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Abstract

Previous work showed that statistical analysis tech-
niques could successfully be used to construct compact sig-
natures of distinct operational problems in Internet server
systems. Because signatures are amenable to well-known
similarity search techniques, they can be used as a way
to index past problems and identify particular operational
problems as new or recurrent. In this paper we use a dif-
ferent statistical technique for constructing signatures (lo-
gistic regression with L1 regularization) that improves on
previous work in two ways. First, our new approach works
for cases where the number of features is an order of mag-
nitude larger than the number of samples and also scales
to problems with over 50,000 samples. Second, we get en-
couraging results regarding the stability of the models and
the signatures by cross-validating the accuracy of the mod-
els from one section of the data center on another section.
We validate our approach on data from an Internet service
testbed and also from a production enterprise system com-
prising hundreds of servers in several data centers.

1 Introduction

Interactive network services experience performance
problems for a wide variety of reasons. Diagnosing these
problems is complicated due to various factors including the
large scale deployment of these services, their complex in-
teractions, and the large number of metrics collected in each
component of the system.

The work in [2] proposed an approach to alleviate the di-
agnosis problem by automatically building a compact sig-
nature of each failure mode. These signatures are then used
to a) localize the problem (sometimes establishing a path
to the root cause), b) detect recurring instances of the same
problem, and c) serve as indexes for annotations regarding
resolution. The applications b) and c) were addressed us-
ing a similarity search over the signatures, effectively re-

ducing problem identification to information retrieval. The
automatic construction of these signatures in [2] is based on
classification with feature selection to find subsets of mea-
sured system metrics (CPU, memory utilization, etc.) that
were correlated with the performance problem. The signa-
ture of a particular instance of a problem is then extracted
by finding whether each of the selected features contributes
to classifying the instance as anomalous or as normal. The
paper then demonstrated the benefits of this approach on a
transactional system consisting of tens of geographically-
distributed servers.

In this paper we revise the methodology for inducing
a classifier and selecting the features. While the work
in [2] relied on a Bayesian network classifier and a heuristic
search over the space of features, we use logistic regres-
sion with L1 regularization [6, 7]. The first advantage of
using this approach is that it works well in cases where the
number of features being considered exceeds the number
of samples; Case Study 1 describes an example with over
2000 features and only 86 datapoints. An example of such
a scenario is application testing, where thousands of fea-
tures are collected per machine, yet the number of samples
in a particular failure mode is limited by the duration of the
test run. The second advantage is the availability of very
efficient implementations of L1-regularized regression that
scale to datasets with tens of thousand samples, which is a
requirement for an application in a cloud computing envi-
ronment with thousands of machines. We built a tool called
HiLighter based on the algorithm and C] implementation
for regularized log-linear models described in [1].

To demonstrate and validate HiLighter we applied it to
data from a testbed of an Internet service, where the number
of features is an order of magnitude higher than the number
collected samples. This testbed is used in the service prod-
uct group to test and validate new features in the product.
We also applied HiLighter to data from two known perfor-
mance problems in a production environment with hundreds
of machines, each reporting hundreds of metrics. Three
interesting results emerge. First, we were able to help di-
agnose a problem in the testbed using HiLighter. This is
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notable since the approach in [2] would be unable to reli-
ably fit a model under those conditions. Second, we get
encouraging results by cross-validating the accuracy of the
models from one group of servers in a datacenter on a new
group of servers. Given that the signatures are extracted
from the models in a deterministic fashion, the results sug-
gest that the signatures being computed as “digests” of the
problem states are stably capturing the metrics relevant to
each problem. Finally, we observe stable and distinct signa-
tures for the system’s state just before and after the perfor-
mance problem as well. This suggests that signatures can be
used not only to identify a particular performance problem
but possibly to forecast it almost an hour in advance. We
are currently working with human experts on verifying the
forecasting possibilities. The group responsible for the ser-
vice whose data was analyzed have incorporated the code
for HiLighter to their code tree for integration with their
other tools.

