
USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Creating a Portable Programming Language
Using Open Source Software

Andreas Bauer
Institut für Informatik

Technische Universität München
D-85748 Garching b. M̈unchen, Germany

baueran@in.tum.de

Abstract

On a first glance, the field of compiler construction
and programming language design may not seem to
have experienced major innovations over the last decade.
By now, it is almost common knowledge how a lexer
works, how parsing is done, but not many have yet real-
ized how Open Source software — and in particular the
GNU Compiler Collection — have silently offered lan-
guage implementors new and better ways to do their
job. Therefore, this paper describes the novel advantages
Open Source software provides and, furthermore, it il-
lustrates these with practical examples showing how the
presented concepts can be put into practice. Another im-
portant contribution of this paper is to give an overview
over the existing limitations and the technical problems
that can occur when creating an Open Source based pro-
gramming language implementation.

1 Introduction
The extensive Open Source GNU Compiler Collection
(GCC) offers optimized code generation for a large num-
ber of different platforms and programming languages,
for instance, C, C++, Java, and Ada, to name just a few.
Historically, however, GCC was like most other compil-
ers, aimed to support only one programming language,
namely C, and for only a limited number of target plat-
forms, i. e. those that would support the GNU system [1].

Due to the openness and the free availability of the
source code, GCC was soon retargeted to, back then,
even exotic hardware platforms and the differentiation
between the “old” GNU-C back end, and the separate
front ends became increasingly immanent. In other
words, GCC turned into a quasi-platform itself, rather
than being just another C compiler.

For programmers implementing a new language, this
development can be of tremendous benefit, because it
means that they can rely on GCC as being their actual
target, so that native code generation is basically trans-
parent to the front end. In a nutshell, it allows the imple-
mentors to focus on what is really important for them:
language design.

Fig. 1 shows the different compilation stages of the
compiler suite: the input can either be a straightforward
C program code or, alternatively and more interestingly,
interfacing occurs where the dashed line separates the
stages. This leaves users with the choice ofa) inter-
facing GCC in an “old fashioned” manner by emitting
standard C code as well, orb) by interfacing the back
end directly via thetree structure. This data structure is
GCC’s means to describe abstract syntax trees. Techni-
cally, however, atree is merely a GCC-specific pointer
type, but the object to which it points may be of a vari-
ety of different types; it is used to represent and perform
various optimizations on the program (see§4.3, 5).

Scanner Parser

Machine Code
RTL-Optimisation

Passes

Synthesis

StrongARM Intel ix86 . . .

Symbol
Table

Algebraic
Platform Descriptions

Front End

Back End

Abstract Syntax
Trees (AST)

Register Transfer
Language (RTL)

Input

Figure 1: The main compilation stages of the GCC suite.

Although many compilers do indeed translate a pro-
gram merely to C code, they potentially sacrifice the pos-
sibility of generating useful as well as detailed debug-
ging information regarding the input program, and are
also likely to miss out on specific intermediate program
optimizations performed on the tree structure, e. g. alias
analysis. Hence, the focus of this paper rests solely on
integrating a well defined GCC front end that employs
trees to communicate with the compiler suite’s back end.

For the sake of completeness, it should be pointed
out though that targeting (low, or high level) GNU-C
code does offer advantages compared to, say, emitting

ANSI-compatible C. GNU-C extends ANSI-C with vari-
ous non-portable constructs that help emitting optimized
machine code. Nested functions, or global register vari-
ables are just some of the many characteristics custom
to GNU-C [1].

An exceptional thing to note about Fig. 1 is how GCC
handles the generation of native binary code: by consult-
ing a separate, more or less, algebraic specification of the
actual platform, such asi386-gnu-linux-aout ,
the abstract machine code written in the Register Trans-
fer Language (RTL) gets mapped to native machine code
according to the physical reality of the respective tar-
gets. This “physical reality” is typically determined by
the available set of commands, number of processor reg-
isters, employed calling conventions, and so forth.

Such a strict differentiation between the various pro-
cesses and the strong modularization of the GCC suite
as it is also reflected in the figure, essentially, makes
many of the typical tasks a compiler writer has to go
through [2] redundant. For instance, complicated ba-
sic block analysis, or register coloring algorithms in the
back end do not need to be re-implemented any longer.
Instead, by using the compiler suite, all the effort can be
put into designing the distinctive and essential features
of a new programming language. Back end optimiza-
tions are already in place.

Problems, of course, remain. Although the GCC front
ends do not need to be concerned about hardware con-
straints in the first place, mapping from higher level lan-
guage features into GCC’s interfacingtree representa-
tion can be all, but trivial. As a matter of fact, certain
types of programming language front ends have been
battling with GCC’s code generation strategies for quite
some time. (See, for instance, [3].) However, this is
not necessarily so, because the program representation
in terms of a tree structure is inadequate, but rather due
to the fact that GCC treats that intermediate program
representation, basically, as if it was a procedural (C-
like) program. In a lot of cases this is not a problem, in
others, however, very subtle problems arise.

Consequently, this paper not only goes through the
notion of targeting GCC as a portable back end (see§ 4,
5), but it also hints to practical problems that may arise
when applying the presented concepts in a straightfor-
ward näıve manner (see§6).

