel reserves for
memory-mapped device registers.

Loads from unmapped memory are more complicated to
prevent, however, because it is not possible to probe VM
data structures from probe firing context. When the em-
ulation engine attempts to perform such a load, a hard-
ware fault will occur. The kernel’s page fault handler
has been modified to check if the load is DIF-directed;
if it is, the fault handler sets a per-CPU bit to indicate
that a fault has occurred, and increments the instruction
pointer past the faulting load. After emulating each load,
the DIF emulation engine checks for the presence of the
faulted bit; if it is set, processing of the current ECB is
aborted and the error is reported to the user. This mech-
anism adds some processing cost to the kernel’s page
fault path, but the cost is so small relative to the total
processing cost of a page fault that the effect on system
performance is nil.

6DProbes addressed this problem by allowing loops but introducing
a user-tunable, “jmpmax,” as an upper-bound on the number of jumps
that a probe handler may make.

4 Providers

By formally separating instrumentation providers from
the core framework, DTrace is able to accommodate
heterogeneous instrumentation methodologies. Further,
as future instrumentation methodologies are developed,
they can be easily plugged in to the DTrace frame-
work. We have implemented twelve different instrumen-
tation providers that between them offer observability
into many aspects of the system. While the providers
employ different instrumentation methodologies,all of
the DTrace providers have no observable probe effect
when disabled. Some of the providers are introduced
below, but the details of their instrumentation method-
ologies are largely beyond the scope of this paper.

4.1 Function Boundary Tracing

The Function Boundary Tracing (FBT) provider makes
available a probe upon entry to and return from nearly
every function in the kernel. As there are many func-
tions in the kernel, FBT provides many probes — even
on the smallest systems, FBT will provide more than
25,000 probes. As with other DTrace providers, FBT
has zero probe effect when it is not explicitly enabled,
and when enabled only induces a probe effect in probed
functions. While the mechanism used for the implemen-
tation of FBT is highly specific to the instruction set ar-
chitecture, FBT has been implemented on both SPARC
and x86.

On SPARC, FBT works by replacing an instruction
with an unconditional annulled branch-always (ba,a)
instruction. The branch redirects control flow into an
FBT-controlled trampoline, which prepares arguments
and transfers control into DTrace. Upon return from
DTrace, the replaced instruction is executed in the tram-
poline before transferring control back to the instru-
mented code path. This is a similar mechanism to that
used by Kerninst[13] — but it is at once less general
(it instruments only function entry and return) and com-
pletely safe (it will never erroneously instrument code
executed at TL>0).

On x86, FBT uses a trap-based mechanism that replaces
one of the instructions in the sequence that establishes a
stack frame (or one of the instructions in the sequence
that dismantles a stack frame) with an instruction to
transfer control to the interrupt descriptor table (IDT).
The IDT handler uses the trapping instruction pointer
to look up the FBT probe and transfers control into
DTrace. Upon return from DTrace, the replaced instruc-
tion is emulatedfrom the trap handler by manipulating
the trap stack. The use of emulation (instead of instruc-
tion rewriting and reexecution) assures that FBT does

not suffer from the potential lossiness of the DProbes
mechanism.

4.2 Statically-defined Tracing

While FBT allows for comprehensive probe coverage,
one must be familiar with the kernel implementation to
use it effectively. To have probes with semantic mean-
ing, one must allow probes to be statically declared in
the implementation. The mechanism for implementing
this is typically a macro that expands to a conditional
call into a tracing framework if tracing is enabled[16].
While the probe effect of this mechanism is small, it is
observable: even when disabled, the expanded macro in-
duces a load, a compare and a taken branch.

In keeping with our philosophy of zero probe ef-
fect when disabled, we have implemented a statically-
defined tracing (SDT) provider by defining a C macro
that expands to a call to a non-existent function with
a well-defined prefix (“ dtrace probe ”). When the
kernel linker sees a relocation against a function with
this prefix, it replaces the call instruction with a no-
operation and records the full name of the bogus func-
tion along with the location of the call site. When the
SDT provider loads, it queries this auxiliary structure
and creates a probe with a name specified by the func-
tion name. When an SDT probe is enabled, the no-
operation at the call site is patched to be a call into
an SDT-controlled trampoline that transfers control into
DTrace.

In principle, this provider induces a disabled probe ef-
fect: while the call site is replaced with a no-operation,
the compiler must nonetheless treat the call site as a
transfer of control into an unknown function. As a result,
this mechanism can induce disabled probe effect by cre-
ating artificial register pressure. However, by carefully
placing SDT probes near extant calls to functions, this
disabled probe effect can be made so small as to be un-
observable. Indeed, we have added over 150 such sites to
the Solaris kernel, and have been unable to measure any
performance difference — even on microbenchmarks
designed to highlight any disabled probe effect.