We first present the details of the HiLighter algorithm,
followed by three case studies: one from an application
testbed and two from a large-scale production environment.

2 HiLighter

We start by reviewing the classification model and fea-
ture selection approach used by HiLighter and then we con-
trast these with the approaches in [2]. HiLighter is based on
a logistic regression classifier. A logistic regression model
is a common statistical parametric approach based on the
assertion that the class variable Y is a Bernoulli random
variable with mean pj [8], where 1 ≤ j ≤ m is the jth

sample.1 Given the set of features M , the model is given by

pj = P (Yj = 1|Mj = m) =
exp(

∑
i βimi)

1 + exp(
∑

i βimi)
(1)

Usually, the parameters βi are fitted by maximizing the like-
lihood function L(β) =

∏
j p

Yj

j (1−pj)1−Yj . The L1 regu-
larization extends the objective function to include the con-
straint that the L1 norm of the parameters be less than a
value λ; that is,

∑
|βi| ≤ λ, where λ can be fitted in a va-

riety of ways including cross-validation. Because the first
partial derivative of the L1 regularizer with respect to each β
coefficient is constant as the coefficient moves toward zero,
the values of the coefficients are “pushed” all the way to
zero if possible. For more formal justifications we refer the
reader to [7, 6, 1]. This regularization was shown theoret-
ically and experimentally to learn good models even when
most features are irrelevant and when the number of param-
eters is comparable to the number of samples [7, 6]. It also
typically produces sparse coefficient vectors in which many

1We are assuming two classes; the extensions to more than one class
have been studied in the literature.

of the coefficients are exactly zero and can thus be used for
feature selection.

In contrast, the feature selection approach in [2] was
based on a greedy search process wrapped around an in-
duction of a Bayesian network classifier [4], which has two
immediate consequences. First, because the search consid-
ers changes to one feature at a time in a greedy neighbor-
hood, the explored search space is severly constrained and
in large problems only a small subspace is explored. Sec-
ond, the inner loop of the feature selection requires a model
selection step such as cross-validation which introduces an-
other source of error.2 By relying on the gradient of the
likelihood function, the logistic regression with L1 regular-
ization performs a guided exploration of a much larger part
of the search space.

We adapt the methodology in [2] to our setting to con-
struct signatures of performance problems. In each time
quantum, the system collects hundreds of performance met-
rics reported by the hardware, operating system (Windows
Server), runtime system (Microsoft Common Language
Runtime), and the application itself. The operators of the
service specify one of these performance metrics as a “met-
ric of merit” (e.g., average response time) and we define a
class for each time interval as normal or abnormal, depend-
ing on whether the metric of merit exceeds some chosen
threshold during that interval.

The first step in constructing the signatures for a perfor-
mance anomaly is a selection of a small number of metrics
that well predict both normal and abnormal performance
with high accuracy. HiLighter transforms the measured
metrics using standard preprocessing: a) removes the con-
stant metrics, b) augments each metric by computing a gra-
dient and standard deviation with respect to one or two time
periods in the past (thereby creating additional features),
and c) normalizes the metrics to zero mean and variance of
one. For now, we simply remove entries for which data is
missing; this was not a factor in Case Study 1, but it affected
Case Study 2, as described in Section 3.2.

As recommended in [2], we evaluate the models using
Balanced Accuracy, which averages the probability of cor-
rectly classifying normal with probability of detecting an
anomaly; this is necessary since there are typically many
more instances of normal performance than anomalous per-
formance. The number of metrics selected is affected by a
λ parameter which is the contraint on the L1 regularization.
There are many ways to find λ that achieves the optimal
classification accuracy [9]; HiLighter uses five-fold cross-
validation in conjunction with a binary search over the val-
ues of λ.

