Probabilistic Inference in Queueing Networks

Charles Sutton
Computer Science Division
University of California
Berkeley, CA 94720
casutton@cs.berkeley.edu

Abstract

Although queueing models have long been used to model
the performance of computer systems, they are out of
favor with practitioners, because they have a reputation
for requiring unrealistic distributional assumptions. In
fact, these distributional assumptions are used mainly
to facilitate analytic approximations such as asymptotics
and large-deviations bounds. In this paper, we ana-
lyze queueing networks from the probabilistic model-
ing perspective, applying inference methods from graph-
ical models that afford significantly more modeling flex-
ibility. In particular, we present a Gibbs sampler and
stochastic EM algorithm for networks of M/M/1 FIFO
queues. As an application of this technique, we local-
ize performance problems in distributed systems from in-
complete system trace data. On both synthetic networks
and an actual distributed Web application, the model ac-
curately recovers the system’s service time using 1% of
the available trace data.

1 Introduction

Performance models of computer systems have the po-
tential to address a wide variety of problems, including
capacity planning, resource allocation, performance tun-
ing, anomaly detection, and diagnosis of performance
bugs. A well-studied class of performance model is that
of queueing models. Queueing models predict the explo-
sion in system latency under high workload in a way that
is often reasonable for real systems, allowing the model
to extrapolate from performance under low load to per-
formance under high load. This is useful because it al-
lows us to predict the amount of load that will cause a
system to become unresponsive, without actually allow-
ing it to fail. Despite these advantages, practitioners sel-
dom use queueing theory, or performance models of any
kind, to analyze large-scale commercial computer sys-
tems. A main reason for this is that queueing theory has
a reputation among computing practitioners for making

Michael I. Jordan
Computer Science Division
University of California
Berkeley, CA 94720
jordan@cs.berkeley.edu

unrealistic assumptions on the distributions over system
response times, and of lacking robustness to divergence
from the modeling assumptions [5].

In addition, many important statistical questions about
system performance are difficult to answer using queue-
ing theory. One example is diagnosis of past perfor-
mance problems, for example: “Five minutes ago, a brief
spike in workload occurred. Which parts of the system
were the bottleneck during that spike?” This is a dif-
ferent question from asking about a hypothetical future
workload; essentially, it is a “What happened?” ques-
tion rather than a “What if?” question. A second type of
question is diagnosis of slow requests: “During the exe-
cution of the 1% of requests that perform poorly, which
system components receive the most load?” The bottle-
neck for slow requests could be very different than the
bottleneck for average requests, for example, if a storage
or network resource is failing intermittently. This also
demonstrates another type of performance localization,
which is that poor performance of any component can be
due to intrinsic performance or due to heavy load.

A key point of this paper is that both types of
difficulties—unrealistic distributional assumptions and
limited ability to answer statistical questions—arise not
from queueing models themselves, but from the way in
which they are analyzed. Because of their rich structure,
queueing models are notoriously difficult, and even the
simplest models, such as M/M/1 queues, require approx-
imations. Classically the approximations are performed
in one of two ways: either by computing the steady-state
response time distribution (or its moments such as the
mean), or by bounding the response times using the the-
ory of large deviations. Although these approximations
provide important insights into a large class of models,
they have several practical limitations. First, they are of-
ten difficult to calculate for realistic distributions, and un-
realistic assumptions can lead to inaccurate predictions.
Second, even if the steady-state distribution can be com-
puted exactly, it often does not directly answer statistical
questions of interest: the steady-state distribution is an

exact solution to an approximate problem. For example,
even total knowledge of the steady-state distribution does
not help answer the modeling questions presented above.

The main contribution of this paper is to propose a
new family of analysis techniques for queueing mod-
els, based on a statistical viewpoint. The main idea is to
measure from the running system both the total number
of requests, and a small set of actual arrival and depar-
ture times. Then, rather than analyzing the steady-state
distribution, we analyze the conditional distribution over
the arrival and departure times that were not measured,
conditioned on the small set of observations. In statis-
tics, this distribution is called a posterior distribution,
because it is obtained after observing data.

