
USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

C-JDBC: Flexible Database Clustering Middleware

Emmanuel Cecchet Julie Marguerite Willy Zwaenepoel
INRIA Rhône-Alpes ObjectWeb Consortium EPF Lausanne

emmanuel.cecchet@inria.fr julie.marguerite@objectweb.org willy.zwaenepoel@epfl.ch

Abstract

Large web or e-commerce sites are frequently hosted on clusters. Successful open-source tools exist for clustering the

front tiers of such sites (web servers and application servers). No comparable success has been achieved for scaling the
backend databases. An expensive SMP machine is required if the database tier becomes the bottleneck. The few tools that
exist for clustering databases are often database-specific and/or proprietary.

Clustered JDBC (C-JDBC) addresses this problem. It is a freely available, open-source, flexible and efficient middle-
ware for database clustering. C-JDBC presents a single virtual database to the application through the JDBC interface. It
does not require any modification to JDBC-based applications. It furthermore works with any database engine that pro-
vides a JDBC driver, without modification to the database engine. The flexible architecture of C-JDBC supports large and
complex database cluster architectures offering various performance, fault tolerance and availability tradeoffs.

We present the design and the implementation of C-JDBC, as well as some uses of the system in various scenarios. Fi-
nally, performance measurements using a clustered implementation of the TPC-W benchmark show the efficiency and
scalability of C-JDBC.

1. Introduction
Database scalability and high availability can be achieved

in the current state-of-the-art, but only at very high expense.
Existing solutions require large SMP machines and high-end
RDBMS (Relational Database Management Systems). The
cost of these solutions, both in terms of hardware prices and
software license fees, makes them available only to large
businesses.

Clusters of commodity machines have largely replaced
large SMP machines for scientific computing because of their
superior price/performance ratio. Clusters are also used to
provide both scalability and high availability in data server
environments. This approach has been successfully demon-
strated, for instance, for web servers and for application serv-
ers [9]. Success has been much more limited for databases.
Although there has been a large body of research on replicat-
ing databases for scalability and availability [3], very few of
the proposed techniques have found their way into practice
[17].

Recently, commercial solutions such as Oracle Real Ap-
plication Clusters [16] have started to address cluster archi-
tectures using a shared storage system such as a SAN (Stor-
age Area Network). The IBM DB2 Integrated Cluster Envi-
ronment [5] also uses a shared storage network to achieve
both fault tolerance and performance scalability.

Open-source solutions for database clustering have been
database-specific. MySQL replication [14] uses a master-
slave mechanism with limited support for transactions and
scalability. Some experiments have been reported using par-
tial replication in Postgres-R [13]. These extensions to exist-
ing database engines often require applications to use addi-

tional APIs to benefit from the clustering features. Moreover,
these different implementations do not interoperate well with
each other.

We present Clustered JDBC (C-JDBC), an open-source
middleware solution for database clustering on a shared-
nothing architecture built with commodity hardware. C-JDBC
hides the complexity of the cluster and offers a single data-
base view to the application. The client application does not
need to be modified and transparently accesses a database
cluster as if it were a centralized database. C-JDBC works
with any RDBMS that provides a JDBC driver. The RDBMS
does not need any modification either, nor does it need to
provide distributed database functionalities. Load distribu-
tion, fault tolerance and failure recovery are all handled by C-
JDBC. The architecture is flexible and can be distributed to
support large clusters of heterogeneous databases with vari-
ous degrees of performance, fault tolerance and availability.

With C-JDBC we hope to make database clustering avail-
able in a low-cost and powerful manner, thereby spurring its
use in research and industry. Although C-JDBC has only been
available for a few months, several installations are already
using it to support various database clustering applications.

The outline of the rest of this paper is as follows. Section 2
presents the architecture of C-JDBC and the role of each of
its components. Section 3 describes how fault tolerance is
handled in C-JDBC. Section 4 discusses horizontal and verti-
cal scalability. Section 5 documents some uses of C-JDBC.
Section 6 describes measurement results using a clustered
implementation of the TPC-W benchmark. We conclude in
Section 7.

C-JDBC Controller

MySQL

C-JDBC driver

MySQL

Virtual database 1

Database
Backend

Connection
Manager

Database
Backend

Connection
Manager

Request Manager

Query result cache

Scheduler

Load balancer

MySQL
JDBC driver

MySQL
JDBC driver

Recovery
Log

Authentication Manager

MySQL

Database
Backend

Connection
Manager

MySQL
JDBC driver

Virtual database 2

Database
Backend

Connection
Manager

Database
Backend

Connection
Manager

Request Manager

Query result cache

Scheduler

Load balancer

Recovery
Log

Authentication Manager

Oracle
JDBC driver

Oracle

JMX Server

Monitoring

JMX administration console

MySQL

MySQL
JDBC driver

C-JDBC driver

Client application
(Servlet, EJB, ...)