After the feature selection using L1, HiLighter fits the
final model using the selected metrics and adds an L2 con-
straint to stabilize for correlated features (as recommended

2If closed form formulas are used then approximations are necessary.
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in [9]). HiLighter then reports balanced accuracy, the con-
fusion matrix including false positives and false negatives,
and the balanced accuracy of using each metric alone as
a classifier. As will be apparent in Case Study 2 and 3,
the balanced accuracy of the final model with multiple met-
rics is significantly better than the balanced accuracy of a
model with just one or two metrics, clearly making the case
for models that take into account the interaction among fea-
tures.

Finally, we use the selected metrics to construct a sig-
nature of each machine at each time interval. A signature
consists of the list of the selected metrics, where we label
each metric as abnormal if its value contributes positively
to the classification of this machine as abnormal; otherwise
we label the metric normal. Formally, metric i is labeled
abnormal if mi ∗ βi > 0, where mi is the value of metric i
and βi is the coefficient in the linear classifier correspond-
ing to this metric. Such a signature serves as a condensed
representation of the state of the machine at the given time
interval.

3 Case Studies

3.1 Case Study 1: High variability in response
time during application testing

The first case study concerns a multi-tier Internet appli-
cation deployed across multiple datacenters. We examined
traces from a small-scale testbed used for testing new fea-
tures and capabilities of the application. The traces con-
tained the following types of metrics measured every 30
seconds: workload, response times, OS-level metrics, .NET
runtime metrics, and application-specific metrics. After the
feature extraction process in HiLighter, the dataset con-
tained about 1000 features per server.

The performance anomaly we investigated was large
variance in the 99th percentile of latency under steady work-
load and stable external environment. The values of latency
were ranging from 50 to 1200 ms, in clear contrast to an
identical run on a separate set of servers where the response
time stayed below 300 ms. We found that a threshold of
400 ms clearly separated the slow, anomalous requests from
the normal ones. We included metrics from one first-tier and
one second-tier server, since each request passed through
both types of server. The resulting dataset contained only
86 datapoints and 2008 features, from which HiLighter se-
lected just two metrics, both reported by the .NET runtime:
number of induced garbage collections and change in num-
ber of allocated bytes. The resulting model reached cross-
validated balanced accuracy of 0.94 which strongly sug-
gests that garbage collection was the cause of this perfor-
mance anomaly. We note that we tried all major classifiers,
including Naive Bayes and Support Vector Machines, with

feature selection as implemented in Weka [5] with little suc-
cess.

3.2 Case Study 2: Configuration Issue in a Pro-
duction Datacenter

The second case study focuses on a performance issue
in the production version of another large-scale Internet
application. This application is deployed across six data-
centers with hundreds of servers, each serving one of five
roles in the overall application. The “application core”
servers—call them Role 1 servers—contain the main appli-
cation logic, and each of these servers measures the average
latency of requests it processed. The performance problem
we investigated was triggered by a deployment of a bad con-
figuration file to all Role 1 servers, resulting in significant
processing delays of the received requests.

3.2.1 Building and evaluating models of the anomaly

We used HiLighter on data from four groups of Role 1
servers housed in datacenter 5; each group contained be-
tween 20 and 70 servers. The feature extraction process
resulted in a dataset with approximately 500 metrics and
100 datapoints per server and time interval. We used the
average latency on each server as our reference metric and
used a threshold supplied by operators of this service. The
linear models produced by HiLighter selected between six
and nine metrics and achieved cross-validated balanced ac-
curacy between 0.92 and 0.95. The selected metrics were
a combination of CPU utilization, internal workloads, and
other application-specific measures. When comparing mod-
els that used exactly six metrics, five of the metrics selected
by the different models were identical, thus, the models
would generate almost identical signatures. The number of
metrics selected can heavily influence model accuracy: in
one group of servers, the balanced accuracy increased from
0.83 with only two metrics to 0.92 with six metrics, further
confirming the need to consider interactions among metrics
rather than just the contributions of individual metrics.