Even for simple models, representing the posterior dis-
tribution is intractable. To handle this, we view a queue-
ing network model as a structured probabilistic model, a
perspective that essentially combines queueing networks
and graphical models. This novel viewpoint allows us
to apply modern approximate inference techniques from
the probabilistic reasoning and machine learning com-
munities, such as Markov chain Monte Carlo methods
that sample from the posterior distribution.

As an illustration of this approach, in this paper we de-
rive a Gibbs sampler (Section 3) and a stochastic EM al-
gorithm (Section 4) for networks of M/M/1 queues. This
allows us to estimate the parameters of a queueing net-
work from an incomplete sample of arrival and depar-
ture times. On both synthetic data (Section 5.1) and per-
formance data measured from a simple Web application
(Section 5.2), we estimate the mean service and waiting
time of each queue, with accuracy sufficient to perform
localization, from 1% of the available data.

Despite the long history of queueing models and queu-
ing networks, we are unaware of any existing work that
treats them as latent-variable probabilistic models, and
attempts to approximate the posterior distribution di-
rectly. Furthermore, we are unaware of any technique
for estimating the parameters of a queueing model from
an incomplete sample of arrivals and departures.

2 Modeling

In this section, we describe queueing networks from the
probabilistic modeling perspective. As an example, con-
sider a single-processor FIFO queue. This is a system
that can process one request at time and has a queue to
hold incoming requests. Requests arrive at the queue ac-
cording to times drawn from some stochastic process,
such as a Poisson process. Requests are removed from
the queue in a first-in first-out (FIFO) manner. The
amount of time a request spends in the queue is called
the waiting time w. Once the request leaves the queue, it
begins processing, and remains in service for some ser-
vice time s. All service times are drawn independently

‘Web servers

EEDQ\
E[:D O\‘ Network

A

N

Middleware

Storage

EED Network
EED8>: O—O10O
[TT]

Figure 1: A queueing network model of a three-tier web
service. The circles indicate servers, and the boxes indi-
cate queues.

from some distribution, such as an exponential distribu-
tion with rate p. The total response time is defined as
r := s + w. In this way, the model decomposes the to-
tal response time into two components: the waiting time,
which represents the effect of system load, and the ser-
vice time, which is independent of system load. From
this perspective, an attraction of queueing models is that
they specify the distribution over waiting times as a func-
tion of the distributions over arrival and service times.

Many systems are naturally modeled as a network of
queues. For example, web services are often designed
in a “three tier” architecture, in which the first tier is
a presentation layer that generates the response HTML,
the second tier performs application-specific logic, and
the third tier handles persistent storage, often using a re-
lational database. Each tier is replicated on redundant
servers, so it is natural to use one queue for each redun-
dant server on each tier and one queue for the network
connection between them. Such a queueing network is
depicted in Figure 1. As another example, a distributed
storage system might use one queue for each storage
server, and one queue for each disk. Finally, single sys-
tems can be modeled using a network with one queue for
the CPU, one for each disk, one for the memory, etc.

We model the process of a task through the system
as a probabilistic finite state machine. After each tran-
sition, the FSM emits the next queue for the task. The
task arrives at that queue, waits in queue for some time
w, receives service for some time s, and then samples a
new FSM state. The task is completed when it enters the
final state of the FSM. We expect that the system FSM is
defined in advance, for example, from a known protocol
or multi-tier network application. We denote so that the
transition distribution between sates as p(o’|o), and the
emission distribution over queues g is p(q|o).

A series of tasks can be represented compactly by the
notion of an event. An event represents the process of a
task arriving at a queue, waiting in queue, receiving ser-
vice, and departing. Each state transition corresponds to
anevent e = (ke, 0¢, g, ac, d.), where k. is the task that
changed state, o, is the new state, g. the new queue, a.
the arrival time, and d,, the departure time. Every event e
has two predecessors: a within-queue predecessor p(e),

which is generated by the previous task to arrive at queue
ge, and a within-task predecessor 7(e), which is gener-
ated by the task’s previous arrival.