2 Related Work

Especially in light of commercial software development,
GCC is by far not the only portable back end solution,
even though it is probably one of the most accessible
and useable ones today, due to the free availability of the
sources and the active community surrounding it.

2.1 Back Ends
For instance, Chess/Checkers [4] is a very successful,
commercial framework that is suited particularly well to
build embedded systems software. The Chess module
acts as a — more or less — standard C compiler while
the subsequent passes of Checkers map the output to a
user specified architecture written in a specialized hard-
ware description language.

But also in the Open Source world, further portable
back ends do exist, e. g. MLRISC [5] which is a cus-
tomizable optimizing back end written in Standard ML
that has also been successfully retargeted to multiple
(mostly RISC) architectures. It deals with the special re-
quirements imposed by the execution model of different
high level, typed languages by allowing many compo-
nents of the system to be customized to fit the source
language semantics as well as the runtime system re-
quirements.

A framework which comes close to GCC’s ideals is
the Little C Compiler (lcc) [6]. Basically, it is a re-
targetable compiler for standard C and generates native
code for the Alpha, Sparc, MIPS R3000, and Intel ix86
as well as for its successors. Directly interfacing with lcc
is different to GCC though and, therefore, not discussed
in this paper.

Additionally, new programming languages could also
use (parts of) the free Zephyr environment [7] which
also offers concepts that are similar to those found in the
GCC suite: for instance, the Zephyr component VPO is
a platform and language independent optimizer that is
built upon its own register transfer language. It has al-
ready been used with several C front ends, each of which
generates a different intermediate language.

Obviously, the choices are manifold, but for the re-
mainder of this paper the focus rests solely on the GCC
back end, simply because it is the most widely used of
all the presented suites, has a very large and active de-
veloper community, and is open and free in the sense of
the GPL to allow and, in fact, encourage modifications
to it.

2.2 Front Ends
Already a large number of free (and not so free) pro-
gramming languages make use of a separate, portable
back end. The increasingly popular logic language com-
piler Mercury [8], for instance, offers even multiple in-
terfaces; among them is one for “pure” low level C, GCC
trees, Java, and lately even.NET support was added.

The Glasgow Haskell Compiler (GHC) [9] is another
prominent compiler for a declarative language, namely
Haskell, that achieves portability thanks to the GCC
back end. Although GHC offers its own optimizing code
generation for Sparc and Intel ix86 processors, it still re-
lies on the GCC suite when a wider range of hardware

targets needs to be addressed. GHC, on the other hand, is
also a perfect example where straightforward interfacing
fails. The reasons for that are outlined in greater detail
in § 6.

Of course, further interesting language implementa-
tions based on GCC exist. Aside from C, the standard
distribution already supports Java (GJC), Ada (GNAT),
Fortran (G77), Treelang, Objective-C, and C++ (G++).
However, when considering the integration of a new lan-
guage these may not turn out to be the best starting
points, since each such front end is rather sophisticated
in itself, and the essential interface mechanisms to GCC
cannot be seen clearly. This paper aims to narrow this
documentation gap at least partly.

3 A Toy Expression Language

This section introduces the foundations of a rather sim-
ple expression language which will be used as an exam-
ple throughout the remainder of this text. Let’s call the
languagetoy, simply because it does almost nothing use-
ful. Toy is inspired by the “pocket calculator language”
hoc as it is described in [10] and, similarly, in other text
books.

list ::= empty
| list
| list fnbody

assignment ::= variable = expr

fndecl ::= name ()
fnbody ::= fndecl : begin expr end

expr ::= number
| variable
| assignment
| expr + expr
| expr − expr
| expr ∗ expr
| expr / expr
| (expr)
| −expr

Figure 2: The abstract syntax for the sample language, toy.

An abstract syntax for our sample language can be
seen in Fig. 2. The bold font is used to reference to to-
kens which are handled separately. Ambiguities in the
grammar (usually resulting in shift-reduce conflicts) can
later be resolved by assigning the respective yacc prece-
dences for each operator. Note, for the sake of simplic-
ity, loop structures and the like have been omitted from
the grammar. However, the sections§ 4.3–5 address the

processes of including additional as well as more ad-
vanced language features.

Basically, toy covers the most elementary operations
of arithmetics and allows the user to hold temporary val-
ues in variables. Hence, a toy implementation accepts
only very basic programs and does not issue any warn-
ings at compile time; that is, a toy program is either cor-
rect, or incorrect.

4 Interfacing directly with GCC

Despite a number of already existing front ends for
GCC, interfacing its optimizing back end is a process
that can be all, but easy to conceive. This is mainly
due to the fact thata) the interface itself does not re-
main 100% stable and has evolved in an ad-hoc manner
along with each additional front end, andb) the entire
process as well as the interface itself are not properly
documented anywhere [11] (especially if one considers
file dependencies and the like as part of the actual inter-
face).

4.1 Essential Files

Most importantly, when writing a new compiler based
on GCC the user has to provide a number of essential
files such asMake-lang.in , or config-lang.in
which describe the build dependencies as well as the
name of the new language, unique suffixes (.toy),
and, finally, the name of the executable compiler
(cc1toy). These files are all located in a sepa-
rate directory inside GCC’s main source directory, e. g.
gcc-3.3.2/gcc/toy .

