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Abstract bly at the expense of the performance of individual flows.
Internet routing is mostly based on static information—{?utsrﬁomégpuett’ ggrggq\ijer:ii Zg’ozar;r?gpm;?esf(s)l:;nﬁ):fer:ig
its dynamicity is limited to reacting to changes in outin shouﬁj be robust to su'ch a,dversarial 'behavior
topology. Adaptive performance-based routing decisionw{: 9 ) : . RN
urthermore, in the general interdomain setting, individ-

would not only improve the performance itself of the al networks are not likelv to seek to optimize a network-
Internet but also its security and availability. However, ue WOTKS IKely 10 plimiz
wide objective but rather their own performance.

previous approaches for making Internet routing adap- _ )
tive based on optimizing network-wide objectives are not N this paper, we propose a different framework for

suited for an environmentin which autonomous and pos2dding adaptivity to routing decisions, one based on the
sibly malicious entities interact. substantial body of work ifnearning theoryand game

In this paper, we propose a different framework for theoryon algorithms for making repeated decisions that

adaptive routing decisions based on regret-minimizingdim t0 minimizeregret The regret of an algorithm is
online learning algorithms. These algorithms, as ap_the dlffe_rence between the performa_mce of the sequence
plied to routing, are appealing because adopters can il decisions generated by the algorithm and the perfor-
dependently improve their own performance while be-mance of the_ best flxgd decision in hindsight. Several
ing robust to adversarial behavior. However, in contrastd€cision-making algorithms have been proposed that ap-
to approaches based on optimization theory that provid@roaCh zero regret even against a fully adaptive adversary

guarantees from the outset about network-wide behaviof€-9- [2, 19]). The problem of routing data traffic be-
the network-wide behavior if online learning algorithms tWeen a source and a destination node over a set of paths

were to interact with each other is less understood. 1/f@n be cast as a problem of repeated decision making in
this paper, we study this interaction in a realistic Inteérne Which the routing algorithm must decide in a repeated
environment, and find that the outcome is a stable statgshion over which paths to forward the traffic.

and that the optimality gap with respect to the network- Casting the problem of routing as a decision-making
wide optimum is small. Our findings suggest that onlineproblem enables us to leverage recent theoretical results
learning may be a suitable framework for adaptive rout-on regret minimization to develop a framework for mak-

ing decisions in the Internet. ing routing decisions adaptive. This framework is able to
) address the disadvantages of optimization-theory-based
1 Introduction approaches. The reason is that a zero-regret routing algo-

The global flow of Internet traffic depends on the inter-rithm as employed by a single source-destination pair is
action of independent networks that interconnect througi@ble to match the performance of the best path between
routing protocols to deliver the traffic. The routing deci- source and destination irrespective of how the remain-
sions are based for the most part smtic information ~ ing pairs behave. This property is compatible with the
(such as number of hops to destination or business reldncentives of rational adopters that prioritize optimgin
tionships with neighboring networks) ignorimiynamic  their own performance over centrally designed network-
performance metrics. Making routing decisions adaptivevide objectives. Furthermore, the performance of the
would not only improve the performance but also the se-best path is matched even against a fully adaptive ad-
curity of the global routing system by enabling the endVversary that controls routers in a subset of the paths and
systems to route around adversaries [21]. behaves maliciously to disrupt communication. Using
Previous approaches to add adaptivity to routing defegret minimization, this disruption is prevented as long
cisions have been mostly based aptimization theory ~ as an adversary-free path exists.
These efforts date back to the work of Gallager [14] and However, although previous work on regret minimiza-
have received significant attention since then (see, for extion has developed algorithms that make these guarantees
ample, [9, 16, 18]). However, such optimal routing algo- possible, it has largely neglected the question of what the
rithms rely on trust (assuming, for example, that routersnetwork-widebehavior of the system would be if zero-
provide feedback about performance in a truthful man-+egret routing algorithms were to interact with each other.
ner) and seek to optimize network-wide objectives possiNote that although it is certainly true that each source-



