Mining Console Logs for Large-Scale System Problem Deatacti

Wei Xu* Ling Huang Armando Fox David Patterson Michael Jordah
*UC Berkeley fIntel Research Berkeley

Abstract Traditional analysis methods for console log involve
The console logs generated by an application contain messagignificant ad-hoc scripting and rule-based processing,
that the application developers believed would be usefdein  Which is sometimes callegy/stem event processing [15].
bugging or monitoring the application. Despite the ubigaind ~ Such scripts are usually created by operators instead of
large size of these logs, they are rarely exploited in a systie ~ developers because the problems that operators look for
way for monitoring and debugging because they are not reagre often runtime-environment dependent and cannot be
ily machine-parsable. In this paper, we propose a noveloteth predetermined by developers. However, most operators
for mining this rich source of information. First, we coméin o not understand the implementation details of their sys-
log parsing and text mining with source code analysis t0 eXa well enough to write useful scripts or rules; as a re-

tract structure from the 09n50|e Ic.)gs.. Second, we extragt fesult their scripts may simply search for keywords such as
tures from the structured information in order to detectmao | e . .
error” or “critical,” which have been shown to be insuf-

lous patterns in the logs using Principal Component Analysi_ .~ . L
(PCA). Finally, we use a decision tree to distill the resuits ficient for effective problem determination [14].

PCA-based anomaly detection to a format readily understand We propose a general approach for mining console
able by domain experts (e.g. system operators) who need negs for detecting runtime problems in large-scale sys-
be familiar with the anomaly detection algorithms. As a caséems. Instead of asking for user input prior to the anal-
study, we distill over one million lines of console logs frahe  ysis (e.g., a search key), our system automatically se-
Hadoop file system to a simple decision tree that a domain efects the most important information from console logs
pert can readily understand; the process requires no @peragng presents it to operators in a format that is a better
intervention and we detect a large portion of runtime anaesal ¢;; 11 operators’ expertise. Besides extracting commonly
that are commonly overlooked. used features such as performance traces and event counts
1 Introduction from console logs [8, 11], we also construct console-log-

Today’s large-scale Internet services run in large servépecific features, such as thessage count vector dis-
clusters. A recent trend is to run these services on virtigussed in this paper. Although we only present one type
alized cloud computing environments such as Amazon@f feature here, we are designing more features as ongo
Elastic Compute Cloud (EC2) [2]. The scale and comid Work.
plexity of these services makes it very difficult to design, We present our methodology and techniques in the
deploy and maintain a monitoring system. In this papegontext of a concrete case study of logs from the Hadoop
we propose to return to console logs, the natural tracinf§€ system [3] running on Amazon's EC2 [2]. The results
information included in almost every software system, foAr€ promising: We generate a human-friendly summary
monitoring and problem detection. from over 1 million lines of logs, and detect commonly
Since the earliest days of software, developers haRyerlooked behavioral anomalies with very few false pos-
used free-text console logs to report internal statesetradives. We emphasize that although our approach is pre-
program execution, and report runtime statistics [17[5€nted in a single case study, it is applicable to logs of a
The simplest console log generation tool is the print statd@rge variety of server systems.
ment built into every programming language, while moreContributions. 1) We describe a novel method for run-
advanced tools provide flexible formatting, better I/O pertime problem detection by mining console logs, which re-
formance and multiple repository support [7]. quires neither additional system instrumentation nonprio
Unfortunately, although developers log a great deal ahput from the operator. 2) We use source code analysis
valuable information, system operators and even othéo help extract structured information from free text logs;
developers on the same project usually ignore conso#®urce code is increasingly available for Internet sesvice
logs because they can be very hard to understand. Cahie to the heavy influence of open source software and
sole logs are too large [14] to examine manually, and urthe fact that many services develop their custom compo-
like structured traces, console logs contain unstructuretents in-house. 3) We apply principal component anal-
free text and often refer to implementation details thaysis (PCA) to detect behavior anomalies in large-scale
may be obscure to operators. server systems. To our knowledge this is the first time



PCA has been used in this way. 4) We automaticallgen in a way that bounds the probability of false positives
construct decision trees to summarize detection resultginder certain assumptions). Finally, in order to let sys-
helping operators to understand the detection result ateim developers and operators better understand the result,
interesting log patterns. we visualize the PCA detection result in a decision tree.