4.3 Lock Tracing

The lockstat provider makes available probes that
can be used to understand virtually any aspect of ker-
nel synchronization behavior. Thelockstat provider
works by dynamically rewriting the kernel functions
that manipulate synchronization primitives. As with all
other DTrace providers, this instrumentation only oc-
curs as probes are explicitly enabled; thelockstat
provider induces zero probe effect when not enabled.

Thelockstat provider’s instrumentation methodology
has existed in Solaris for quite some time — it has his-
torically been the basis for thelockstat(1M) com-
mand. As such, thelockstat provider is particularly
useful for understanding kernel resource contention.
As part of the DTrace work, the in-kernel component
was augmented to become thelockstat provider, the
lockstat command was reimplemented as a DTrace
consumer, and the legacy custom-built, single-purpose
data-processing framework was discarded.

4.4 System Call Tracing

The syscall provider makes available a probe at the
entry to and return from each system call in the sys-
tem. As system calls are the primary interface between
user-level applications and the operating system kernel,
thesyscall provider can offer tremendous insight into
application behavior with respect to the system. The
syscall provider works by dynamically rewriting the
corresponding entry in the system call table when a
probe is enabled.

4.5 Profiling

The providers described above provide probes that are
anchored to specific points in text. However, DTrace
also allows forunanchored probes— probes that are
not associated with any particular point of execution but
rather with some asynchronous event source. Among
these is theprofile provider, for which the event
source is a time-based interrupt of specified interval.
These probes can be used to sample some aspect of
system state every specified unit of time, and the sam-
ples can then be used to infer system behavior. Given
the arbitrary actions that DTrace supports, theprofile
provider can be used to sample practically any datum in
the system. For example, one could sample the state of
the current thread, the state of the CPU, the current stack
trace, or the current machine instruction.

5 D Language

DTrace users can specify arbitrary predicates and ac-
tions using the high-level D programming language. D
is a C-like language that supports all ANSI C opera-
tors and allows access to the kernel’s native types and
global variables. D includes support for several kinds
of user-defined variables, including global, clause-local,
and thread-local variables and associative arrays. D pro-
grams are compiled into DIF by a compiler implemented
in the DTrace library; the DIF is then bundled into an
in-memory object file representation and sent to the in-
kernel DTrace framework for validation and probe en-

abling. Thedtrace(1M) command provides a generic
front-end to the D compiler and DTrace, but other lay-
ered tools can be built on top of the compiler library as
well, such as the new implementation oflockstat(1M)
described earlier.

5.1 Program Structure

A D program consists of one or moreclausesthat de-
scribe the instrumentation to be enabled by DTrace.
Each probe clause has the form:

probe-descriptions
/predicate/
{

action-statements
}

Probe descriptions are specified using the form
provider:module:function:name. Omitted fields match
any value, andsh(1) globbing syntax is supported. The
predicate and action statements may each be optionally
omitted.

D uses a program structure similar toawk(1) because
tracing programs resemble pattern matching programs in
that execution order does not follow traditional function-
oriented program structure; instead, execution order is
defined by a set of external inputs and the tracing pro-
gram “reacts” by executing the predefined matching
clauses. During internal testing, the meaning of this pro-
gram form was immediately obvious to UNIX develop-
ers and permitted rapid adoption of the language.

5.2 Types, Operators and Expressions

As C is the language of UNIX, D is designed to form a
companion language to C for use in dynamic tracing. D
predicates and actions are written identically to C lan-
guage statements, and all of the ANSI C operators can
be used and follow identical precedence rules. D also
supports all of the intrinsic C data types,typedef, and
the ability to definestruct, union, andenum types.
Users are also permitted to define and manipulate their
own variables, described shortly, and access a set of pre-
defined functions and variables provided by DTrace.

The D compiler also makes use of C source type and
symbol information provided by a special kernel service,
allowing D programmers to access C types and global
variables defined in kernel source code without declaring
them. The FBT provider exports the input arguments
and return values of kernel functions to DTrace when
its probes fire, and the C type service also allows the
D compiler to automatically associate these arguments

with their corresponding C data types in a D program
clause that matches an FBT probe.

Unlike a traditional C source file, a D source file may
access types and symbols from a variety of separate
scopes, including the core kernel, multiple loadable ker-
nel modules, and any type and variable definitions pro-
vided in the D program itself. To manage access to ex-
ternal namespaces, the backquote (‘) character can be
inserted in symbol and type identifiers to reference the
namespace denoted by the identifier preceding the back-
quote. For example, the typestruct foo‘bar would
name the C typestruct bar in a kernel module named
foo, and the identifier‘rootvp would match the ker-
nel global variablerootvp and would have the type
vnode t * automatically assigned to it by the D com-
piler.