Notice that the service time s. can be computed de-
terministically from the set of all arrivals and departures.
Finally, arrivals to the system as a whole are represented
using special initial events, which arrive at a designated
initial queue qo at time 0 and depart at the time that the
task entered the system. This convention simplifies the
notation considerably, because now the interarrival time
distribution is simply the service distribution for qg.

Now we are able to write down the joint distribution
for a set of events E processed by the system. This is

P(E) = H l{aezd,r(e>}1{de=se+max[a€,dp(e)]}
eckE

p(se‘Qe)p(Qe|Je)p(06|Uﬂ(e)) (H

Many choices are possible for the service time distribu-
tions. As an illustration of the modeling technique, in
this paper we focus on M/M/1 queues, so that the ser-
vice time for each queue ¢ is exponential with rate fi4,
and the interarrival time exponential with rate A = fi4,.
However, this viewpoint is just as useful for more general
service distributions, and we are currently generalizing
the sampler to that case.

3 Gibbs Sampling

In this section, we tackle the challenging task of de-
veloping a Gibbs sampler for a M/M/1/FIFO queue-
ing network. The data is a set of events £ =
{(ke,ge,0e, Ge,de)} describing a set of tasks processed
by the system. Suppose that we measure the arrival times
from a subset of events O C E. Then a probabilistic
model, such a queueing model, allows us to make in-
ferences about the unobserved events via the posterior
distribution p(E|O). Because this is a complex distribu-
tion over a high-dimensional continuous space, we can-
not compute it exactly, so instead we sample from the
distribution, using a procedure called Gibbs sampling.
The sampler is complicated by two issues that are spe-
cific to queueing models. The first is that we observe
only arrival and departure times, not service times di-
rectly. Whereas any combination of service times cor-
responds to a valid event set, the arrival and departure
times have several deterministic dependencies, namely
that a. = dr(c) and d. = s, + max]ac, d,(], which
must be respected by the sampler. Deterministic depen-
dencies like this are known to impair the performance
of Gibbs samplers, so to address this we must design
the sampler and its initialization carefully. The second
complication is that changing one departure time d, can
affect the departures of arbitrarily many later events, be-
cause no other job can be serviced while d. is in queue.

Queue g Queue q,
Time B | Some) | domey 8 | Soe | Yo
l an(e) sn(c) ch(e) > a Se de
A 1G@) | So-lte) | doiae) B1e) | Serlee) | Forlce)

Figure 2: Illustration of relevant variables in the inter-
mediate event Gibbs sampler. Shaded variables are held
fixed, and unshaded ones are resampled.

This means that the Markov blanket for a single depar-
ture can be very large.

Because of the deterministic dependencies mentioned
above, when resampling a., we must also resample
dr(e)s Ses Sn(e)» a0d S)-1(x(c))- The notation E\ . means
all of the information from F, except for those five vari-
ables. These variables are illustrated in Figure 2. To
address the issue of deterministic constraints, we make
two other assumptions. First, we assume the FSM paths
(0e, qe) for all events are known. If these paths are un-
known for some events, they can be resampled by an
outer Metropolis-Hastings step. Second, when resam-
pling an arrival time, we hold fixed the order of arrivals
at each queue. This is essentially equivalent to assuming
that, between every two observed events, we know how
many unobserved events occurred. This is easy to mea-
sure in actual systems, by maintaining an event counter
that is transmitted only when an event is observed. This
assumption is useful because it means that resampling a
departure d. can affect the service time only of the next
event d,-1(,), rather than every subsequent event in .

Now, the conditional distribution over the arrival a,.
contains terms that reflect the service time s, of the re-
sampled event, the service time sy () of the within-task
predecessor, and the service time s,-1(x(¢)) Of the next
event in the earlier queue. The distribution to be sampled
is p(ac| B\,), which we write as p(a.|E\.) = Z 7 g(ac),
where g(a.) is

g(ac) = exp{ — pe(de — max|ac, dy(e)])
— Hr(e) (ae - max[aﬂ'(e)a dp(ﬂ(e))]) (2
= Ha(e) (dp=1 (m(e)) — MaX[ae, Qp1(x(ep)])}

Because the arrival order is fixed, and the queues
are FIFO, there are several deterministic constraints
on a.. These are that a. must be greater than
L = maX{aﬂ(e),dp(ﬂ(e)),ap(e)} and less than U =
min{de,apfl(e),dpfl(w(e»}.