C-JDBC driver

HTTP
RMI
...

Client application
(Servlet, EJB, ...)

Client application
(Servlet, EJB, ...)

Checkpointing
service

Database dumps
management

Configuration

Figure 1. C-JDBC architecture overview

2. C-JDBC architecture
This section provides a functional overview of C-JDBC,

its overall architecture, and its key components.

2.1. Functional overview

JDBC™ is a Java API for accessing virtually any kind of
tabular data [19]. C-JDBC (Clustered JDBC) is a Java mid-
dleware for database clustering based on JDBC. It turns a
collection of possibly heterogeneous databases into a single
virtual database. No changes are needed to the application or
to the databases.

Various data distributions are supported: the data can ei-
ther be fully replicated, partially replicated, or partitioned,
depending on the needs of the application. The degree of rep-
lication and the location of the replicas can be specified on a
per-table basis. Currently, the tables named in a particular
query must all be present on at least one backend. In dynamic
content servers, one of the target environments for C-JDBC
clusters, this requirement can often be met, since the queries
are known ahead of time. Eventually, we plan to add support
for distributed execution of a single query.

Routing of queries to the various backends is done auto-
matically by C-JDBC, using a read-one write-all approach. A
number of strategies are available for load balancing, with the
possibility of overriding these strategies with a user-defined

one. C-JDBC can be configured to support query response
caching and fault tolerance. Finally, larger and more highly-
available systems can be built by suitable combinations of
individual C-JDBC instances.

C-JDBC also provides additional services such as monitor-
ing and logging. The controller can be dynamically config-
ured and monitored through JMX (Java Management eXten-
sions) either programmatically or using an administration
console.

2.2. Architecture

Figure 1 gives an overview of the different C-JDBC com-
ponents. The client application uses a C-JDBC driver that
replaces the database-specific JDBC driver but offers the
same interface. The C-JDBC controller is a Java program that
acts as a proxy between the C-JDBC driver and the database
backends. The controller exposes a single database view,
called a virtual database, to the C-JDBC driver and thus to
the application. A controller can host multiple virtual data-
bases, as shown in the figure. Each virtual database has its
own request manager that defines its request scheduling,
caching and load balancing policies.

The database backends are accessed through their native
JDBC driver. If the native driver is not capable of connection
pooling, C-JDBC can be configured to provide a connection
manager for this purpose.

In the rest of this section we discuss the key components of
the C-JDBC architecture, in particular the driver and the re-
quest manager. Other components that provide standard func-
tionality such as authentication management, connection
management and configuration support are not discussed fur-
ther. More detail on these components and other aspects of C-
JDBC can be found at http://c-jdbc.objectweb.org.

2.3. C-JDBC driver

The C-JDBC driver is a hybrid type 3 and type 4 JDBC
driver[19]. It implements the JDBC 2.0 specification and
some extensions of the JDBC 3.0 specification. All process-
ing that can be performed locally is implemented inside the
C-JDBC driver. For example, when an SQL statement has
been executed on a database backend, the result set is serial-
ized into a C-JDBC driver ResultSet that contains the logic to
process the results. Once the ResultSet is sent back to the
driver, the client can browse the results locally.

All database-dependent calls are forwarded to the C-JDBC
controller that issues them to the database native driver. The
native database driver is a type 3 JDBC driver. SQL state-
ment executions are the only calls that are completely for-
warded to the backend databases. Most of the C-JDBC driver
remote calls can be resolved by the C-JDBC controller itself
without going to the databases.

The C-JDBC driver can also transparently fail over be-
tween multiple C-JDBC controllers, implementing horizontal
scalability (see Section 4).

2.4. Request manager

The request manager contains the core functionality of the
C-JDBC controller. It is composed of a scheduler, a load bal-
ancer and two optional components: a recovery log and a
query result cache. Each of these components can be super-
seded by a user-specified implementation.

2.4.1. Scheduler

When a request arrives from a C-JDBC driver, it is routed
to the request manager associated with the virtual database.
Begin transaction, commit and abort operations are sent to all
backends. Reads are sent to a single backend. Updates are
sent to all backends where the affected tables reside. Depend-
ing on whether full or partial replication is used (see Section
2.4.3), this may be one, several or all backends. SQL queries
containing macros such as RAND() or NOW() are rewritten
on-the-fly with a value computed by the scheduler so that
each backend stores exactly the same data.