5.3 User Variables

D variables can be declared using C declaration syntax in
the outer scope of the program, or they can be implicitly
defined by assignment statements. When variables are
defined by assignment, the left-hand identifier is defined
and assigned the type of the right-hand expression for
the remainder of the program. Our experience showed
that D programs were rapidly developed and edited and
often written directly on thedtrace(1M) command-
line, so users benefited from the ability to omit decla-
rations for simple programs.

5.4 Variable Scopes

In addition to global variables, D programs can cre-
ateclause-localand thread-localvariables of any type.
Variables from these two scopes are accessed using the
reserved prefixesthis-> andself-> respectively. The
prefixes serve to both separate the variable namespaces
and to facilitate their use in assignment statements with-
out the need for prior declaration. Clause-local variables
access storage that is re-used across the execution of D
program clauses, and are used like C automatic vari-
ables. Thread-local variables associate a single variable
name with separate storage for each operating system
thread, including interrupt threads.

Thread-local variables are used frequently in D to as-
sociate data with a thread performing some activity of
interest. As an example, Figure 1 contains a script that
uses thread-local variables to output the amount of time
that a thread spends in aread(2) system call.

syscall::read:entry

{

self->t = timestamp;

}

syscall::read:return

/self->t/

{

printf("%d/%d spent %d nsecs in read\n",

pid, tid, timestamp - self->t);

}

Figure 1: A script that uses a thread-local variable to out-
put the amount of time that a thread spends in aread(2) sys-
tem call. The thread-local variableself->t is instantiated
on-demand when any thread fires thesyscall::read:entry

probe and is assigned the value of the built-intimestamp vari-
able; the program then computes the time difference when the
system call returns. As with recorded data, DTrace reports any
failure to allocate a dynamic variable so data is never silently
lost.

5.5 Associative Arrays

D programs can also create associative array variables
where each array element is indexed by a tuple of
expression values and data elements are created on-
demand. For example, the D program statementa[123,
"hello"] = 456 defines an associative arraya with tu-
ple signature[int, string] where each element is
an int, and then assigns the value 456 to the element
indexed by tuple[123, "hello"]. D supports both
global and thread-local associative arrays. As in other
languages such as Perl, associative arrays permit D pro-
grammers to easily create and manage complex dictio-
nary data structures without requiring them to manage
memory and write lookup routines.

5.6 Strings

D provides a built-instring type to resolve the ambi-
guity of the Cchar* type, which can be used to repre-
sent an arbitrary address, the address of a single charac-
ter, or the address of a NUL-terminated string. The D
string type acts like the C typechar [n] wheren is
a fixed string limit that can be adjusted at compile-time.
The string limit is also enforced by the DTrace in-kernel
component, so that it can provide built-in functions such
asstrlen() and ensure finite running time when an in-
valid string address is specified. D permits strings to
be copied using the= operator and compared using the
relational operators. D implicitly promoteschar* and
char[] to string appropriately.

6 Aggregating Data

When instrumenting the system to answer performance-
related questions, it is often useful to think not in terms
of data gathered by individual probes, but rather how that
data can be aggregated to answer a specific question. For
example, if one wished to know the number of system
calls by user ID, one would not necessarily care about
the datum collected ateachsystem call — one simply
wants to see a table of user IDs and system calls. Histor-
ically, this question has been answered by gathering data
at each system call, and postprocessing the data using a
tool like awk(1) orperl(1). However, in DTrace the ag-
gregating of data is a first-class operation, performedat
the source.

6.1 Aggregating Functions

We define anaggregating functionto be one that has the
following property:

f(f(x0)∪ f(x1)∪ ...∪ f(xn)) = f(x0 ∪ x1 ∪ ...∪ xn)

wherexn is a set of arbitrary data. That is, applying an
aggregating function to subsets of the whole and then
applying it again to the set of results gives the same re-
sult as applying it to the whole itself. Many common
functions for understanding a set of data are aggregating
functions, including counting the number of elements in
the set, computing the maximum value of the set, and
summing all elements in the set. Not all functions are
aggregating functions, however; computing the mode
and computing the median are two examples of non-
aggregating functions.

Applying aggregating functions to datain situ has a
number of advantages:

• The entire data set need not be stored. Whenever a
new element is to be added to the set, the aggregat-
ing function is calculated given the set consisting
of the current intermediate result and the new ele-
ment. After the new result is calculated, the new el-
ement may be discarded. This reduces the amount
of storage required by a factor of the number of data
points — which is often quite large.