Thanks to the rather accurately documented Makefiles
of already shipped front ends, it is almost obvious how a
rudimentaryMake-lang.in should look like: GCC
merely expects a number of build, install, and clean
targets in order to integrate the new front end into the
overall compilation process. In other words, the shell
command ’make toy.clean ’ should be functional
to clean up merely the toy object files, while ’make
toy.dvi ’ should produce a printable manual in dvi-
format, and so on.

Note, that the executablegcc is usually built as the
main compiler driver, i. e. it recognizes and “drives”
the user supplied source code to the according compiler,
based on input file suffixes and command line options.

4.2 Methods of Interfacing

When creating a programming language, the user typi-
cally has a couple of different choices on how GCC can
be integrated to achieve a maximum of portability later
on. The most obvious and probably most widely used
approach is to create a custom front end which is sub-
sequently tied to the compiler suite’s driver. However,

depending on the complexity and size of the new lan-
guage implementation it is also possible and feasible to
link merely the GCC back end to a stand-alone front end
whose back end driver would then be a shared library.
One language that follows this approach is Mercury [8];
here, the difference for users is mainly noticeable when
invoking the compiler as the compile driver is not the
gcc executable, as usual, but rather the new front end
itself.

Either method affects primarily the configuration nitty
gritty of the new compiler, because in principle a user
can choose whatever language seems suitable for imple-
mentation as long as there exists at least a certain degree
of compatibility with the C-language’s calling conven-
tion (or, at least, some sort of an interface to it), essential
for linking the parts together in the end.

Additionally, there is also a choice on whether to use
GCC’s internal data structures for code representation
directly, or not. In other words, the front end could build
a valid GCC tree structure, e. g. in the most simple form
by using semantic actions in the attributed grammar, or
it could build up and fill its own intermediate data struc-
tures which are subsequently translated into GCC trees
and, finally, RTL.

Of course, both approaches are valid, and having to
create a custom intermediate code representation in the
front end is very tedious work. The advantage of going
through the effort, however, is a better possibility to trace
bugs in the user submitted code, because the front end
would then be able to check additional constraints that
are normally hard to tackle in later stages of the compi-
lation process inside the GCC back end.

Also, when making up a GCC-based programming
language entirely from scratch users are likely to face
difficulties in situations where they have to interface di-
rectly with the tree structure: once the back end is
given a malformedtree , it is hard to undo or rebuild
parts of it, let alone associating the error with the origi-
nally provided piece of code. Therefore, the creation of
an intermediate program representation first can be —
despite a reasonable amount of extra work – sometimes
a good idea if the supported language is rather challeng-
ing in terms of representing its core features, e. g. special
scoping, nested inner functions and classes, etc.

4.3 Thetree Representation

Thetree structure acts as the main interface between a
custom front end and GCC’s back end. A good overview
over all the pre-defined trees is available, for instance,
in [1] but details are really only documented in the GCC
source filesgcc/tree.def andgcc/tree.h . Con-
sulting and understanding these files is absolutely essen-
tial for our task.

A tree is really only a pointer type representing a
single node of an abstract syntax tree structure. It can
be used for adata type, a variable, anexpression, or a
statement. Each node has a “tree code” associated with
it which says what kind of object it represents. For in-
stance, the code

• INTEGERTYPErepresents a type of integer,
• ARRAYTYPErepresents a type of pointer,
• VARDECLrepresents a declared variable,
• INTEGERCSTrepresents a constant integer value,
• andPLUS EXPRrepresents a plus-expression (see

Fig. 2).

The structure to which the pointer points to is im-
plemented via a C union type. The individual fields
are accessed viapredicates, i. e. C-type macros, such
as INTEGRAL TYPE P which in turn calls and evalu-
ates the result ofTREECODEto determine whether a
given node is of integral type. Although in general, it
is feasible to apply any type of tree node to a predicate,
there are certain macros that demand for nodes of ex-
actly a certain kind;TREECODE, however, is not one of
them. Common fields are summarized in the structure
tree common.

.common

6: *t

common = {...}
real_cst = {...}
vector = {...}
string = {...}
complex = {...}
identifier = {...}
type = {...}
list = {...}
vec = {...}
exp = {...}
block = {...}

chain = 0x0
type = 0x403625e8
code = MINUS_EXPR
side_effects_flag = 0
constant_flag = 0
addressable_flag = 0
volatile_flag = 0
readonly_flag = 0
unsigned_flag = 0
asm_written_flag = 0
unused_0 = 0
used_flag = 0
nothrow_flag = 0
static_flag = 0
public_flag = 0
private_flag = 0
protected_flag = 0
deprecated_flag = 0
unused_1 = 0
lang_flag_0 = 0
lang_flag_1 = 0
lang_flag_2 = 0
lang_flag_3 = 0
lang_flag_4 = 0
lang_flag_5 = 0
lang_flag_6 = 0
unused_2 = 0

Figure 3: A binary minus expression node, visualized using
the Data Display Debugger. Thetree commonstructure is
right of thetree union definition.

The inside of an expression node is depicted in
Fig. 3. Its operands can be accessed with the macro
TREEOPERANDas in TREEOPERAND(myexpr,
0) ; that is, an expression’s operands are actually zero-
indexed.