All operations are synchronous with respect to the client.
The request manager waits until it has received responses
from all backends involved in the operation before it returns a
response to the client.

If a backend executing an update, a commit or an abort
fails, it is disabled. In particular, C-JDBC does not use a 2-
phase commit protocol. Instead, it provides tools to automati-
cally re-integrate failed backends into a virtual database (see
Section 3).

At any given time only a single update, commit or abort is
in progress on a particular virtual database. Multiple reads
from different transactions can be going on at the same time.
Updates, commits and aborts are sent to all backends in the
same order.

2.4.2. Query result cache

An optional query result cache can be used to store the re-
sult set associated with each query. The query result cache
reduces the request response time as well as the load on the
database backends. By default, the cache provides strong
consistency. In other words, C-JDBC invalidates cache en-
tries that may contain stale data as a result of an update query.
Cache consistency may be relaxed using user-defined rules.
The results of queries that can accept stale data can be kept in
the cache for a time specified by a staleness limit, even
though subsequent update queries may have rendered the
cached entry inconsistent.

We have implemented different cache invalidation
granularities ranging from database-wide invalidation to ta-
ble-based or column-based invalidation with various optimi-
zations.

2.4.3. Load balancer

If no cache has been loaded or a cache miss has occurred,
the request arrives at the load balancer.

C-JDBC offers various load balancers according to the de-
gree of replication the user wants. Full replication is easy to
handle. It does not require request parsing since every data-
base backend can handle any query. Database updates, how-
ever, need to be sent to all nodes, and performance suffers
from the need to broadcast updates when the number of
backends increases.

To address this problem, C-JDBC provides partial replica-
tion in which the user can define database replication on a
per-table basis. Load balancers supporting partial replication
must parse the incoming queries and need to know the data-
base schema of each backend. The schema information is
dynamically gathered. When a backend is enabled, the appro-
priate methods are called on the JDBC DatabaseMetaData
information of the backend native driver. Database schemas
can also be specified statically by way of a configuration file.
The schema is updated dynamically on each create or drop
SQL statement to accurately reflect each backend schema.

Among the backends that can treat a read request (all of
them with full replication), one is selected according to the
load balancing algorithm. Currently implemented algorithms
are round robin, weighted round robin and least pending re-
quests first (the request is sent to the node that has the least
pending queries).

2.4.4. Optimizations

To improve performance, C-JDBC implements parallel
transactions, early response to update, commit, or abort re-
quests, and lazy transaction begin.

With parallel transactions, operations from different trans-
actions can execute at the same time on different backends.
Early response to update, commit or abort allows the control-
ler to return the result to the client application as soon as one,
a majority or all backends have executed the operation. Re-
turning the result when the first backend completes the com-
mand offers the latency of the fastest backend to the applica-
tion. When early response to update is enabled, C-JDBC
makes sure that the order of operations in a single transaction
is respected at all backends. Specifically, if a read follows an
update in the same transaction, that read is guaranteed to exe-
cute after the update has executed.

Finally, with lazy transaction begin, a transaction is started
on a particular backend only when that backend needs to exe-
cute a query for this transaction. An update query on a fully
replicated cluster causes a transaction to be started on all
backends. In contrast, for read-only transactions, a transaction
is started only on the backend that executes the read queries
of the transaction. On a read-mostly workload this optimiza-
tion significantly reduces the number of transactions that need
to be initiated by an individual backend.

3. Fault tolerance
C-JDBC provides checkpoints and a recovery log to allow

a backend to restart after a failure or to bring new backends
into the system.

3.1. Checkpointing

A checkpoint of a virtual database can be performed at any
point in time. Checkpointing can be manually triggered by the
administrator or automated based on temporal rules.

Taking a snapshot of a backend while the system is online
requires disabling this backend so that no updates occur on it
during the backup. The other backends remain enabled to
answer client requests. As the different backends of a virtual
database need to remain consistent, backing up a backend
while leaving it enabled would require locking all tables in
read mode and thus blocking all updates on all backends.
This is not possible when dealing with large databases where
copying the database content may take hours.

The checkpoint procedure starts by inserting a checkpoint
marker in the recovery log (see Section 3.2). Next, the data-
base content is dumped. Then, the updates that occurred dur-
ing the dump are replayed from the recovery log to the
backend, starting at the checkpoint marker. Once all updates
have been replayed, the backend is enabled again.

C-JDBC uses an ETL (Extraction Transforming Loading)
tool called Octopus [10] to copy data to or from databases.
The database (including data and metadata) is stored in a
portable format. Octopus re-creates the tables and the indexes
using the database-specific types and syntax.