• A scalable implementation is allowed. One does
not wish for data collection to induce pathological
scalability problems. Aggregating functions allow
for intermediate results to be keptper-CPUinstead
of in a shared data structure. When a system-wide
result is desired, the aggregating function may then
be applied to the set consisting of the per-CPU in-
termediate results.

6.2 Aggregations

DTrace implements aggregating functions asaggrega-
tions. An aggregation is a named structure indexed by
ann-tuple that stores the result of an aggregating func-
tion. In D, the syntax for an aggregation is:

@identifier[keys] = aggfunc(args);

whereidentifier is an optional name of the aggregation,
keysis a comma-separated list of D expressions,aggfunc
is one of the DTrace aggregating functions andargs is
a comma-separated list of arguments to the aggregating
function. (Most aggregating functions take just a single
argument that represents the new datum.)

For example, the following DTrace script counts
write(2) system calls by application name:

syscall::write:entry

{

@counts[execname] = count();

}

By default, aggregation results are displayed when
dtrace(1M) terminates. (This behavior may be
changed by explicitly controlling aggregation output
with the printa function.) Assuming the above were
named “write.d”, running it might yield:

dtrace -s write.d

dtrace: script ’write.d’ matched 1 probe

^C

dtrace 1

cat 4

sed 9

head 9

grep 14

find 15

tail 25

mountd 28

expr 72

sh 291

tee 814

sshd 1996

make.bin 2010

In the above output, one might perhaps be interested in
understanding more about thewrite system calls from
the processes named “sshd.” For example, to get a feel
for the distribution of write sizes per file descriptor, one
could aggregate onarg0 (the file descriptor argument to
the write system call), specifying the “quantize()”
aggregating function (which generates a power-of-two
distribution) with an argument ofarg2 (the size argu-
ment to thewrite system call):

syscall::write:entry

/execname == "sshd"/

{

@[arg0] = quantize(arg2);

}

Running the above yields a frequency distribution for
each file descriptor. For example:

5

value --------- Distribution --------- count

16 | 0

32 | 1

64 | 0

128 | 0

256 |@@ 13

512 |@@ 13

1024 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 199

2048 | 0

The above output would indicate that for file descrip-
tor five, 199 writes were between 1024 and 2047 bytes.
If one wanted to understand the origin of writes to this
file descriptor, one could (for example) add to the predi-
cate thatarg0 be five, and aggregate on the application’s
stack trace by using theustack function:

syscall::write:entry

/execname == "sshd" && arg0 == 5/

{

@[ustack()] = quantize(arg2);

}

7 User-level Instrumentation

DTrace provides instrumentation of user-level program
text through thepid provider, which can instrument
arbitrary instructions in a specified process. The
pid provider is slightly different from other providers
in that it actually defines aclass of providers —
each process can potentially have an associatedpid
provider. The process identifier is appended to the
name of eachpid provider. For example, the probe
pid1203:libc.so.1:malloc:entry corresponds to
the function entry ofmalloc(3C) in process 1203.

In keeping with the DTrace philosophy of dynamic in-
strumentation, target processes need not be restarted to
be instrumented and, as with other providers, there is no
pid provider probe effect when the probes are not en-
abled.

The techniques used by thepid provider are ISA-
specific, but they all involve a mechanism that rewrites
the instrumented instruction to induce a trap into the op-
erating system. The trap-based mechanism has a higher
enabled probe effect than branch-based mechanisms
used elsewhere[15], but it completely unifies kernel- and
user-level instrumentation: any DTrace mechanism that
may be used with kernel-level probes may also be used
with user-level probes. As an example, Figure 2 con-
tains a script that uses a thread-local D variable to fol-
low all activity — user-levelandkernel-level — from a
specified user-level function; Figure 3 contains example
output of this script.

#!/usr/sbin/dtrace -s

#pragma D option flowindent

pid$1::$2:entry

{

self->trace = 1;

}

pid$1:::entry, pid$1:::return, fbt:::

/self->trace/

{

printf("%s", curlwpsinfo->pr_syscall ?

"K" : "U");

}

pid$1::$2:return

/self->trace/

{

self->trace = 0;

}

Figure 2:Script to followall activity — user-levelandkernel-
level — from a specified user-level function. This script uses
the D macro argument variables “$1” and “$2” to allow the tar-
get process identifier and the user-level function to be specified
as arguments to the script.

DTrace also allows for tracing of data from user pro-
cesses. Thecopyin() andcopyinstr() subroutines
can be used to access data from the current process. For
example, the following script aggregates on the name
(arg0) passed to theopen(2) system call:

syscall::open:entry

{

@files[copyinstr(arg0)] = count();

}

By tracing events in both the kernel and user processes,
and combining data from both sources, DTrace provides
the complete view of the system required to understand
systemic problems that span the user/kernel boundary.