Related Work. Most existing work treats the entire log 10 Make the following explanation concrete, we de-
as a single sequence of repeating message types and %jbe the application of our tec_hmque to the console
plies time series analysis methods. Hellerstsial. de- 09S generated by the Hadoop file system (HDFS) [3]
veloped a novel method to mine important patterns sucf{ile running a series of standard MapReduce jobs [1].
as message burst, message periodicity and dependendésuse unmodified Hadoop version 0.18 (20 April 2008)
among multiple messages from SNMP data in an entef4nning on twelve nodes of Amazon Elastic Compute
prise network [8, 12]. Yamanisiet al. model syslog se- Cloud (EC2) [2]: one data node, one MapReduce job
quences as a mixture of Hidden Markov Models (HMM) fracker, and ten nodes serving as HDFS data nodes and
in order to find messages that are likely to be related t¥/aPReduce workers. The experiment ran for about 12
critical failures [19]. Limet al. analyzed a large scale en-hours, during which 600GB (nonreplicated) client data
terprise telephony system log with multiple heuristic fil-Were written to HDFS, 5,376 HDFS blocks were created,

ters to find messages related to actual failures [11]. Tres@d 1.03 million lines of console logs were generated to-
ing a log as a single time series, however, does not pe@ling 113MB uncompressed.

form well in large scale clusters with multiple indepen-3 Anomaly Detection

dent processes that generate interleaved logs. The mogleil
becomes overly complex and parameters are hard to tu ﬁ
with interleaved logs [19]. Our analysis is based on lo €

message groups rather than time series of individual mega> appear to be free-form, in fact they are quite fim-

sages. The grouping approach makes it possible to obtaﬂﬁd because they are generated entirely from a relatively

useful results with simple, efficient algorithms such agmall S?t of log outqu statements in the appllcqtlon.
PCA. A typical message in console log might look like:

A crucial but questionable assumption in previouio_ 551 111. 165 50010 Served bl ock
work is that message types can be detected accuratgly, gn1792886545481534 to /10. 251. 111. 165
[8, 12] uses manual type labels from SNMP data, which — . .
are not generally available in console logs. Most project e can break this down into a constant paftern
use simple heuristics—such as removing all numeri alled the message type (Served bl ock t0)
values and IP-address-like strings—to detect messa d a variable part called thenessage vanab!es
types [19, 11]. These heuristics are not general enoug .l k.‘80.1792886.545481534)' Th_e message type Is es-
If the heuristics fail to capture some relevant variable ,ent|al mformatlon for ‘T"“toma“c analysis of console
the resulting message types can be in the tens of tho 95, ar!d 1S widely used in prior work [17, 11.]'
sands [11]. SLCT [17] and Sisyphus [16] use more ad- Identlfylng the message type and e>_<tract|ng the mes-
vanced clustering and association rule algorithms to exade var|ablgs are crucial preprocessing ste_zps fo_r a_\uto-
tract message types. This method works well on medpatic analy§|s_. Our no.vell technique for .domg this in-
sages types that occur many times in log, but cannot ha}zlglves examining log printing statements in source code

dle rare message types, which are likely to be related {8 eliminate heuristics and guesses in message type detec-

the runtime problems we are looking for in this researct!O" Step, generating a precise listatf possible message

In our approach, we combined log parsing with sourclY/Pes: As a byproduct, by examining the abstract syntax

code analysis to get accurate message type extracti f£e of the source code we also get all variable values and
even for rarely seen message types. variable names reported in log messages.
Space constraints do not permit a detailed description