3.2. Recovery log

C-JDBC implements a recovery log that records a log en-
try for each begin, commit, abort and update statement. A
log entry consists of the user identification, the transaction

identifier, and the SQL statement. The log can be stored in a
flat file, but also in a database using JDBC. A fault-tolerant
log can then be created by sending the log updates to a virtual
C-JDBC database with fault tolerance enabled. Figure 2
shows an example of a fault-tolerant recovery log. The log
records are sent to a virtual database inside the same C-JDBC
controller as the application database, but this virtual data-
base could have been hosted on a different controller as well.
Backends used to store the log can be shared with those used
for the application virtual database, or separate backends can
be used.

C-JDBC Controller

MySQL MySQL

Application virtual database

Database
Backend

Database
Backend

Request Manager

Query result cache

Scheduler

Load balancer

Recovery
Log

Authentication Manager

MySQL

Database
Backend

Recovery virtual database

Request Manager

Scheduler
Load balancer

Authentication Manager

C-JDBC driver

Client application
(Servlet, EJB, ...)

Checkpointing
service

Database
Backend

Database
Backend

C-JDBC
driver

MySQL

Figure 2. Fault tolerant recovery log example

4. Horizontal and vertical scalability
The C-JDBC controller is potentially a single point of fail-

ure. Horizontal scalability reduces the probability of system
failure by replicating the C-JDBC controller. To support a
large number of database backends, we also provide vertical
scalability to build a hierarchy of backends.

4.1. C-JDBC horizontal scalability

Horizontal scalability prevents the C-JDBC controller
from becoming a single point of failure. We use the JGroups
[2] group communication library to synchronize the schedul-
ers of the virtual databases that are distributed over several
controllers. Figure 3 gives an overview of the C-JDBC con-
troller horizontal scalability.

When a virtual database is loaded in a controller, a group
name can be assigned to the virtual database. This group
name is used to communicate with other controllers hosting
the same virtual database. At initialization time, the control-
lers exchange their respective backend configurations. If a

controller fails, a remote controller can recover the backends
of the failed controller using the information gathered at ini-
tialization time.

MySQL PostgreSQL

C-JDBC Controller

MySQL
JDBC driver

PostgreSQL
JDBC driver

C-JDBC
driver

JVM

Java client
program

C-JDBC
driver

JVM

Java client
program

C-JDBC
driver

JVM

Java client
program

C-JDBC
driver

JVM

Java client
program

C-JDBC Controller

JGroups

MySQLPostgreSQL

MySQL
JDBC driver

PostgreSQL
JDBC driver

Figure 3. C-JDBC horizontal scalability

C-JDBC relies on JGroups’ reliable and ordered message
delivery to synchronize write requests and demarcate transac-
tions. Only the request managers contain the distribution
logic and use group communication. All other C-JDBC com-
ponents (scheduler, cache, and load balancer) remain the
same.

4.2. C-JDBC vertical scalability

It is possible to nest C-JDBC controllers by re-injecting
the C-JDBC driver into the C-JDBC controller. Figure 4 il-
lustrates an example of a 2-level C-JDBC composition.

DB 4DB 3

DB native JDBC driver

DB 5

C-JDBC driver

DB 1 DB 2

DB native JDBC driver

DB 6

DB native JDBC driver

DB7

C-JDBC controller
Partial replication

C-JDBC controller
Partial replication

C-JDBC controller
Partial replication

C-JDBC controller
Partial replication

C-JDBC
driver
JVM

Client
program C-JDBC

driver

JVM

Client
program

C-JDBC
driver

JVM

Client
program

Figure 4. C-JDBC vertical scalability

The top-level controller has been configured for partial
replication with three database backends that are virtual data-
bases implemented by other C-JDBC controllers. The C-

JDBC driver is used as the backend native driver to access
the underlying controller. In general, an arbitrary tree struc-
ture can be created. The C-JDBC controllers at the different
levels are interconnected by C-JDBC drivers. The native da-
tabase drivers connect the leaves of the controller hierarchy
to the real database backends.

Vertical scalability may be necessary to scale an installa-
tion to a large number of backends. Limitations in current
JVMs restrict the number of outgoing connections from a C-
JDBC driver to a few hundreds. Beyond that, performance
drops off considerably. Vertical scalability spreads the num-
ber of connections over a number of JVMs, retaining good
performance.

4.3. Mixing horizontal and vertical scalability

To deal with very large configurations where both high
availability and high performance are needed, one can com-
bine horizontal and vertical scalability. Figure 5 shows an
example of such a configuration. The top-level C-JDBC con-
trollers use horizontal scalability for improved availability.
Additional controllers are cascaded to provide performance
by way of vertical scalability.