8 Speculative Tracing

In a tracing framework that offers coverage as compre-
hensive as that of DTrace, the challenge for the user
quickly becomes figuring out whatnot to trace. In
DTrace, the primary mechanism for filtering out unin-
teresting events is the predicate mechanism discussed in
Section 3.2. Predicates are useful when it is known at
the time that a probe fires whether or not the probe event
is interesting. For example, if one is only interested in
activity associated with a certain process or a certain file
descriptor, one can know when the probe fires if it as-
sociated with the process or file descriptor of interest.

./all.d ‘pgrep xclock‘ XEventsQueued

dtrace: script ’./all.d’ matched 52377 probes

CPU FUNCTION

0 -> XEventsQueued U

0 -> _XEventsQueued U

0 -> _X11TransBytesReadable U

0 <- _X11TransBytesReadable U

0 -> _X11TransSocketBytesReadable U

0 <- _X11TransSocketBytesReadable U

0 -> ioctl U

0 -> ioctl K

0 -> getf K

0 -> set_active_fd K

0 <- set_active_fd K

0 <- getf K

0 -> get_udatamodel K

0 <- get_udatamodel K

...

0 -> releasef K

0 -> clear_active_fd K

0 <- clear_active_fd K

0 -> cv_broadcast K

0 <- cv_broadcast K

0 <- releasef K

0 <- ioctl K

0 <- ioctl U

0 <- _XEventsQueued U

0 <- XEventsQueued U

Figure 3:Example output of the script from Figure 2, assum-
ing that the script were named “all.d.” Note the crossings of
the user/kernel boundary after the first “ioctl” and before the
last “ioctl,” above: while other instrumentation frameworks
allow for some unified tracing, this is perhaps the clearest dis-
play of control flow across the user/kernel boundary.

However, there are some situations in which one may
not know whether or not a given probe event is interest-
ing until some timeafter the probe fires.

For example, if a system call is failing sporadically with
a common error code (e.g.EIO or EINVAL), one may
wish to better understand the code path that is leading to
the error condition. To capture the code path, one could
enable every probe — but only if the failing call can be
isolated in such a way that a meaningful predicate can
be constructed. If the failures were sporadic or nonde-
terministic, one would be forced to record all events that
might be interesting, and later postprocess the data to
filter out the ones that were not associated with the fail-
ing code path. In this case, even though the number of
interesting events may be reasonably small, the number
of events that must be recorded is very large — making
postprocessing difficult if not impossible.

To address this and similar situations, DTrace has a facil-

#pragma D option flowindent

syscall::ioctl:entry

/pid != $pid/

{

self->spec = speculation();

}

fbt:::

/self->spec/

{

speculate(self->spec);

printf("%s: %d", execname, errno);

}

syscall::ioctl:return

/self->spec && errno != 0/

{

commit(self->spec);

self->spec = 0;

}

syscall::ioctl:return

/self->spec && errno == 0/

{

discard(self->spec);

self->spec = 0;

}

Figure 4: A script to speculatively trace all functions
called fromioctl(2) system calls that return failure. The
speculation function returns an identifier for a new spec-
ulative tracing buffer; thespeculate function indicates that
subsequent data-recording expressions in the clause are to be
recorded to the specified speculative buffer. This script uses
the “$pid” variable to avoid tracing any failingioctl calls
made bydtrace itself.

ity for speculative tracing. Using this facility, one may
tentatively record data; later, one may decide that the
recorded data is interesting andcommitit to the princi-
pal buffer, or one may decide that the recorded data is
uninteresting, anddiscard it. As an example, Figure 4
contains a script that uses speculative tracing to capture
details of only thoseioctl(2) system calls that return
failure; Figure 5 contains example ouput of this script.

9 Experience

DTrace has been used extensively inside Sun to under-
stand system behavior in both development and pro-
duction environments. One production environment in
which DTrace has been especially useful is a SunRay
server in Broomfield, Colorado. The server — which
is run by Sun’s IT organization and has 10 CPUs, 32
gigabytes of memory, and approximately 170 SunRay

dtrace -s ./ioctl.d

dtrace: script ’./ioctl.d’ matched 27778 probes

CPU FUNCTION

0 -> ioctl dhcpagent: 0

0 -> getf dhcpagent: 0

0 -> set_active_fd dhcpagent: 0

0 <- set_active_fd dhcpagent: 0

0 <- getf dhcpagent: 0

0 -> fop_ioctl dhcpagent: 0

0 -> ufs_ioctl dhcpagent: 0

0 <- ufs_ioctl dhcpagent: 0

0 <- fop_ioctl dhcpagent: 0

0 -> releasef dhcpagent: 0

0 -> clear_active_fd dhcpagent: 0

0 <- clear_active_fd dhcpagent: 0

0 -> cv_broadcast dhcpagent: 0

0 <- cv_broadcast dhcpagent: 0

0 <- releasef dhcpagent: 0

0 -> set_errno dhcpagent: 0

0 <- set_errno dhcpagent: 25

0 <- ioctl dhcpagent: 25

Figure 5: Example output from running the script from Fig-
ure 4. The output includes the full function trace fromonly
the failing calls toioctl — which in this case is anioctl
from the DHCP client daemon,dhcpagent(1M), failing with
ENOTTY (25).