2 Approach of the source code analysis machinery, so we summa-
There are four steps in our approach for mining consoleze our results here. By automatic analysis of Hadoop
logs. We first extract structured information from consolesource code, we extracted 911 message types; 731 are
logs. By combining logs with source code, we can accuelevant to our analysis (i.e., are not simply debugging
rately determine message types, as well as extract vamessages), and of these, 379 originate from HDFS code.
able values contained in the log. Then we construct fedve emphasize that these numbers describedlams-

ture vectors from the extracted information by groupingible message types that could be generated in the log
related messages. Next, we apply PCA-based anomajiven the source code. However, in our experiment, we
detection method to analyze the extracted feature vectomly find 40 distinct HDFS message types out of the 379
labeling each feature vector normal or abnormal. As wpossible. Many of the other message types only appear
will describe, the threshold for abnormality can be choin log when exceptional behavior happens, and therefore

Log parsing and structureextraction
key insight of our method is that although console



Algorithm 1 Feature extraction algorithm ID, session ID, source/destination IP address, and so on.
1. Find all message variables reported in log with the N our experiments, we have found that this criterion re-

following properties: sults in very few false selections for Internet service sys-
a. Reported many times; tems, which can be easily eliminated by a human opera-
b. Has many distinct values; tor. In the HDFS log, the only variable selected in step 1
c. Appears in multiple message types. is block ID, an important identifier.

2. Group messages by values of the variables In the second step, log entries are grouped by the iden-
chosen above. tifier values, generating message groups we believe to be

3. For each message group, create a message count a good indicator of problems. In fact, the result reveals
vectory = [y1,%s, .. ., yn], Wherey; is the number of the life cycle of an identifier passing through multiple
appearances of messages of tyfe= 1...n) processing steps. The idea is very similar to execution
in the message group. path tracing [6], with two major differences. First, not ev-

ery processing step is necessarily represented in the con-
sole logs; but since the logging points are hand chosen by
aij_evelopers, it is reasonable to assume that logged steps

are likely to be important when they do appear. Gener ldbe | tant for di is S d tord
ing message types from source code makes it possibleﬁgou € important for diagnosis. second, correct oraer-
g of messages is not guaranteed across multiple nodes,

identify these rare cases even if they do not show up i ue to unsynchronized clocks. We did not find this to be

the particular logs being analyzed. We believe this is th blem for identifvi kinds of lies. but
most significant advantage of supplementing log analﬁ problem for identifying many kinds of anomalies, bu

sis with source code analysis rather than mining messa %n:?ht be a pr_oblem ftor cri]el_)uggmg synchronization re-
types exclusively from the logs. € |ssue§ using ourtechnique. )
We consider console logs from all nodes as a collection !N the third step, we create a vector representation of

of message groups. The message group can be arbitraffiSSage groups by counting the number of message types

constructed. The flexibility of message grouping is a dill’ €ch group, using the well establishlealy of words

rect benefit of being able to accurately extract all variablB'0del in information retrieval [S]. This model fits our
(namevalue pairs from log messages. needs because: 1) it does not require ordering among

39 Featurevector construction terms (message types), and 2) documents with unusual

terms are given more weight in document ranking, and

In & nutshell, our method uses automatically chosen log o case the rare log messages are indeed likely to be
message variables as keys to group different log lineg; ;e important.

Then for each log group, we construct a feature vector
the message count vector. This is done by an analogy to lelizes easily into a map-reduce computation, making it

thebl_ag (t)'f WO;ﬂSngEI n |n1t[(,?r_m?ht|on retrieval [3]. In OUL.Ireadin scalable to very large log files. After source code
appiication, the document-1s the message group, whi Snalysis, which needs to be done only once, message type

term frequency” becomes message type count. DlmelEll'etection and feature vector generation can be done in a

sions of the vector consist of (the union of) all useful mes_éingle pass in map-reduce.