When writing a properly integrated GCC front end,
i. e. one that issues trees, it is most useful to take

text.c:

int
main ()
{

int result_0;
compute (5);
return result_0;

}

int
compute (int argument_0)
{

return argument_0 * 2;
}

text.c.tu:

@1 type_decl name: @2 type: @3 scpe: @4
srcp: <internal>:0 chan: @5

@2 identifier_node strg: int lngt: 3
@3 integer_type name: @1 size: @6 algn: 32

prec: 32 min : @7 max : @8
@4 translation_unit_decl srcp: <internal>:0

...
@1969 identifier_node strg: main lngt: 4
@1970 function_type unql: @1787 size: @20 algn: 64

retn: @3
@1971 function_decl name: @1972 type: @1453 scpe: @4

srcp: test.c:9 args: @1973
extern

@1972 identifier_node strg: compute lngt: 7

@1973 parm_decl name: @1974 type: @3 scpe: @1971
srcp: test.c:8 argt: @3
size: @6 algn: 32 used: 1

@1974 identifier_node strg: argument_0 lngt:

Figure 4: On the right hand side is a typical dump for a single translation unit generated by the C front end of GCC. Boxed are
the distinctive function definitions and arguments as they appear in the original source code on the left. The @-symbols identify
and reference tree nodes as is also indicated by the arrows.

a closer look at the generated “tree code”. The C
and C++ front ends allow for this already using the
-fdump-translation-unit switch, amongst oth-
ers. A typical result of this can be seen in Fig. 4 and,
although extensive and complex, the typical properties
described above are all present in this short example.
Furthermore, the additional “links” drawn in the figure
give a rough idea about how well suited the tree structure
is to extract control flow information from a translation
unit.

5 Mapping

In order to map a toy statement covered by a rule
expr ::= expr + expr to a GCC binary expression
node, the pre-defined expressionPLUS EXPRcan be
used, or accordingly,MINUSEXPR, andMULTEXPR
for the other basic arithmetic operations. (Division is
being treated separately due to data type and rounding
issues.) Of course, additional expressions exist to hold
further data types, single programming language state-
ments, or even entire function definitions as well as gen-
eral compound statements.

5.1 Generating Trees

For many languages, most of the tree generation occurs
during parsing. Consequently, such front ends make use
of a yacc-like grammar (see Fig. 2) to be able to employ
other Open Source tools like GNU Bison, for instance.
Bison uses an LALR(1) algorithm (look-ahead LR) to
recognize a context-free language. Some front ends, like
the C++ of GCC>= 3.4, however, use and have intro-
duced their ownrecursive descentparsers.

There is no single “best way” of parsing, but it is note-
worthy that there exist many programming languages
for which a context-free grammar in general is not ex-
pressive enough. Again, the purely functional language
Haskell provides an example for being one of them [12,
§ 9.3]. For a language like toy, however, the tools yacc,
or GNU Bison are fully adequate. A good practice
would be to hook them intoMake-lang.in and to
dynamically (re-)build the parser along with the actual
front end. This also applies to lexicographic analysis via
flex; flex, the “fast lexer”, is usually a very good com-
panion for this exercise, but not scope of this paper. (See
[10], or flex(1) for further details on flex and yacc.)

To assemble a valid tree structure for a toy expression
language, yaccactionscan be used. (Other parsers have
to invent their own.) That is, the implementation of the
grammar shown in Fig. 2 gets extended by statements
like

expr: number { ... }
| variable { ... }
| expr ’+’ expr

{ $$ = build
(PLUS_EXPR, /* Tree code */

integer_type_node,
$1, /* Operand 1 */
$3); /* Operand 2 */ }

| ...
;

where build is a pre-defined function of
src/tree.c . It gets used to build a binary ex-
pression of a certain tree code with a certain type.

It is important to notice that the largest possible tree
structure is always built on a per-unit basis which usually
resembles an entire input function. Hence, the parser

typically interrupts ata) each function declaration,b)
each definition, andc) sometimes also at each explicit
function closing. Since toy functions are defined to be
argument-less, the according actions could be imple-
mented as follows:

fndecl: name ’(’ ’)’
{ $$ = build_fndecl ($1); }

fnbody: fndecl ’:’ BEGIN expr END
{ build_fnbody ($1, $4); }

Basically,build fndecl needs to call the accord-
ing functions ofsrc/tree.c , firstly to create a node
representing the parsed function’s return as well as
argument types (build function type), and sec-
ondly to hold the declaration itself (build decl).
build fnbody needs to contain code for building tree
nodes that represent the return value as well as for emit-
ting actual RTL. Both routines are schematically de-
picted in Fig. 5.

Historically, the transformations had to be performed
statement by statement in order to facilitate RTL syn-
thesis and to avoid space problems, but this narrow
scope turned out too constraining for complex pro-
grams. Nowadays, GCC enjoys internalgarbage collec-
tion (GC) to tackle the memory issues, which is almost
always recommended to be used in front ends, too (see
§ 6.3).

5.2 From Trees to RTL

Basically, thetree data structure acts as the main inter-
face between a GCC front end and its optimizing back
end. However, a front end is not totally isolated from the
technicalities of emitting RTL. Typically, it has to

• ensure that there exists a transformation from all
the employed tree types to RTL;

• trigger RTL expansion at the end of parsing func-
tions, or general compound statements;

• provide direct tree-to-RTL conversion, should cus-
tom tree types be involved that cannot be lowered
to existing ones (see also§5.3).