users — was routinely exhibiting sluggish performance.
DTrace was used to resolve many performance problems
on this production system; the following is the detailed
description of the resolution of one such problem.

By looking at the output ofmpstat(1M), a traditional
Solaris monitoring tool, it was noted that the number
of cross-calls per CPU per second was quite high. (A
cross-call is a function call directed to be performed
by a specified CPU.) This led to the natural question:
who (or what) was inducing the cross-calls? Tradition-
ally, there is no way to answer this question concisely.
The DTrace “sysinfo” provider, however, is an SDT-
derived provider that can dynamically instrument every
increment of the counters consumed bympstat. So
by using DTrace andsysinfo’s “xcalls” probe, this
question can be easily answered:

sysinfo:::xcalls

{

@[execname] = count();

}

Running the above gives a table of application names
and the number of cross-calls that each induced; run-
ning it on the server in question revealed that virtually all
application-induced cross calls were due to the “Xsun”
application, the Sun X server. This wasn’ttoo surpris-
ing — as there is an X server for each SunRay user, one
would expect them to do much of the machine’s work.

Still, the high number of cross-calls merited further in-
vestigation: what were the X servers doing to induce the
cross-calls? To answer this question, the following script
was written:

syscall:::entry

/execname == "Xsun"/

{

self->sys = probefunc;

}

sysinfo:::xcalls

/execname == "Xsun"/

{

@[self->sys != NULL ?

self->sys : "<none>"] = count();

}

syscall:::return

/self->sys != NULL/

{

self->sys = NULL;

}

This script uses a thread-local variable to keep track of
the current system call name; when thexcalls probe
fires, it aggregates on the system call that induced the
cross-call. In this case, the script revealed that nearly
all cross-calls from “Xsun” were being induced by the
munmap(2) system call. The fact thatmunmap activity in-
duces cross-calls is not surprising (memory demapping
induces a cross call as part of TLB invalidation), but
the fact that there was somuchmunmap activity (thou-
sands ofmunmap calls per second, system wide) was un-
expected.

Given that ongoingmunmap activity must coexist with
ongoingmmap(2) activity, the next question was what
were the X serversmmap’ing? And were there some X
servers that weremmap’ing more than others? Both of
these questions can be answered at once:

syscall::mmap:entry

/execname == "Xsun"/

{

@[pid, arg4] = count();

}

END

{

printf("%9s %13s %16s\n",

"PID", "FD", "COUNT");

printa("%9d %13d %16@d\n", @);

}

This script aggregates on both process identifier and
mmap’s file descriptor argument to yield a table of pro-
cess identifiers andmmap’ed file descriptors. It uses the
special DTraceEND probe and theprinta function to

precisely control the output. Here is the tail of the out-
put from running the above D script on the production
SunRay server:

PID FD COUNT

...

26744 4 50

2219 4 56

64907 4 65

23468 4 65

45317 4 68

11077 4 1684

63574 4 1780

8477 4 1826

55758 4 1850

38710 4 1907

9973 4 1948

As labelled above, the first column is the process iden-
tifier, the second column is the file descriptor, and the
third column is the count. (dtrace(1M) always sorts its
aggregation output by aggregation value.) The data re-
vealed two things: first, that all of themmap activity for
each of the X servers originated from file descriptor 4 in
each. And second, that six of the 170 X servers on the
machine were responsible for most of themmap activity.
Using traditional process-centric tools (e.g.,pfiles(1))
revealed that in each X server file descriptor 4 corre-
sponded to the file “/dev/zero,” the zero(7D) device
present in most UNIX variants.mmap’ing /dev/zero
is a technique for allocating memory, but why were the
X servers allocating (and deallocating) so much mem-
ory so frequently? To answer this, we wrote a script to
aggregate on the user stack trace of the X servers when
they calledmmap:

syscall::mmap:entry

/execname == "Xsun"/

{

@[ustack()] = count();