sage types across all groups, and the value of a dimenS|or\N th Il th ¢ tors t fruct
in the vector is the number of appearances of the corre- € gaiher all the message count vectors 1o construc
essage count matriX as am x n matrix where each

sponding message type in the group. We construct tHECSS t q ibed in step 3
feature from message groups because often multiple 15§V IS @ message coun vectpr as describe n step
_Algorithm 1. Y hasn columns, corresponding to

messages together capture a single behavior of the s . . : .
tem, and thus an anomalous pattern in the message gro gSsage types (in the entire log) that reported the identi-
y ier chosen in step 1 (analogougéoms). Y hasm rows,

is often a better indication of a particular runtime proble h of which ds t |
than an anomalous pattern among individual messages(.aac of which corresponds to a message group (analo-

. ) . - gous todocuments). From our Hadoop data set, we ex-
Algorithm 1_g|ves a hlgh-leve! de§cr|pt|on of our fea-tracted5 376 message count vectogs each of which
ture construction algorithm, which involves three stepshas21 dimensions indicating that block IDs (the only

In the first step, we want to automatically choose vari- . : :
essage variable selected in Step 1 of Algorithm 1) were
ables as keys to group messages (one key for each grou@

We find variables that are frequently reported by different ported in21 message types in the entire log. Thus, we
... getab, 376 x 21 message count matriX. We useY for
message types and can have a large number of disti : :
d L anomaly detection algorithm.

values. This step eliminates the need for a user to man- )
ually choose grouping criteria. The intuition is that if a3-3 PCA-Based Anomaly Detection

variable has many distinct values reported, and each dik this section we show how to adapt Principal Compo-
tinct value appears multiple times, it is likely to be annent Analysis (PCA)-based fault detection from multi-

identifier for an object of interest, such as a transactiomariate process control [4] to detect runtime anomalies

" In practice, our feature extraction algorithm paral-



[N

S.. Intuitively, because of the low effective dimension-
ality of Y, by separating out the normal subspace using
PCA, it becomes much easier to identify anomalies in the
remaining (abnormal) subspace [4, 10]. This forms the
basis for the success of PCA methods.

Detecting Anomalies. Detecting program execution
anomalies relies on the decomposition of each message
count vectory into normal and abnormal components,

) Prindipal Component Y = ¥n+Ya, suchthat (ay,, correspondsto the modeled
Figure 1:Fractional of total variance captured by each princinormal component (the projection pfontoS,,), and (b)

pal component. v, corresponds to the residual component (the projection
of y ontoS,). Mathematically, we have:

I o o
> o ©

Variance Captured

o
[N}

0 5

in logs via the message count matix Intuitively, we T T
use PCA to determine the dominant components in mesY» = PPy = Cny,  ya = (I-PP")y = Cay,

sage count vectors, i.e. the “normal” pattern in a log mesyhereP = [vi,Va,..., vy, is formed by the firsk prin-
sage group. By separating out these normal componenggpal components which capture the dominant variance in
we can make abnormal message patterns easier to det@¢s data. The matri€,, = PP’ represents the linear op-

PCA is efficient: With a small constant dimension forerator that performs projection onto the normal subspace
each vector, its runtime is linear in the number of vectorss,  and operatoC, = I — C,, projects data onto the

so detection can scale to large logs. abnormal subspac®,.

PCA. PCA is a coordinate transformation method that An abnormal message count vecjotypically results
maps a given set of data points onto principal componenits a large change tg,; thus, a useful metric for detect-
ordered by the amount of data variance that they capturi@g abnormal traffic patterns is the squared prediction er-
When we apply PCA t&/, treating each row as a point ror SPE = |ly,||> = |C.y||?>. Formally, we mark a

in R™, the set ofn principal components{v;}? ,, are message count vector as abnormal if

defined as

SPE = ||Coy|* > Qa, €y

1—1

v; = arg max ||(Y — Zijva)xH. -
[Ix||=1 — : where @, denotes the threshold statistic for t8®E

In fact. v.’s are then ei enveétors of the estimated co residual function at thél — «) confidence level. Such