The normalizing constant Z can be computed by in-
tegrating both sides of (2), but computing the required
integral is complicated by the two maximizations that
involve a.. To handle this, divide the integral defin-
ing Z into three parts, which are bounded by the next

arrival a,-1(r(c)) at the earlier queue and the previ-
ous departure d,) at the later queue. Since those
can occur in either order, the boundaries of the in-
tegration are A = min{a,-1(x(e)), dpe)} and B =
max{a,-1(r(e)),dp(e)}- Then we write Z = Z; +
Zy + Zs3, where Z is restricted to (L, A), Z, to (A, B).
and Z3 to (B,U). Each of these smaller integrals can
be solved analytically, because the maximization within
g(a.) vanishes. Also, each integral has a natural interpre-
tation: Z; /Z is the probability that a. falls in the interval
(L, A); Zy/Z the probability for (A, B), and Z3/Z the
probability for (B, U). With this normalizing constant
Z, we can sample from (2) by taking the inverse cdf of
each case. This yields the sampler described in Figure 3.

Finally, initializing the Gibbs sampler requires find-
ing arrival times for the unobserved events that are feasi-
ble with respect to the deterministic constraints described
above. Initialization is further complicated because a
task may contain both observed and unobserved arrivals,
so an arrival may be constrained both by its queue and
its task. To handle this, given an initial setting p of the
mean service times, we use a linear program to minimize
> o |Se — 1q. | subject to the deterministic constraints.

4 Parameter Estimation

From a sample of events O C E, we may wish to ob-
tain a point estimate /i, of the mean service time of each
queue ¢ and the arrival rate \. A natural method is EM,
but the E-step cannot be performed exactly. The E-step
can be approximated using the output of a Gibbs sam-
pler, which results in Monte Carlo EM [7], but this re-
quires running an independent Gibbs sampler for a large
number of iterations at each outer EM iteration. Instead,
we use stochastic EM (StEM), in which the E-step con-
sists of replacing the unobserved arrivals with the output
of only one iteration of a Gibbs sampler [2, 4, 3]. The M-
step is the standard maximum likelihood estimator for A
and {u,}. Once a point estimate /i of the mean service
times available, an estimate of the waiting time can be
obtained by running the Gibbs sampler with /i fixed.

5 Experiments

In this section, we demonstrate the performance of the
model on the task of localizing performance faults in dis-
tributed systems from incomplete arrivals. The goal is to
localize performance problems to one component of the
system, and to report whether the large response time is
due to the intrinsic performance of the system, or simply
due to increased load. This problem can be cast as one
of estimating the service time and waiting time for each
queue in a queueing network. For example, if the mean
waiting time at the database queue is disproportionately

large, then we conclude the database is the bottleneck
for that time period. If the response times for all requests
are observed, then this task is trivial, but this level of
instrumentation can have an unacceptable computational
cost. For example, in a performance study of the Coral
distributed web cache, recording the trace data for all re-
quests would require 123 GB per day (uncompressed).!
This is why we assume that arrival times and rates are
measured for only a subset of requests.

5.1 Synthetic data

First we evaluate the accuracy of the Gibbs sampler and
StEM procedure in simulation. Because the shape of
the distribution over arrivals depends on the system load,
we evaluate both lightly loaded and heavily loaded sys-
tems. We sample arrivals and departures from a number
of three-tier queueing networks, as depicted in Figure 1,
but without the network queues. In all cases the arrival
rate was set to A = 10.0 and all of the service rates
to 4 = 5.0. These parameters where chosen so that a
tier with a single server is heavily overloaded, one with
two servers barely overloaded, and one with four servers
moderately loaded. We generate synthetic data from five
different network structures, with differing numbers of
queues at each tier, in order to vary the system bottle-
neck. From each structure, we generate 1000 tasks and
observe all arrivals for a random sample of tasks. Then
we estimate the waiting and service time of each queue
using the Gibbs sampler and StEM. For each network
structure, we repeat this procedure 10 times.