}

Running this yields a table of stack traces and counts. In
this case,all Xsun mmap stack traces were identical:

libc.so.1‘mmap+0xc

libcfb32.so.1‘cfb32CreatePixmap+0x74

ddxSUNWsunray.so.1‘newt32CreatePixmap+0x20

Xsun‘ProcCreatePixmap+0x118

Xsun‘Dispatch+0x17c

Xsun‘main+0x788

Xsun‘_start+0x108

The stack trace indicated why the X servers were allo-
cating (and deallocating) memory: they were creating
(and destroying) Pixmaps. This answered the immediate
question, and raised a new one: what applications were
ordering their X servers to create and destroy Pixmaps?
Answering this required a somewhat more sophisticated
script:

syscall::poll:entry

/execname == "Xsun"/

{

self->interested = 0;

}

syscall::mmap:entry

/execname == "Xsun"/

{

self->interested = 1;

}

sched:::wakeup

/self->interested/

{

@[args[1]->pr_fname] = count();

}

This script exploits some implementation knowledge of
the X server. An X server works by callingpoll(2) on
its connections to wait for requests; when a request ar-
rives, the X server (a single-threaded process) processes
the request and sends the response. Sending the response
causes the X server to awaken the blocking client, after
which the X server again polls on its connections. To de-
termine for whom the X servers were creating Pixmaps,
we set a thread-local variable (“interested”) when the
X server calledmmap. We then enabled the “wakeup”
probe in the “sched” provider. Thesched provider is
an SDT-derived provider that makes available probes re-
lated to CPU scheduling; thewakeup probe fires when
one thread wakes another.7 If the X server woke an-
other thread andinterested was set, we aggregated on
the process that we were waking. The core assumption
was that the process that the X server awakened imme-
diately after having performed anmmap was the process
for whom thatmmap was performed.

Running the above on the production SunRay server pro-
duced the following (trimmed) output:

...

gedit 25

soffice.bin 26

netscape-bin 44

gnome-terminal 81

dsdm 487

gnome-smproxy 490

metacity 546

gnome-panel 549

gtik2_applet2 6399

This output was the smoking gun — it imme-
7In the absence of thesched provider, we would have en-

abled the FBT probe in the kernel’s routine to awaken another
thread, “sleepq unlink()” — but using the well-definedsched
provider[12] requires no kernel implementation knowledge.

diately focussed all attention on the application
“gtik2 applet2,” a stock ticker applet for the
GNOME desktop. A further DTrace script that aggre-
gated on user stack revealed the source of the prob-
lem: gtik2 applet2 was creating (and destroying) an
X graphics context (GC)every 10 milliseconds.8 As
any X programmer knows, GC’s are expensive server-
side objects — they are not to be created with reck-
less abandon[5]. While there were only six instances
of gtik2 applet2 running on the SunRay server,each
was inducing this expensive operation from their X
servers (and subsequently from the operating system)
one hundred times per second; taken together, they
were having a substantial effect on system perfor-
mance. Indeed, stopping the sixgtik2 applet2 pro-
cesses dramatically improved the system’s performance:
cross-calls dropped by 64 percent, involuntary context
switches dropped by 35 percent, system time went down
27 percent, user time went down 37 percent and idle time
went up by 15 percent.

This was a serious (and in retrospect, glaring) perfor-
mance problem. But it was practically impossible to de-
bug with traditional tools because it was asystemicprob-
lem: thegtik2 applet2 processes were doing very lit-
tle work themselves — they were inducing work on their
behalf from other components of the system. To root-
cause the problem, we made extensive use of aggrega-
tions and and thread-local variables, two features unique
to DTrace.

10 Future Work

DTrace provides a stable and extensible foundation for
future work to enhance our ability to observe produc-
tion systems. We are actively developing extensions to
DTrace, including:

• Performance counters. Modern microprocessors
such as SPARC and x86 export performance
counter registers that can be programmed to count
branch mispredicts, cache misses, and other pro-
cessor events. We plan to implement a DTrace
provider that exports performance counter informa-
tion and allows it to be accessed in D from a probe
action.

• Helper actions. Complex middleware may wish to
assist DTrace with actions that require knowledge
specific to the middleware. We have developed a
prototype of such a helper action that permits appli-
cations to provide assistance for DTrace in obtain-

8Seehttp://bugzilla.gnome.org/show bug.cgi?id=99696

for details.

ing a user-level stack trace. We have implemented
the helper action in the Java Virtual Machine, al-
lowing for ustack to obtain a user-level stack trace
that contains both Java and C/C++ stack frames.

• User lock analysis. Thepid provider can instru-
ment any function in a user process, including user-
level synchronization facilities. We have devel-
oped a prototype user-level equivalent to the kernel
lockstat(1M) utility, dubbed plockstat, that
can perform dynamic lock-contention analysis of
multi-threaded user processes.