' Vi n €9 a statistical test for th8 PE residual function, known as

variance matrixA := Y'Y, and each Yv; | is pro- Q-statistic [9], can be computed as a functigp =
portional to the variance of the data measured along Qu(Met1s - .) An), Of the (n — k) non-principal eigen-
Intrinsic Dimensionality of Data. By examining the yalues of the covariance matri&. With the computed
amount of variance captured by each principal compqy, this statistical test can guarantee that the false alarm
nent, we can use PCA to explore tinrinsic dimension-  probability is no more than if the original dataY has a
ality of a set of data points. If we find that only the vari-mytivariate Gaussian distribution. However, Jensen and
ance along the first dimensions is non-negligible, we splomon point out that the-statistic changes little even
can conclude that the point set representedrbgffec-  \yhen the underlying distribution of the data differ sub-
tively resides in ark-dimensional subspace Bf". stantially from Gaussian [9]. With our data, which may
Indeed, we do observe low effective dimensionality irjeviate from Gaussian distribution, we do find that the

our message count matri. In Fig. 1, we plot the frac- ()-statistic still gives excellent results in practice.
tion of total variance captured by each principal compo Results

nent of Y. This plot reveals that even though message ) . )
count vectors have 21 dimensions, a significant fractioi/e first discuss the PCA detection results by comparing

of the variance can be well captured by three or foui’€m to manual labels. Then we discuss our method of

principal components. The intuition behind this result iglistilling the results into a decision tree which allows a

that most blocks in HDFS go through a fixed processinsomam expert unfamiliar with PCA to understand the re-

path, so the message groups are intrinsically determiné&Hts-

by program logic, resulting in high correlation and thugt.1 Anomaly detection results

low intrinsic dimensionality. We apply the PCA-based anomaly detection method to
The normal message count vectors effectively reside imessage count matriX and Fig. 2 shows the result. We

a (low) k-dimensional subspace &, which is referred seta = 0.001 and chosé: = 4 for the normal subspace,

to as thenormal subspaceS,,. The remainingn — k)  because the top 4 principal components already capture

principal components constitute tlanormal subspace more than 95% of the variance. From the figure, we



Linear PCA

—SPE
- = =Threshold

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Message group sequence

Figure 2:Detection with residual componegt,, the projection on the abnormal subspace. The dashed lavessthe threshold
Q.. The solid line with spikes is the SPE calculated accordingd. (1). The circles denote the anomalous message countvec
detected by our method, whose SPE values exceed thre§hold

sage; these abnormalities would be missed by other tech-

Table 1: Detection Precision nigues based on individual messages rather than message

érr:q(:)r;\yalpo;cska/ent Events ?etected groups.
Failed at the beginning, no block writter] 20 20 However, the PCA method almost completely missed
WiriteBlock received java.io.IOException 39 38 the last three types of anomalies in Table 1, and triggered
After delete, namenode not updated | 3 3 a set of false positives as shown in Table 2. In ongoing
Written block belongs to no file 3 3 work we are exploring nonlinear variants of PCA to see
PendingReplicationMonitor timed out | 15 1 . .
Redundant addStoredBlock request | 12 1 whether these errors arise due to the fact that PCA is lim-
Replicate then immediately delete 6 2 ited to capturing linear relationships in the data.
In summary, while the PCA-based detection method

Table 2: False Positives shows promising results, it also has inherent limitations
False Positive Type , False Alarm that cause both missed detection and false alarms. We
g:s;:iﬂlcgmg (actually due to client request)il are currently investigating more sophisticated nonlinear
Unknown reasons > algorithms to further improve the detection capability of

our method.