Figure 4 shows the accuracy in the recovered service
times and waiting times as a function of the percentage
of arrivals that are observed. Each point is the absolute
error in the estimate for one queue in one repetition for
one simulated structure. Even with a small amount of
data, the accuracy is sufficient for localizing performance
problems. With 5% of tasks observed, the median abso-
lute error in service time is 0.033 and for waiting time
1.35. For queues that are overloaded, the waiting time
tends to be an order of magnitude greater than the ser-
vice time, so it is not surprising that the error is larger.

Traditional queueing theory does not provide a method
for estimating the service times given an incomplete
sample of response times. As a baseline, we use the
sample mean of the service time for the tasks that are ob-
served. This comparison is unfair to StEM, because the
baseline uses the true service times from the observed
tasks, information that is not available to StEM. Com-
paring these estimators, although the mean error is al-
most identical, StEM has only two-thirds of the variance
(StEM variance: 9.09 x 10~*, Mean-observed-service
variance: 1.37 x 1073).

Rodrigo Fonseca, personal communication.

1. Sample V' ~ Unif{0; 1].

2. Compute
—,u;(le) log (exp{—MW(E)L} +V [eXp{—/},ﬂ.(e)A} — exp{—,u,r(e)LH) with probability Z; /Z
ae =< A, with probability Z5/Z (3)
g log (exp{pe B} + V]exp{u.U} — exp{p.B}]) with probability Z3/Z
where
Umf[A, B] if dp(e) > Ap—1(n(e))
Ay ~ Unif[A4; B if dp(e) < @p-1(x(e)) and 0, =0 @)

A+ TI‘EXp(‘(;M; B— A) if dp(e) < Gp-1(n(e)) and 5# >0
B — TI‘EXp(|(5M|; B-A) if dp(e) < Qp-1(n(e)) and 9, <0

and TrExp(u; V) denotes the exponential distribution with rate 4 truncated to the interval (0, V).

Figure 3: Sampler for the local conditional distribution required by the Gibbs sampler.

0.15

Absolute error (Service time)
. 0.10 .
|
Absolute error (Waiting time)

fpe w0 oo

o

—]omoomo @ 0o omo

5
==
i

H g
— i
[I 1 [I 1
0.05 0.1 0.25 0.05 0.1 0.25

0.00
[
t
t
t
0
L

Percent arrivals observed Percent arrivals observed

Figure 4: Accuracy of StEM with Gibbs sampler at recovering service times (left) and waiting times (right) in simula-
tion.

1.0
05

08
04

Predicted value
Predicted value
03

04
02

0
0.1

3
0.0

Figure 5: Estimates of mean service time (left) and mean waiting time (right) on the movie voting application as a
function of the percentage of observed requests.

5.2 Data from Web application

Now we evaluate the queueing model on data generated
by instrumenting a simple benchmark Web application.
The system is a Web application for voting on movies,
written using the Ruby on Rails application framework.
This data was previously used in [1]. Almost all of the
page content is dynamically generated. We run ten iden-
tical instances of the web server process, which com-
putes the dynamic content, on a single machine. A sepa-
rate machine runs a MySQL database for persistent stor-
age. The software load balancer haproxy is used to
handle incoming requests, which allows us to estimate
the network transmission time of the HTTP request and
response.

To model this system as a queueing network, we use
one queue for each of the 10 web server instances, one
for the database, and one for the network transmission
time to and from the system. We generate 5759 requests
to the system using an automatic workload generator, in-
creasing the load linearly over 30 min. This results in
23036 total arrival events in the queueing model. The
running time of the StEM/Gibbs procedure is difficult to
quantify theoretically, because it depends on the number
of iterations required to reach convergence. However, the
sampler scales primarily in the number of unobserved ar-
rival events, not in the number of servers.