11 Conclusions

We have described DTrace, a new facility for dynamic
instrumentation of both user-level and kernel-level soft-
ware in production systems. We have described the
principal features of DTrace, including the details of
D, its high-level control language. Although there re-
main other important features of DTrace for which space
did not permit a detailed description (e.g. postmortem
tracing, boot-time tracing) we have highlighted the ma-
jor advances in DTrace over prior work in dynamic in-
strumentation: thread-local variables, associative arrays,
data aggregation, seamlessly unified user-/kernel-level
tracing, and speculative tracing. We have demonstrated
the use of DTrace in root-causing an actual, serious per-
formance problem on a production system — a problem
that could not have been root-caused in a production en-
vironment prior to this work.

Acknowledgements

Many people at Sun were invaluable in the development
of DTrace. We are especially grateful to Bart Smaalders,
Gavin Maltby, Jon Haslam, Jonathan Adams, and Bill
Moore; their experience, ideas, and tireless advocacy
were integral to the success of DTrace. Further, we are
grateful to Jarod Jenson of Aeysis, Inc., who agreed to be
the Alpha customer for DTrace; it has been singularly re-
warding to see Jarod using DTrace to find previously un-
diagnosable system performance problems. Many peo-
ple at Sun reviewed drafts of this paper; in particular, it
was much improved by the detailed comments of Val
Henson, Gavin Maltby, Eric Lowe, Jon Haslam, and
Glenn Skinner.

References

[1] Mikhail Auguston, Clinton Jeffery, and Scott Underwood. A
monitoring language for run time and post-mortem behavior
analysis and visualization. In5th International Workshop on Au-
tomated and Algorithmic Debugging, Ghent, Belgium, 2003.

[2] Brian Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gun
Sirer, David Becker, Marc Fiuczynski, Craig Chambers, and Su-

san Eggers. Extensibility, safety and performance in the SPIN
operating system. InProceedings of the 15th ACM Symposium
on Operating System Principles, 1995.

[3] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. InProceedings of the Winter USENIX
Conference, 1992.

[4] Jeffrey K. Hollingsworth, Barton P. Miller, Marcelo J. R.
Gonçalves, Oscar Naim, Zhichen Xu, and Ling Zheng. MDL:
A language and compiler for dynamic program instrumentation.
In Proceedings of the 1997 International Conference on Parallel
Architectures and Compilation Techniques, November 1997.

[5] Eric F. Johnson and Kevin Reichard.Professional Graphics Pro-
gramming in the X Window System. MIS Press, Portland, OR,
1993.

[6] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kirsten, Jef-
frey Palm, and William G. Griswold. An overview of AspectJ.
In Proceedings of the 15th European Conference on Object-
Oriented Programming, 2001.

[7] Barton P. Miller, 2003. Personal communication.

[8] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jef-
frey K. Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Kr-
ishna Kunchithapadam, and Tia Newhall. The Paradyn parallel
performance measurement tool.IEEE Computer, 28(11):37–46,
1995.

[9] Richard J. Moore. A universal dynamic trace for Linux and other
operating systems. InProceedings of the FREENIX Track, June
2001.

[10] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing with
disaster: Surviving misbehaved kernel extensions. InProceed-
ings of the Second Symposium on Operating Systems Design and
Implementation, 1996.

[11] Amitabh Srivastava and Alan Eustace. ATOM: A system for
building customized program analysis tools. InProceedings of
the ACM Symposium on Programming Languages Design and
Implementation, 1994.

[12] Sun Microsystems, Santa Clara, California.Solaris Dynamic
Tracing Guide, 2004.

[13] Ariel Tamches and Barton P. Miller. Fine-grained dynamic in-
strumentation of commodity operating system kernels. InPro-
ceedings of the Third Symposium on Operating Systems Design
and Implementation, 1999.

[14] Robert W. Wisniewski and Bryan Rosenburg. Efficient, unified,
and scalable performance monitoring for multiprocessor operat-
ing systems. InSC’2003 Conference CD, 2003.

[15] Zhichen Xu, Barton P. Miller, and Oscar Naim. Dynamic instru-
mentation of threaded applications. InProceedings of the 7th
ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming, 1999.

[16] Karim Yaghmour and Michel R. Dagenais. Measuring and char-
acterizing system behavior using kernel-level event logging. In
Proceedings of the 2000 USENIX Annual Technical Conference,
2000.

[17] Tom Zanussi, Karim Yaghmour, Robert Wisniewski, Richard
Moore, and Michel Degenais. relayfs: An efficient unified ap-
proach for transmitting data from kernel to user space. InPro-
ceedings of the Ottawa Linux Symposium 2003, July 2003.