Although, build fndecl does not directly emit
RTL, the call to src/tree-optimize.c:tree_
rest_of_decl_compilation does, in fact, trig-
ger subsequent low level code generation. The function
itself is a flexible wrapper aroundsrc/toplev.c:
rest_of_decl_compilation and can also handle
features like nested input functions should it be required.

In build fnbody , the user has to deal with RTL
expansion more directly. As a rule of thumb,expand *
functions usually accept a* STMT, or * DECLnode and
emit RTL for it thus,src/function.c:expand_
function_start starts RTL for a new function and
must always be called first.

Omitted are the details of handling arguments and
garbage collection, since toy functions are rather basic
with only one type, integer, and zero parameters each.
Additionally, these aspects are very front end specific
and can be added afterwards, once a basic front end com-
piles.

In principle, the internal garbage collector is accessed
via differentggc * calls:

ggc add tree root: This is used to hook into the mark-
ing algorithm of GCC and should come first.

ggc alloc: In order allocate memory,ggc alloc has
to be used.

ggc collect: This function triggers the top-level mark-
and-sweep routine. It gets called several times by
src/toplev.c:rest_of_* functions to free
memory.

The filesrc/toplev.c also provides the main en-
try point for the C and C++ front ends, i. e. amain
routine, which in turn invokes the various compilation
passes. Obviously, the file also handles a lot of the code
generation from trees and, therefore, can and should
be used directly wherever possible. Reimplementing
src/toplev.c stuff requires a very thorough under-
standing of the GCC internals and is, definitely, one of
the most difficult parts when building a compiler from
scratch.

5.3 Introduction of new Tree Types

The pre-defined data types, tree codes and macros as
they are available in GCC versions 3.x are — for a
basic expression language as it is described in§ 3 —
sufficiently expressive to be able to create a comprehen-
sive intermediate code representation which then gets
mapped to RTL instructions.

The downside, however, is that currently GCC front
ends behave somewhat like a C compiler, in a sense that
the syntax of the tree structure is strongly biased towards
procedural languages. In other words, the front end of
a language more sophisticated than toy, or C, probably
based on an alien programming paradigm, almost always
needs to introduce its own tree definitions to adequately
represent statements, functions, and all kinds of addi-
tional types (see§ 6, 7).

Introducing new kinds of trees happens in the re-
spective.def files of each front end, e. g. simply via
DEFTREECODE (PLUSEXPR, "plus expr",
’2’, 2) : the first operand is the treecode, the second
is its type, the third is its “kind” (i. e. used for constants,
declarations, references, binary arithmetic expressions,
and so on), and the optional fourth argument is the
number of argument slots to allocate if necessary; two
in this example.

tree
build_fndecl (char* name)
{

...
my_fntype = build_function_type

(integer_type_node,
param_type_list);

...
my_fndecl = build_decl

(FUNCTION_DECL,
name,
my_fntype);

...
tree_rest_of_decl_compilation (my_fndecl, 0);
return my_fndecl;

}

void
build_fnbody (tree fndecl, tree expr)
{

expand_function_start (fndecl, 0);
...
expand_return (build

(MODIFY_EXPR,
void_type_node,
DECL_RESULT (fndecl),
expr));

...
expand_function_end (...);

}

Figure 5: These two functions are responsible for building trees representing an input function’s declaration, as well as for
holding its definition, type, and to trigger RTL generation for each node, respectively. Naturally,build fndecl should be
called first. Calls toexpand * denote direct RTL expansion.

On the one hand side, the extendibility allows for
a representation of almost arbitrary programming lan-
guage features and types, but on the other it also requires
additional work toa) either lower the extensions to the
existing nodes, orb) to make up additionalexpand *
functions that match, say, an* STMTnode to RTL. The
expansion functions mostly reside insrc/stmt.c ,
making up custom ones, however, is more challenging
than lowering and one of the reasons why RTL is not the
interface of choice between the front and the back end
of GCC.

6 Problems

Although, GCC offers marvelous possibilities to speed
up the development of rather platform independent pro-
gramming language implementations, it does put its own
peculiar constraints on front ends, especially if those re-
semble non-imperative paradigms.

Most prominently, functional and logic programming
languages have a hard time taking full advantage of a
“generic” back end like GCC. Many of them offer quite
advanced concepts such as first order and higher order
functions, automatic garbage collection, and a strong
static type system based on polymorphism — clearly a
contrast to the C language.

6.1 Higher Order Functions

Many programming languages treat functions as first-
class citizens to support higher order functions. A higher
order function takes one or many functions as argument,
or returns these as its “return value”. This is especially
useful when using thecontinuation passingstyle (CPS)
with the continuation being a passed-on function that
should be executed next, similar to an additional pro-
gram counter. In other words, the order of the com-
putation is implicitly defined by an additional function

argument — the continuation. Note, real CPS functions
never return.

CPS gets employed in many functional programming
language compilers and interpreters, such as GHC used
for Haskell, for instance. But, unlike in Haskell, func-
tions are not first order in C nor in GCC, i. e. functions
can not be passed as an argument. Therefore, higher or-
der functions do not exist in C. Function pointers, how-
ever, are first-class and the continuation passing style
can be approximated by usingvoid pointers to func-
tions.