DB 6DB 5

DB native JDBC driver

DB 7

C-JDBC driver

DB 1 DB 2

DB native
JDBC driver

DB 3

DB native
JDBC driver

DB 4

C-JDBC controller
Full replication

C-JDBC controller
Full replication

C-JDBC controller
Full replication

C-JDBC controller
Full replication

C-JDBC
driver
JVM

Client
program

C-JDBC
driver

JVM

Client
program

C-JDBC
driver

JVM

Client
program

C-JDBC
driver

C-JDBC
driver

Figure 5. Cascading C-JDBC controllers

In this configuration the top-level controllers would nor-
mally be configured with early response to updates and com-
mits (see Section 2.4.4) so that the updates can propagate
asynchronously down the tree. Read queries are initially sent
to the backends DB1 and DB2 that are connected directly to
the top-level controller. Once they become loaded, the load
balancer in the top-level controller starts to send queries to
the lower–level controller, to be executed by backends DB3
and DB4. The more load the system receives, the deeper in
the tree the requests go. In this example, the failure of the
middle-level controller makes DB5, DB6 and DB7 unavail-

able. To remedy this situation, one could use horizontal scal-
ability to replicate the middle-level controller.

5. Sample uses of C-JDBC
Although C-JDBC has only recently been made available,

we have already seen considerable use by others. C-JDBC
users have different interest and usage scenarios. The flexibil-
ity of C-JDBC permits tuning the system for a variety of
needs. We present four different use cases focusing on differ-
ent sets of features. The first example shows how to build a
low-cost highly-available system. The next use case demon-
strates the combination of portability, performance scalability
and high availability for a large production environment with
thousands of users and a wide range of operating systems and
database backends. The third scenario features a flood alert
system where C-JDBC is used to support fast disaster recov-
ery. Finally, the last use case focuses on performance and
explains how C-JDBC is used to benchmark J2EE clusters.

Figure 6. Budget high availability solution from
budget-ha.com

5.1. Budget High Availability

Our experience indicates that most C-JDBC users are in-
terested in clustering primarily to provide high availability.
Their goal is to eliminate every single point of failure in the

system. Budget-HA.com [6] has built a solution from open-
source components providing a high-availability infrastruc-
ture “on a budget”. Figure 6 gives an overview of the pro-
posed 3-tier J2EE infrastructure.

The high availability of the web tier combines Linux-HA
with a cluster of Resin servlet containers [7]. The JBoss J2EE
server provides clustering features to ensure high availability
of the business logic in the application tier. The database tier
uses C-JDBC with full replication on two PostgreSQL
backends to tolerate the failure of a backend.

The C-JDBC controller is also replicated. Both controllers
share the two PostgreSQL backends so that the failure of one
controller does not make the system unavailable. In this con-
figuration, the system survives the failure of any component.
The minimum hardware configuration requires 2 nodes, each
of them hosting an instance of Resin, JBoss, a C-JDBC con-
troller and a PostgreSQL backend.

5.2. OpenUSS: University Support System

OpenUSS [15] provides an open-source system for manag-
ing computer assisted learning and computer assisted teach-
ing applications. There are currently 11 universities in
Europe, Indonesia and Mexico using OpenUSS.

Firebird

C-JDBC Controller
Full replication

Firebird JDBC driver

Firebird

C-JDBC driver

JVM

C-JDBC driver

JVM

C-JDBC Controller
Full replication

Firebird JDBC driver

C-JDBC driver

JVM

JOnAS
J2EE server

C-JDBC driver

JVM

Enhydra
server

OpenUSS OpenUSS OpenUSS OpenUSS

Enhydra
Director

Apache

JOnAS
J2EE server

Enhydra
server

JOnAS
J2EE server

Enhydra
server

JOnAS
J2EE server

Enhydra
server

Enhydra
Director

Apache

Enhydra
Director

Apache

Figure 7. OpenUSS setup at University of Muenster

The largest OpenUSS site runs at University of Muenster
in Germany. The system manages more than 12,000 students
and over 1,000 instructors. The average workload consists of
180,000 to 200,000 accesses per day to web pages that are
dynamically generated from data stored in the database. Lec-
ture materials (PDF documents, slides, etc.) are also stored in
the database in the form of BLOBs (Binary Large Objects).

To provide both performance scalability and high avail-
ability, C-JDBC is used to replicate the Firebird database
backends. Figure 7 shows the C-JDBC configuration used at
University of Muenster to run OpenUSS.