The parameter estimates from various amounts of ob-
served traces are shown in Figure 5. In this figure, the
thick black line represents the estimates for the network
queue, the thick gray line the database queue, and the
thin lines the 10 web servers. If 100% of the data is ob-
served, the estimates are essentially the same as for 50%
observed data. In addition, the estimates are stable as
the amount of data decreases, producing reasonable esti-
mates even with 10% of the observed data.

One of the queues in the Figure 5 is a clear exception.
This is because the load balancer assigned an unusually
small number of requests (19) to that server during the
observed time period. With such a small amount of data,
estimation can be expected to be unstable.

6 Discussion

Queueing models have been long studied in telecommu-
nications, operations research, and performance model-
ing of computer networks and systems. There has been
recent interest in modeling dynamic Web services by
queueing networks [6, 8]. There is also recent work us-
ing queueing models to initialize more flexible models,
namely regression trees [5].

In this paper, we have introduced a new class of tech-
niques for analyzing queueing models by approximating
the posterior distribution directly using modern approx-
imate inference algorithms from graphical models. We

are aware of no previous work applying inference al-
gorithms from graphical models to networks of queues.
On both synthetic and real-world data, we have shown
that this perspective allows parameter estimation from
incomplete data. Perhaps the most useful aspect of this
perspective, however, is the flexibility that it affords for
future modeling work, including more general arrival and
service distributions, model selection, and online, dis-
tributed inference.

Acknowledgments

We thank Peter Bodik for providing the data used in Sec-
tion 5.2, and George Porter, Rodrigo Fonseca, and Randy
Katz for helpful conversations. The movie voting applica-
tion was developed primarily by Michael Armbrust and Ja-
cob Abernethy. This research is supported in part by gifts
from Sun Microsystems, Google, Microsoft, Cisco Systems,
Fujitsu America, Hewlett-Packard, IBM, Network Appliance,
Oracle, Siemens AB, and VMWare, and by matching funds
from the State of California’s MICRO program (grants 06-152,
07-010, 06-148, 07-012, 06-146, 07-009, 06-147, 07-013, 06-
149, 06-150, and 07-008), the National Science Foundation
(grant #CNS-0509559), and the University of California Indus-
try/University Cooperative Research Program (UC Discovery)
grants COM06-10213 and COMO07-10240.

References

[1] BODIK, P., SUTTON, C., FOX, A., PATTERSON, D., AND JOR-
DAN, M. I. Response-time modeling for resource allocation and
energy-informed SLAs. In MLSys 07 (2007).

[2] BRONIATOWSKI, M., CELEUX, G., AND DIEBOLT, J. Re-
connaissance de mélanges de densités par un algorithme
d’appretissage probabiliste. In Data Analysis and Informatics,
E. Diday, Ed., vol. 3. North Holland, Amsterdam, 1983, pp. 359—
374.

[3] CELEUX, G. A stochastic approximation type EM algorithm
for the mixture problem. Stochastics and stochastics reports 51
(1992), 119-134.

[4] CELEUX, G., AND DIEBOLT, J. The SEM algorithm: a proba-
bilistic teacher algorithm derived from the EM algorithm for the
mixture problem. Computational Statistics Quarterly 2 (1985),
73-82.

[5] THERESKA, E., AND GANGER, G. R. Ironmodel: Robust perfor-
mance models in the wild. In SIGMETRICS (2008).

[6] URGAONKAR, B., PACIFICI, G., SHENOY, P., SPREITZER, M.,
AND TANTAWI., A. An analytical model for multi-tier internet
services and its applications. In SIGMETRICS (2005).

[71 WEIL, G., AND M.A.TANNER. A Monte Carlo implementation
of the EM algorithm and the poor man’s data augmentation algo-
rithms. Journal of the American Statistical Association 85, 699—
704 (1990).

[8] WELSH, M. An Architecture for Highly Concurrent, Well-
Conditioned Internet Services. PhD thesis, University of Califor-
nia, Berkeley, 2002.