-- a) Without a higher order function
squareListNoHof [] = []
squareListNoHof list = ((head list)ˆ2):

(squareListNoHof
(tail list))

-- b) With a higher order function
squareList list = map (ˆ2) list

Figure 6: These two Haskell algorithms compute the square
of each value given in alist , in a) without the use of higher
order functions, and inb) in combination with the higher order
functionmap which takes a function and a list as arguments.
Clearly, solutionb) is more compact, thus easier to compre-
hend.

In essence, this means that a lot of explicit casts
and indirect function calls are involved. Since func-
tion pointers can only refer to functions with either
global scope, or local scope to a particular file, this ap-
proach itself is not suitable to get the full flexibility of
higher order functions which users may be used to from
their declarative programming language of choice (see
Fig. 6). Higher order functions may also be lexically
nested and needclosuresto represent such scope infor-
mation (see§6.3).

Consequently, declarative languages like Haskell,
ML, or Lisp demand for a compiler which provides its

own mechanisms for handling higher order functions
such that the GCC back end must not be overly con-
cerned with that “technicality” anymore. For example,
GHC tackles this problem using a twofold approach:
firstly, it maintains its own internal stack structure par-
allel to the architecture’s runtime stack, and secondly,
by modifying the output of GCC using a crude pattern
matching algorithm that removes certain assembly in-
structions that are responsible for handling function ar-
guments and frames [13]. This, however, is also de-
scribed in greater detail in§ 6.2.

6.2 Tail Calls
In all declarative programming languages a high num-
ber of recursive function calls occur of which, typically,
many are tail calls. A tail call is a function call in the tail
position of the calling function.

Consider the following straightforward Haskell im-
plementation of the greatest common divisor algorithm:

gcd :: Int → Int → Int
gcd a b | a == b = a

| a > b = gcd (a − b) b
| a < b = gcd a (b − a)

Typical for the declarative programming style, this code
is relatively easy to conceive; it contains two tail recur-
sive calls to calculate a result. In that vein, most func-
tional code bears a high percentage of tail calls which
are either recursive, or even mutually recursive with a
differing number of function arguments, respectively.

Tail calls can be implemented without requiring more
than a single stack frame of the architecture’s runtime
stack, regardless of the amount of tail calls performed.
This is possible, because a tail call is, essentially, the
very last instruction of the caller. Thus, the caller has
finished computation at this point and its stack frame
should be free for “recycling” by the callee [3, 14] which
would then take over responsibility to return to the orig-
inal caller, or issues further tail calls.

According to the UNIX calling convention for C,
however, the caller is responsible for cleaning up the
callee’s function arguments (see [15]). Thus, mar-
shalling arguments subsequently to the actual tail call
has to be realized in such a way that the topmost
caller either does not remove a wrong number of ar-
guments, or lets the callee discard unused stack slots
itself. Fig. 7 shows what could happen, for instance,
when a functionf(A1, A2, A3) performs a tail call to
f ′(A1, A2, A3, A4) which expects an additionalint ar-
gument.

Although elegant, tail calls impose a number of prob-
lems to the user who seeks to employ GCC as a back
end for, say, a purely functional programming language
compiler such as as GHC:

A3

A2

A1

Base P.

Return

Local

...

A3

A2

A1

Base P.

Return

Local

A4

Base P.

Return

Local

...

...

tail call

high
address

low
address

frame
for f

frame
for f’

Figure 7: A proper tail call to a function which takes more ar-
guments than the caller requires runtime stack marshalling for
reusing the current stack frame, e. g. shifting the return address
down (or up, depending on the platform).

1. Using recursion exclusively as a means of compu-
tation has not been foreseen by most platform’s C
calling convention [15]. Typically, the calling con-
ventions do not differentiate between a tail call and
a “normal” call. Hence, a stack frame gets always
reserved via thecall command of the accord-
ing architecture and leads to a stack growth rate of
O(n) — linear but malicious.

2. Because of 1. proper tail calls with an overall stack
consumption ofO(1) are hard to implement in ret-
rospective without sacrificing binary compatibility
to existing libraries and systems software.

3. Mapping continuation passing to a sequence of tail
calls via C pointers will not work without address-
ing and solving the problems imposed by 1. and 2.,
respectively. Albeit, optimizingindirect tail calls
turns out to be even more challenging than direct
tail calls (see [3]).

Despite a possible first impression that the tail call
problem might be merely a minor optimization candi-
date for a compiler zealot with too much time, the prob-
lem is of a very fundamental nature today, because gen-
erating code which does not comply to the C standard
calling convention results in hard-to-resolve issues of
binary compatibility to already existing executables as
well as in portability problems. However, efforts to
tackle the tail call problem, especially with respect to
making GCC a better back end for declarative languages
have already produced measurable improvements in that
area (see§ 7, [3]).

As already mentioned in§ 6.1, GHC avoids the prob-
lem by letting the GCC back end emit unoptimized ma-
chine code which is then processed by a Perl script
called “The Evil Mangler” [13]. This script alters the
functions’ epiloguesand prologuessuch that they do
not reserve stack frames for tail calls anymore. This
is possible due to GHC’s internal stack management

which, essentially, substitutes the platform’s runtime
stack in terms of function parameter passing; calls are
then argument-less.