Source: http://www.budget-ha.com

Three Apache servers function as frontends. Enhydra Di-
rector is used as an Apache module to load balance the que-
ries on four Enhydra [9] servers hosting the OpenUSS appli-
cation. Each Enhydra server relies on a JOnAS J2EE server
to access the database tier. All servers are using the C-JDBC
driver to access a replicated C-JDBC controller hosting a
fully replicated Firebird database.

The operating systems in use at the universities using Ope-
nUSS include Linux, HP-UX and Windows. The database
engines include InterBase, Firebird, PostgreSQL and Hyper-
sonicSQL. As C-JDBC is written in Java and does not require
any application or database changes, it accommodates all of
these environments.

5.3. Flood alert system

floodalert.org is implementing a replacement for a flood
alert system for Rice University and the Texas Medical Cen-
ter. Geographic distribution in this system is essential, be-
cause the system must continue to perform if the two sites are
threatened by a flood.

JBoss is used for application level clustering, and C-JDBC
provides database clustering of MySQL databases. All nodes
are located on a VPN to deal with the security issues resulting
from running a cluster over a public network. Horizontal scal-
ability with transparent failover is the most important C-
JDBC feature, because the system has to be able to survive
the loss of any node at any time. The ability to have database
vendor independence was also much appreciated in this pro-
ject.

Figure 8 gives an overview of the floodalert.org system.
There are at least three nodes in the system at all times, each
with its own database and application server, and each at a
different site. At least one site is several hundred miles from
the others for disaster recovery.

MySQL

C-JDBC Controller
Full replication

MySQL JDBC driver

C-JDBC driver

JBoss
J2EE server

Flood alert
system

MySQL

C-JDBC Controller
Full replication

MySQL JDBC driver

C-JDBC driver

JBoss
J2EE server

Flood alert
system

MySQL

C-JDBC Controller
Full replication

MySQL JDBC driver

C-JDBC driver

JBoss
J2EE server

Flood alert
system

> 1000 miles

Figure 8. Flood alert system using C-JDBC

C-JDBC’s ability to dynamically add and remove nodes al-
lows floodalert.org to bring nodes, either new or stale, into
the system without much work. Future versions of the system
may include bootable CD-ROMs (like Knoppix or Gentoo
LiveCD) that will allow floodalert.org to quickly add a node
to the system from any computer with an internet connection.

5.4. J2EE cluster benchmarking

JMOB (Java Middleware Open Benchmarking) [12] is an
ObjectWeb initiative for benchmarking middleware. When
running J2EE benchmarks on commodity hardware, the data-
base is frequently the bottleneck resource [8]. Therefore, in-
creased database performance is crucial in order to observe
the scalability of the J2EE server. Figure 9 shows a J2EE
cluster benchmarking environment example.

Figure 9. J2EE cluster benchmarking environment

A number of emulated users send HTTP requests to a clus-
ter of web servers (Apache in this example). The Apache
servers forward the requests to the J2EE cluster under test
(JOnAS in this example). The JOnAS cluster accesses a sin-
gle virtual database that is implemented by a C-JDBC cluster
using several controllers and a large number of backends to
scale up to the load required by the J2EE cluster.

The vertical scalability and support for partial replication
allows large scale configurations providing high performance
and sustained throughput. The next section describes a per-
formance evaluation of C-JDBC.

6. Performance evaluation
To provide some indication of the performance and the

scalability of clusters built using C-JDBC, we describe next a
set of experiments carried out with a clustered implementa-
tion of the TPC-W benchmark. We also show some results
for query response caching using the Rubis benchmark.

6.1. Experimental environment

The Web server is Apache v.1.3.22, and Jakarta Tomcat
v.4.1.27 [11] is used as the servlet server. We use MySQL
v.4.0.12 [14] as our database server with the InnoDB transac-
tional tables and the MM-MySQL v2.0.14 type 4 JDBC
driver. The Java Virtual Machine used for all experiments is

Internet

emulated
 users

IBM JDK 1.3.1 for Linux. All machines run the 2.4.16 Linux
kernel.

We use up to six database backends. Each machine has
two PII-450 MHz CPUs with 512MB RAM, and a 9GB SCSI
disk drive1. In our evaluation, we are not interested in the
absolute performance values but rather by the relative per-
formance of each configuration. Having slower machines
allows us to reach the bottlenecks without requiring a large
number of client machines to generate the necessary load. All
machines are connected through a switched 100Mbps
Ethernet LAN.

6.2. The TPC-W benchmark

The TPC-W specification [18] defines a transactional Web
benchmark for evaluating e-commerce systems. TPC-W
simulates an online bookstore like amazon.com.