Despite using data from the same anomaly, there were
notable differences in the metrics selected for each model.
These differences could mean that the models wouldn’t gen-
eralize to other instances of this anomaly, which would de-
crease their usefulness. To test the accuracy of the models
on new instances of this anomaly, we separately evaluated
each of the models on data from the remaining three groups
of servers. As summarized in Table 1, the balanced accu-
racy was between 0.90 and 0.96 which demonstrates that the
models could accurately detect this anomaly. We believe
that the differences in selected metrics are due to missing
values in our dataset; we omitted metrics with too many
values missing and these thus couldn’t be selected by Hi-
Lighter. Later the operators of the service informed us that
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the missing data points actually represent a values of zero.
After replacing the missing values with zeros, the metrics
selected in different groups of servers were almost identi-
cal.

3.2.2 Localizing the cause of the anomaly

Knowing which other server roles were affected by this
anomaly could considerably help the operators during root
cause analysis. We therefore used HiLighter on the other
four types servers (roles two through five) grouped by data-
center and role. However, because these servers don’t mea-
sure latency as the role 1 servers do, we used timestamps to
define the anomaly. That is, the anomaly is defined to have
occurred during the time period in which the role 1 servers
were reporting poor request latency.

As summarized by Table 2, for some groups of servers,
such as role 5 in datacenter 6, the balanced accuracy was
very low, suggesting that (metrics reported by) these servers
were not affected by this issue. However, most of the other
server groups seem to have been affected and analyzing the
selected metrics would likely aid the operators in diagnos-
ing this issue.

3.2.3 Constructing signatures of the anomaly

We constructed signatures as defined in Section 2 for a
group of 71 servers and analyzed how these signatures
evolved before, during, and after the anomaly (see Fig-
ure 1). HiLighter selected six metrics for the model: three
measures of CPU utilization (features 1–3), number of con-
nections and disconnections on an internal component in the
server (features 4–5), and the variance of workload on an-
other internal component (feature 6). As described in Sec-
tion 2, given a model of the anomaly, a signature is con-
structed for every data point, i.e. for each server and time
interval. The signature consists of the metrics selected for
the model and a binary label for each metric. A + label
means that the value of the metric is abnormal relative to
the model, a - label means the metric is normal.

The changes in signatures over time help us understand
what happened during the anomaly. To simplify the visual-
ization of signatures in Figure 1, we clustered the signatures
into four groups based on the number of abnormal metrics.
Signature group A (dark gray) contains signatures with at
most two abnormal metrics; signature B (light gray) has
all metrics abnormal except metric 6; signature C (black)
has all metrics abnormal; and group other represents all re-
maining signatures. The figure clearly shows that signatures
in group A were prevalent up to about 14 intervals before
the start of the anomaly and then again 14 intervals after the
end of the anomaly. Despite containing some anomalous
metrics, the HiLighter model correctly predicted normal.
Signature C corresponds to the anomaly itself, and since all

gr. 1 gr. 2 gr. 3 gr. 4
group 1 0.92 0.93 0.92 0.91
group 2 0.95 0.95 0.96 0.94
group 3 0.92 0.92 0.95 0.92
group 4 0.90 0.90 0.92 0.93

Table 1. Results for case study 2 (configuration issue) for
servers in role 1 in datacenter 5; each cell shows balanced
accuracy of a model trained on the group of servers speci-
fied in the row header and evaluated on the group specified
in the column header. Entries along the diagonal represent
the cross-validation results.

DC 1 DC 2 DC 3 DC 4 DC 5 DC 6
role 1 0.92 0.95 0.99 0.92
role 2 0.96 0.99 0.85 0.67 0.97
role 3 0.93
role 4 0.80
role 5 1.00 0.52

Table 2. Each cell shows the cross-validated balanced
accuracy for case study 2 (configuration issue) for servers
in all roles in all datacenters. This might help localize
the source the problem. Note: not all datacenters contain
servers of all roles.