6.3 Garbage Collection
Rather than usingmalloc andfree to obtain and re-
claim memory, many modern programming languages,
such as Java, or C#, offer the concept of garbage col-
lection (GC) to automatically reclaim unused memory
segments in the heap. In a nutshell, this is supposed
to help avoiding dangerous and hard-to-find bugs like
buffer overflows which are a number one source for re-
mote exploits in today’s systems software [16].

But also functional languages rely on GC to allowlazy
evaluation[17] and higher order functions in support
for notions such as continuation passing (see§6.1, 6.2).
Again, the problem with GC is that this concept is alien
to C, thus mostly to GCC as well; although, this is not
entirely true anymore: the GNU compiler for Java (GCJ)
produces a library calledlibgcj which implements
the Boehm-Weiser conservative garbage collector [18]
as it is also employed in the free.NET implementation
Mono [19], for instance. Boehm-Weiser realizes a basic
mark-sweep algorithm to perform collections.

Closures to express the scope of functions, or objects
as they are also needed in functional programming are
the crux here. A closure, typically, is a function gener-
ated at runtime to capture information about the environ-
ment. Hence, it seems self-evident to put these on the ar-
chitecture’s stack. However, as closures usually exceed
the lifespan of the items that are being referenced by it
at a time (Think of tail call optimization as an example!)
this often turns out impossible.

A valid alternative is often to create closures in the
heap with the expense of having to garbage collect the
space occupied by them. Indeed, this is what many
declarative language compilers do nowadays. Java and
C# on the other hand rely on garbage collection merely
for a convenience reason; both do not support closures
per se.

At the moment the Java front end is the only program-
ming language implementation based on GCC that actu-
ally uses Boehm’s integrated code directly, while all the
functional and logic languages either maintain their own
memory structures or, more recently, use alternative con-
cepts like that of a “shadow stack” which is supposed to
make collecting “garbage” from the platform’s C run-
time stack easier [20] and by doing all the required work
entirely in the front end.

Additionally, even more subtle technical problems
may arise, for instance, when pointers are hidden that
really need to be visible to the collector, as it can happen
when memcpy is used to copy these to unaligned
memory locations, or by casting pointers to and from

integers. While programmers would abstain from such
a dangerous practice, it might turn out more difficult
avoiding it totally in automatically generated code. A
similar issue is related to cyclic data structures that
reference to each other directly, or indirectly, like a
circularly linked list: in that case the GC algorithm
is unable to remove the referenced memory and the
application can easily run out of heap space, despite a
working GC.

The variety of different approaches to the problem of
GC hints to the fact that there is, currently, not a stan-
dard solution to realize a 100% reliable automatic mem-
ory management as it necessary for a number of modern
programming languages, even though the conservative
garbage collector seems to be sufficient for some stan-
dard applications.

Essentially, all the open issues mentioned in this sec-
tion leave language implementors two choices should
they require GC: 1. they can try to cope with the restric-
tions the current conservative collector imposes, or 2.
they can write their own memory management, in which
case using the GCC back end does not provide additional
convenience, unfortunately.

7 Conclusion
Unarguably, implementing a new programming lan-
guage is but a trivial undertaking. However, this paper
has shown that Open Source software and in particular
the GCC suite are flexible and nowadays also mature
enough to take on a whole variety of different (and some-
times tedious) tasks programmers used to tackle manu-
ally, e. g. by re-implementing well known algorithms.

Although, the presented tools can be a tremendous
help when targeting a wider range of platforms, prob-
lems using this approach remain — as is sketched in
§ 6 — especially for declarative, or strictly object ori-
ented programming languages.

This may be the reason why recent developments in
the GCC community are largely sparked by the internals
of the Java front end. The Java group not only made
clear there is need for sophisticated garbage collection,
but it also introduced the foundations for a new interme-
diate program representation that, in a sense, surpasses
the expressiveness of former GCC trees.

The new representation is called GENERIC and, in
the future, each front end will be required to lower
any kind of program representation to the GENERIC
form [21]. Subsequently, the back end will translate
GENERIC into a well defined subset called GIMPLE.
The “gimplifier” is necessary, because most of the lower
level optimization passes are going to be defined on the
static single assignment(SSA) form [22, 23] which can
be distilled from a GIMPLE representation at ease.

SSA has been chosen, mainly because many of the
newer compiler optimizations are defined over this
form [24, 25, 26]. In fact, some of the new as well as old
optimizations are hard to realize on trees, or RTL alone:
trees tend to be rather individual for each language front
end and are highly context dependent (see§ 4.3), whilst
RTL is often too close to being an abstract hardware plat-
form, e. g. by associating objects to virtual stack slots
rather early, although in later compilation passes these
objects may have turned as redundant temporaries.

It is obvious that the SSA based rewrite of GCC is a
very ambitious project that primarily affects large parts
of its very complex back end. Therefore, results are not
likely to ship anytime soon, at least not before GCC 3.5
is released. The current CVS version, however, works
reasonably well already and effort is currently being put
into porting the existing front ends over to GENERIC as
is the case with Fortran 95.