Of the 14 interactions specified in the TPC-W benchmark
specification, six are read-only and eight have update queries
that change the database state. TPC-W specifies three differ-
ent workload mixes, differing in the ratio of read-only to
read-write interactions. The browsing mix contains 95% read-
only interactions, the shopping mix 80%, and the ordering
mix 50%. The shopping mix is considered the most represen-
tative mix for this benchmark.

We use the Java servlets implementation from the Univer-
sity of Wisconsin [4]. The database scaling parameters are
10,000 items and 288,000 customers. This corresponds to a
database size of 350MB.

For these experiments C-JDBC is configured without a
cache but with parallel transactions and early response to
updates and commits. The load balancing policy is Least
Pending Requests First.

6.3. Browsing mix

Figure 10 shows the throughput in requests per minute as a
function of the number of nodes using the browsing mix, for
full and partial replication.

Figure 10. Maximum throughput in SQL requests per

minute as a function of database backends using TPC-W
browsing mix.

1 These machines are old but they have a CPU vs I/O ratio

comparable to recent workstations.

The single database configuration saturates at 129 requests
per minute. Full replication starts with a throughput of 251
requests per minute with 2 nodes. The 6-node configuration
reaches 628 requests per minute, representing a speedup of
4.9. This sub-linear speedup is due to the MySQL implemen-
tation of the best seller query. A temporary table needs to be
created and dropped to perform this query. With full replica-
tion each backend does so, but only one backend performs
the select on this table. Partial replication limits the tempo-
rary table creation to 2 backends. Partial replication improves
full replication performance by 25% and achieves linear
speedup. This example demonstrates the benefit of being able
to specify partial replication on a per-table basis.

6.4. Shopping mix

Figure 11 reports the throughput in requests per minute as
a function of the number of nodes for the shopping mix,
which is considered the most representative workload.

Figure 11. Maximum throughput in SQL requests per

minute as a function of database backends using TPC-W
shopping mix.

The single database without C-JDBC achieves 235 re-
quests per minute at the peak point. Full replication achieves
1,188 requests per minute with 6 nodes. The shopping work-
load mix scales better than the browsing workload mix due to
the smaller number of best seller queries. Partial replication
again shows the benefits of per-table partial replication over
full replication with a peak throughput of 1,367 requests per
minute with 6 nodes.

6.5. Ordering mix

Figure 12 shows the results for the ordering mix for partial
and full replication. The ordering features 50% read-only and
50% read/write interactions. Even in this scenario, with a
large number of group communication messages as a result of
the large fraction of updates in the workload, good scalability
is achieved.

Figure 12. Maximum throughput in SQL requests per

minute as a function of database backends using TPC-W
ordering mix.

Full replication peaks at 2,623 requests per minute with 6
nodes, while partial replication achieves 2,839 requests per
minute. The speedups over a single backend are 5.3 and 5.7
for full replication and partial replication, respectively.

6.6. Benefits of query result caching

It is also advantageous to use C-JDBC solely for its query
result caching feature, even with only a single database
backend. We have evaluated the benefits of query result cach-
ing using the servlet version of the RUBiS benchmark [1].
The RUBiS (Rice University Bidding System) benchmark
models an auction site similar to eBay. We use the bidding
mix workload that features 80% read-only interactions and
20% read-write interactions. Table 1 shows the results with
and without C-JDBC query result caching.

RUBiS bidding mix
With 450 clients

No
cache

Coherent
cache

Relaxed
cache

Throughput (rq/min) 3892 4184 4215
Avg response time 801 ms 284 ms 134 ms
Database CPU load 100% 85% 20%
C-JDBC CPU load - 15% 7%
Table 1. RUBiS benchmark (servlet version) performance
improvement for a single MySQL backend with C-JDBC

query result caching.

The peak throughput without caching is 3,892 requests per
minute for 450 clients. The average response time perceived
by the user is 801ms. The CPU load on the database is 100%.
With C-JDBC and with consistent query result caching en-
abled, the peak throughput increases to 4,184 requests per
minute, and the average response time is reduced by a factor
of almost 3 to 284 ms. The CPU load on the database de-
creases to 85%,.

Further performance improvements can be obtained by re-
laxing the cache consistency. With a cache in which content
can be out of date for up to 1 minute (entries are kept in the
cache for 1 minute independent of any updates), peak
throughput reaches 4,215 requests per minute, average re-

sponse time drops to 134 ms, and CPU load on the database
backend is reduced to 20%.