see that after projecting the message count vectors ot@ Visualizing detection resultswith decision tree
the abnormal space, the count vectors with anomaloywgom the point of view of a human operator, the high-
patterns clearly stand out from the rest of vectors. Eveflimensional transformation underlying PCA isblack
using a simple threshold (automatically determined), wBox algorithm: it provides no intuitive explanation of the
can successfully separate the normal vectors from the affetection results and cannot be interrogated. Human op-
normal ones. erators need to manually examine anomalies to under-
To further validate our results, we manually labeledstand the root cause, and PCA itself provides little help in
each distinct message vector, not only marking them nothis regard. In this section, we augment PCA-based de-
mal or abnormal, but also determining the type of probtection with decision trees to make the results more easily
lems for each message vector. The labeling is done lynderstandable and actionable by human operators.
carefully studying HDFS code and consulting with local Decision trees have been widely used for classification.
Hadoop experts. We show in the next section that the d8ecause decision tree construction works in the original
cision tree visualization helps both ourselves and Hadoamordinates of the input data, its classification decisions
developers understand our results and make the manaaé easy to visualize and understand [18]. Constructing
labeling process much faster. We emphasize that this la-decision tree requires a training set with class labels.
beling step was done only to validate our method—it i$n our case, we use the automtically-generated PCA de-
not a required step when using our technique. tection results (normal vs. abnormal) as class labels. In
Tables 1 and 2 show the manual labels and the deteeontrast to the normal use of decision trees, in our case
tion results. Our evaluation is based on anomalies d#3e decision tree is constructed to explain the underlying
tectable from the block-level logs. Throughout the expedogic of the detection algorithm, rather than the nature of
iment, we experienced no catastrophic failures, thus motte dataset.
problems listed in Table 1 only affect performance. For The decision tree for our dataset (Fig. 3), gen-
example, when two threads try to write the same bloclerated using RapidMiner [13], clearly shows that
the write fails and restarts, causing a performance hithe most important message type wisi t eBl ock #
From Table 1 we see that our method can detect a majarecei ved exception. If we see this message, the
ity of anomalous events in all but the last three categorieblock is definitely abnormal; if not, we next check
confirming the effectiveness of PCA-based anomaly dewhether Starting thread to transfer block #
tection for console logs. Indeed, examining the anoma-o # appears 2.5 times or less. This is related to the first
lous message groups, we find that some groups are dhlse positive (over-replication) in Table 2. This anoma-
normal because the messageints change, rather than lous case actually comes from special client requests in-
because they contain any single anomalous error mestead of failures, which is indeedrare case but not



in our analysis are automatically done on console logs,
>0 <= . . . . .
’—’1 _ ’ without any instrumentation to the system or any prior in-
[#Stamngthreadtotransfer block#to#] .. . .
o om0 put from operators. In addition, we summarize detection
2 (#Got exception e serving # o #:# results with decision tree visualization, which help oper-
<0 ators/developers understand the detection result quickly
[Unexpeﬁed error trying to delete block #\. Blockinfo nol)foound in volumeMap] AS future WOI'k, we W|” |nVeSt|gate more SOphIStlca'[ed
<o anomaly detection algorithms that capture nonlinear pat-
((addstoredBiock request received for # on # size # But it does ot belong to any i) terns of the message count features. We are designing
=0 O other features to fully utilize information in console logs
[# Starting thread to transfer block # to #] - . .
— , Current work ispostmortem analysis, but developing an
(veriaton succeeded o # ) 0 online detection algorithm is also an important future di-
S0 <o = rection for us. We also want to integrate operator feed-
° Receiving block # src:# dest: # back into our algorithm to refine detection results. In
22 <=2 summary, our initial work has opened up many new op-
portunities for turning built-in console logs into a power-

ful monitoring system for problem detection.

Figure 3: The decision tree visualization. Each node is th‘Beferences . . .
message type string (# is the place holder for variablesp Th [1] Hadoop 0.18 api documentation. Hadoop web site.

number on the edge is the threshold of message count, gedierat 2] émgéogb%%mAmzon Elastic Compute Cloud Devel oper

by the decision tree algorithm. Small square box are theédabe [3] D, Borthakur. The hadoop distributed file system: Archi-
from PCA, with 1 for abnormal, and O for normal. tecture and design. Hadoop Project Website, 2007.
[4] R.Duniaand S. J. Qin. Multi-dimensional fault diagresi
) o ) » using a subspace approach Piroceedings of ACC, 1997.
a problem. Visualizing this false positive helps opera- [5] R. Feldman and J. SangeiThe Text Mining Handbook:

tors notice the rare over-replicating behavior, find itssroo ~ Advanced Approaches in Analyzing Unstructured Data.