the metrics are anomalous, the model correctly predicted
anomaly. However, up to 14 intervals before and after the
anomaly, signature B was most prevalent, which suggests
that five out of the six chosen metrics were already “mis-
behaving” long before the measured anomaly started. The
anomaly of individual metrics caused a significant number
of false positives in the results of the HiLighter model. We
hypothesize that further characterizing signature B would
allow us to predict such anomalies in the future.

gr. 1 gr. 2 gr. 3 gr. 4
group 1 0.97 0.97 0.96 0.96
group 2 0.98 0.99 0.98 0.98
group 3 0.96 0.95 0.99 0.99
group 4 0.95 0.92 0.96 0.96

Table 3. Results for case study 3 (overloaded datacenter)
for servers in role 1 in datacenter 5; each cell shows bal-
anced accuracy of a model trained on the group of servers
specified in the row header and evaluated on the group spec-
ified in the column header. Entries along the diagonal rep-
resent the cross-validation results.
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Figure 1. The bottom plot shows the latency as measured by the 71 role-one servers over time; each dot represents latency on
one server during a single time interval. The anomaly is visible in the middle part of the plot. The top plot shows the evolution of
signatures over time on all the servers; on average, for ten out of the 71 servers we cannot compute signatures because of missing
values.

3.3 Case Study 3: Performance Anomaly Caused
by an Overloaded Datacenter

In the last case study we analyze another performance
issue in the same application. One of its datacenters was
overloaded, which caused significant processing delays as
external traffic was redirected to the remaining datacenters.
After feature extraction we obtained a dataset of approxi-
mately 500 features and 100 datapoints per server. We used
HiLighter on the same four groups of Role 1 servers as in
Case Study 2, and evaluated each model on data from the
remaining three groups. As summarized in Table 3, with
one exception, accuracy of the models was in the range of
0.95 and 0.99. Three out of the four metrics selected by the
different models were identical and thus the models would
generate almost identical signatures.

As in Case Study 2, we analyzed the evolution of the sig-
natures for the group of 71 Role 1 servers. The HiLighter
model selected for this group of servers includes CPU uti-
lization (feature 1) and variance of four internal workload
metrics (features 2–5). Figure 2 shows the behavior over
time (normal vs. abnormal with respect to the performance
model) of the five individual features. This visualization
allows us to easily spot when each metric became abnor-
mal and how many servers were affected. Metrics 2, 3

and 5 capture the duration of the anomaly very well, but the
anomaly in CPU utilization (metric 1) precedes the start of
the performance issue. We hypothesize that this signature
could be used in the future to predict the occurrence of such
anomalies. One troublesome issue is the behavior of metric
4, which becomes abnormal long before the anomaly starts.
However, since it is the only anomalous metric, HiLighter’s
model correctly predicts normal overall state of the system,
and reports only a single false negative at the beginning of
the dataset.

4 Conclusions

HiLighter is being incorporated into a set of tools used
by the test team responsible for the application in Case
Study 1. It is also part of the diagnostic tool Artemis [3]
for finding bugs and performance problems in large clus-
ters of machines where DryadLINQ [10] (or Map Reduce)
parallel programs are executed. HiLighter’s performance
on the datasets we examined strongly suggests that the
methodology of logistic regression with L1 regularization
produced robust models in scenarios with large numbers
of features and only few datapoints, as well as in cases
of multi-datacenter applications with hundreds of machines
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Figure 2. As in Figure 1, the bottom plot shows the latency on the 71 role-one servers. The plots on the top show the state of each
of the selected five metrics on these servers. Dark gray means that the value of the particular metric was abnormal with respect to
the HiLighter model.

and large data sets. The work is still in progress: we are cur-
rently validating the results and confirming the benefits of
the signatures found. This is important given the evidence
that the “synthesized” features, such as the rates computed
in Case Study 1 and the variances computed in Case Stud-
ies 2 and 3, contribute critically to the balanced accuracy
of the models and the stability of the constructed signa-
tures. Thus, we would like to encourage the addition of
new features (based on the measured metrics) so that engi-
neers could add knowledge about the domain without being
constrained by the characteristics of the model building pro-
cess.
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