7. Conclusion
We presented Clustered JDBC (C-JDBC), a flexible and

efficient middleware solution for database replication. By
using the standard JDBC interface, C-JDBC works without
modification with any application that uses JDBC and with
any database engine (commercial or open-source) that pro-
vides a JDBC driver.

We have presented several use cases, illustrating how the
C-JDBC’s flexible configuration framework addresses user
concerns such as high availability, heterogeneity support and
performance scalability. Combining both horizontal and ver-
tical scalability provide support for large-scale replicated
databases. Query response caching improves performance
further even in the case of a single database backend.

C-JDBC has been downloaded more than 15,000 times
since its first beta release ten months ago. There is a growing
community that shares its experience and provides support on
the c-jdbc@objectweb.org mailing list. C-JDBC is an open-
source project licensed under LGPL and is available for
download from http://c-jdbc.objectweb.org.

8. Acknowledgements
We would like to thank Peter A. Daly of budget-ha.com

for authorizing the reuse of materials from his web site. Lofi
Dewanto from OpenUSS was very helpful and supportive of
C-JDBC. J. Cameron Cooper provided us with a description
of floodalert.org.

We are grateful to the C-JDBC user community for their
feedback and support. We would like to thank all C-JDBC
contributors who help us improve the software by testing it in
various environments and contribute to the code base with
fixes and new features.

Finally, we would like to thank our colleagues Anupam
Chanda, Stephen Dropsho, Sameh Elnikety and Aravind
Menon for their comments on earlier drafts of this paper.

9. References

[1] Cristiana Amza, Emmanuel Cecchet, Anupam Chanda, Alan
Cox, Sameh Elnikety, Romer Gil, Julie Marguerite, Karthick Raja-
mani and Willy Zwaenepoel – Specification and Implementation of
Dynamic Web Site Benchmarks – IEEE 5th Annual Workshop on
Workload Characterization (WWC-5), Austin, TX, USA, November
2002.

[2] Bela Ban – Design and Implementation of a Reliable Group
Communication Toolkit for Java – Cornell University, September
1998.

[3] P.A. Bernstein, V. Hadzilacos and N. Goodman – Concurrency
Control and Recovery in Database Systems – Addison-Wesley,
1987.

[4] Todd Bezenek, Trey Cain, Ross Dickson, Timothy Heil, Milo
Martin, Collin McCurdy, Ravi Rajwar, Eric Weglarz, Craig Zilles,

and Mikko Lipasti – Characterizing a Java Implementation of TPC-
W – 3rd Workshop On Computer Architecture Evaluation Using
Commercial Workloads (CAECW), January 2000.

[5] Boris Bialek and Rav Ahuja – IBM DB2 Integrated Cluster En-
vironment (ICE) for Linux – IBM Blueprint, May 2003.

[6] Budget-HA.com – High Availability Infrastructure on a budget –
http://www.budget-ha.com.
[7] Caucho Technology – Resin 3.0 servlet container -
http://www.caucho.com/resin-3.0/

[8] Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Julie
Marguerite and Willy Zwaenepoel – Performance Comparison of
Middleware Architectures for Generating Dynamic Web Content -
Middleware 2003, ACM/IFIP/USENIX International Middleware
Conference, June 2003.

[9] Willy Chiu – Design for Scalability - an Update – IBM High
Volume Web Sites, Software Group, technical article, april 2001. [9]
Enhydra Java application server – http://enhydra.objectweb.org/.

[10] Enhydra Octopus – http://octopus.enhydra.org/.

[11] Jakarta Tomcat Servlet Engine –
http://jakarta.apache.org/tomcat/.

[12] JMOB – Java Middleware Open Benchmarking –
http://jmob.objectweb.org/.

[13] Bettina Kemme and Gustavo Alonso – Don’t be lazy, be consis-
tent: Postgres-R, a new way to implement Database Replication –
Proceedings of the 26th International Conference on Very Large
Databases, September 2000.

[14] MySQL Reference Manual – MySQL AB, 2003.

[15] OpenUSS – Open Source Software for Universities and Facul-
ties (Open Source University Support System) -
http://openuss.sourceforge.net/.

[16] Oracle – Oracle9i Real Application Clusters – Oracle white
paper, February 2002.

[17] D. Stacey – Replication: DB2, Oracle or Sybase – Database
Programming & Design 7, 12.

[18] Transaction Processing Performance Council –
http://www.tpc.org/.

[19] S. White, M. Fisher, R. Cattel, G. Hamilton and M. Hapner –
JDBC API Tutorial and Reference, Second Edition – Addison-
Wesley, ISBN 0-201-43328-1, november 2001.