. . Cambridge Univ. Press, 12 2006.
cause more efficiently and thus avoid future false alarms[e] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Sto-

The most counterintuitive result in Fig. 3 is that ica. Xtrace: A pervasive network tracing framework. In

the message#: Got Exception while serving # In Proceedings of NSDI, 2007. .
# # indicat mal A ding to Apach [7] C. Gulcu. Short introduction to log4j, March 2002.
to #: # indicates anor case. According to Apache http://logging.apache.org/log4;.
issue tracking HADOOP-3678, this is indeed a normal[8] J. Hellerstein, S. Ma, and C. Perng. Discovering action-
behavior of Hadoop: the exception is generated by the gg'oezpattems in event datdBM Systems Journal, 41(3),
DFS data node when a DFS client does not finish readingg] J."E. Jackson and G. S. Mudholkar. Control procedures
an entire block before it stops. These exception messages for ?SIr?ua,Lseta?'Sng(tg)dgvﬂh3p4f|9nci%%|900mponem analy-
P ; : sis. Technometrics, :341-349, .

have_confused many users, as |nd|cate_d_ by _multlple d|ﬁ-0] A. Lakhina, M. Crovella, and C. Diot. Diagnosing
cussion threads on the Hadoop user mailing list about this ~ network-wide traffic anomalies. IRroceedings of ACM
issue since the behavior first appeared. While traditional .= SGCOMM, 2004.

. . : . 11] C. Lim, N. Singh, and S. Yajnik. A log mining approach
keyword matching (i.e., search for words likzception to failure analysis of enterprise telephony system®rtn

or Error) would have flagged these as errors, our message  ceedings of DSN, June 2008. a . o
count method successfully eliminates this false positivél2] S. Ma and J. L. Hellerstein. Mining partially periodic
Even better, the visualization of this counterintuitive re event patterns with unknown periods. fnoceedings of

. L. . . IEEE ICDE, Washington, DC, 2001.
sult via the decision tree can prod developers to fix thig 3] |. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and

confusing logging practice. T. Euler. Yale: Rapid prototyping for complex data mining
In summary, the visualization of results with decision[1 4 Esgirléfg’:gegf”gfecgrf‘ecyfw \va?\gt’ gf&%ogmp%\t{érzsoggy: A

trees helps operators and developers ndjipes of ab- study of five system logs. IRroceedings of IEEE DSN,
normal behaviors, instead of individual abnormal events, = Washington, DC, 2007.

; ; i i [15] J. E. Prewett. Analyzing cluster log files using logsurf
which can greatly improve the efficiency of finding root in Proceedings of Anhual Conf. on Linux Clusters, 2003.

causes and preventing future alarms. [16] J. Stearley. Towards informatic analysis of syslogs. |

H Proceedings of IEEE CLUSTER, Washington, DC, 2004.
> Conclusonsand future work [17] R. Vaarandi. A data clustering algorithm for mining pat

In this paper, we showed that we can detect different  terns from event logsProceedings of IPOM, 2003.

; ; ; ot 18] I. H. Witten and E. FrankDatamining: practical machine
kinds of runtime anomalies from usually underutilized learning tools and techniques with Java il oS,

console logs. Using source code as a reference to under-  Morgan Kaufmann Publishers Inc., 2000.

stand structures of console logs, we are able to constrJt¢®] K. Yamanishi and Y. Maruyama. Dynamic syslog mining
powerful features to capture system behaviors likely to Eégew;&kng”rﬁYmgggg”“g- IrProceedings of ACM
be related to problems. Efficient algorithms such as PCA ' R '

yield promising anomaly detection results. All steps