However even at present, GCC is well suited as a
portable back end for a variety of different programming
languages. The tree representation is flexible as well as
extensible (see§ 4.3, 5.3) and various optimizations are
performed on the existing intermediate program repre-
sentations.

Unfortunately, the GCC interfaces have always
changed in subtle ways and documentation on build-
ing and integrating front ends has always been sparse.
By showing the most fundamental coherences between a
language’s grammar, the employed tools (see§3, 4), the
tree representation and the transition over to RTL (see
§ 5), this paper sketches all steps necessary to build a
GCC based compiler, more or less, from scratch.

On the other hand, the paper has also shown where the
current problem spots are, in particular, for strictly ob-
ject oriented languages, or declarative ones (see§ 6): al-
though improving, the memory management of the back
end and the generated code is often insufficient to deal
with features like closures, garbage collection, or higher
order functions.

Along with the extremely helpful GCC mailing list
(archives), the existing front ends and their respective
documentation, it should now be possible for anyone in-
terested to understand what is required to integrate a new
front end into the GCC suite.

Alternatively, of course, a user may chose to im-
plement an optimizing and specialized back end him-
self, however, one must not forget that, despite all trou-
ble spots, GCC contains hundreds (if not more) man-
years worth of code optimizations, tweaks, and ported
platforms and it seems only natural to make use of
these achievements whenever possible, or even better, to
help overcome problems and lead projects like the SSA
rewrite to a success.

References
[1] GNU Compiler Collection Internals. http://gcc.

gnu.org/onlinedocs/gccint/.

[2] A. Aho, R. Sethi, and J. Ullman.Compilers —
Principles, Techniques, and Tools. Addison Wes-
ley Higher Education, 1986.

[3] A. Bauer. Compilation of Functional Programming
Languages using GCC — Tail Calls. Master’s the-
sis, Institut f̈ur Informatik, Technische Universität
München, Germany, 2003.

[4] Chess/Checkers.http://www.retarget.com/.

[5] MLRISC. http://cs1.cs.nyu.edu/leunga/www/
MLRISC/Doc/html/.

[6] Little C Compiler. http://www.cs.princeton.edu/
software/lcc/.

[7] Zephyr/VPO.http://www.cs.virginia.edu/zephyr/.

[8] T. Conway, F. Henderson, and Z. Somogyi. Code
generation for Mercury. InProceedings of the 1995
International Symposium on Logic Programming,
pages 242–256, Portland, Oregon, 1995.

[9] The Glasgow Haskell Compiler. http://www.
haskell.org/ghc/.

[10] B. Kernighan and R. Pike.The UNIX Programming
Environment. Prentice Hall, New Jersey, 1984.

[11] Z. Weinberg. A Maintenance Programmer’s View
of GCC. InProceedings of the 2003 GCC Devel-
opers’ Summit, pages 257–268, May 2003.

[12] The Haskell 98 Report. http://www.haskell.org/
onlinereport/.

[13] The Glasgow Haskell Compiler Commentary —
The Evil Mangler. http://www.cse.unsw.edu.au/
˜chak/haskell/ghc/comm/.

[14] W. D. Clinger. Proper tail recursion and space effi-
ciency. InSIGPLAN Conference on Programming
Language Design and Implementation, pages 174–
185, 1998.

[15] System V Application Binary Interface/Intel386
Architecture Processor Supplement. The Santa
Cruz Operation, Inc. (SCO), fourth edition, 1996.

[16] D. Larochelle and D. Evans. Statically detect-
ing likely buffer overflow vulnerabilities. InPro-
ceedings of the 2001 USENIX Security Symposium,
pages 177–190, 2001.

[17] P. Wadler. The essence of functional programming.
In Conference Record of the Nineteenth Annual
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 1–14, Albe-
querque, New Mexico, 1992.

[18] H. Boehm. A garbage collector for C and C++.
http://www.hpl.hp.com/personal/Hans˙Boehm/gc/.

[19] The Mono Runtime. http://www.go-mono.com/
runtime.html.

[20] F. Henderson. Accurate garbage collection in an
uncooperative environment. InProceedings of the
third international symposium on Memory man-
agement, pages 150–156. ACM Press, 2002.

[21] D. Novillo. Tree SSA — A New Optimization In-
frastrcutre for GCC. InProceedings of the 2003
GCC Developers’ Summit, pages 181–195, May
2003.

[22] B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Global value numbers and redundant computa-
tions. InProceedings of the 15th ACM SIGPLAN-
SIGACT symposium on Principles of programming
languages, pages 12–27. ACM Press, 1988.

[23] B. Alpern, M. N. Wegman, and F. K. Zadeck. De-
tecting equality of variables in programs. InPro-
ceedings of the 15th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages,
pages 1–11. ACM Press, 1988.

[24] R. Hasti and S. Horwitz. Using static single as-
signment form to improve flow-insensitive pointer
analysis. InProceedings of the ACM SIGPLAN
1998 conference on Programming language design
and implementation, pages 97–105. ACM Press,
1998.

[25] E. Stoltz, H. Srinivasan, J. Hook, and M. Wolfe.
Static single assignment form for explicitly parallel
programs: Theory and practice, 1994.

[26] A. Leung and L. George. Static single assignment
form for machine code. InSIGPLAN Conference
on Programming Language Design and Implemen-
tation, pages 204–214, 1999.