destination pair is able to match the performance of theonly to the rewards that were received because of the ac-
best path, it is nevertheless important to demonstrate thdions that were taken but also to the rewards that would
good performing paths do in fact exist. This is importanthave been received if alternate actions had been taken. In
for deployment in Internet environments where achiev-themulti-armed bandit settingt each time stepthe de-
ing the ability to counter adversaries should not affect thecision maker only observes the reward for the action that
efficiency during normal operation. In this paper we seekwas actually taker;, (t). In both settings, there exist
to answer the question of what the network-wide behavalgorithms whose normalized regret approaches zero as
ior of a system of interacting zero-regret algorithms isthe time horizon approaches infinity even if the rewards
through a realistic simulation study using data collectedare generated by a fully adaptive adversary who controls
from the Internet2 backbone network. the environment and is able to observe the decisions of
Our findings can be summarized along two dimen-the decision maker. In the full information setting, the
sions. First, we find that the outcome of the interactionregret is lower by roughly a factor proportionahax .
is a stable state, which agrees with previous theoreticaé 2 Routing as an online decision problem
results derived in the Wardrop model of infinite traffic = g P
sources controlling infinitesimal amounts of traffic [6]. The problem of routing data traffic between a source
This model differs, however, from ours in that we con- node and a destination node in a network can be cast as
sider finite traffic demands. Second, we find that perfor-a decision making problem as follows.
mance at the equilibrium is close to optimal. This result The decision maker is an independent instance of the
is in contrast to previous theoretical results onfiiee  routing algorithm (making routing decisions for the traf-
of total anarchythat predict a large optimality gap in the fic between, say, a given pair of source and destination
worst case [7]. Furthermore, our findings assume that th@odes), and the actions available correspond to the paths
routing algorithms only have access to end-to-end meaalong which data packets can be forwarded. The prob-
surements and do not rely on feedback from intermediability distributionp;(t),7 = 1,..., K chosen at each
ate nodes. Our results suggest that regret minimization isme step determines the routing decisions for the data
aptly positioned to drive Internet routing decisions. packets and essentially corresponds to how incoming
2 R t minimizati traffic is split over theK outgoing paths. We call this
egret minimization probability vector thedistribution vector The routing
2.1 Online decision problems algorithm must decide at each time step how to adjust
the distribution vector. The time steps correspond to the
An online decision problem can be formulated as a reinstants that the algorithm can revise its decision. The re-
peated game betweerdacision makeand theenviron-  \vard for each decision corresponds to some performance
ment[8]. The game proceeds in rounds, and at eachnetric such as packet loss, delay, or throughput. Such

round (or time stepj = 1,...,T of the time horizon  performance metrics can be estimated in practice through
T, the decision maker must choose a probability distri-measurements (whether based on simple active probes or
butionp;(t),i = 1,..., K over a set of{ actions. Then more secure measurement techniques [3, 15]).

the environment (that is possibly controlled by an adver- |y modeling the decision process of the routing algo-
sary) chooses one rewaud(t) € [0,1] for each action  rithm, we furthermore take into account the following

i € {1,...,K}. The actioni, of the decision maker in g realistic Internet environment. First, the decisions
is drawn according to distributiop(¢) and the decision  made by the routing algorithm have an impact on future
maker receives rewart, (t). rewards. This is true not only because of the time re-

The gain of actioni is the sum of the action’s re- quired to deliver packets from source to destination but
wards over the time horizon, i.63;(T) = Y./_, z:(t),  also because of the interaction of the decisions made by
and the gain of the decision maker is the sum of thedifferent source-destination pairs. Because of this inter
received rewards over the time horizon, i.€(T) =  action, the response of the environment to the actions of
Zthl x;, (t). Theregretof the decision maker is defined the decision maker should not be considered independent
asmax; G;(T) — G(T') (often normalized by dividing of, orobliviousto, those actions (as has been assumed by
by T'). The goal of the decision maker is to minimize the a significant body of work on regret minimization) but
regret, and approach the gain of the best action. rather dependent on them, i.adaptive

In the course of the game, the decision maker gath- Second, we make the following observations about
ers and uses as input information about the environmenthe amount of information that is available to the rout-
Performance depends on the amount of information thaing algorithm. The full information setting assumes that
can be gathered. In tHell information setting after a  the decision maker has access to the rewards that would
decision is made at each time stefhe decision maker have been obtained if alternate decisions had been made.
observeszi(t),...,zx(t)). Thatis, access is given not However, standard measurement techniques cannot pro-



sear  INTERNET2 TOPOLOGY ARTIFICIAL TOPOLOGY

Algorithm Exp3 @) NEWY
Parameters:vy € (0, 1] NAT s C“'C/O O- O,
Initialization: w;(1) =1fori=1,..., K \ \O’O\ Lo ‘) \
Foreach =1,2,..., T O/ \ /O @<" ©-0
1. Fori=1,...,K set @) O “.. @/
wz(t) 7 HOUSs ATLA
pit) =1 -V~ + 3 1) , .
ijl wj(t) K Figure 2: Internet2 and artificial topology.
2. Drawi; according to probabilitieg; (t), . . ., px (t) and a realistic setting. The artificial setting provides a
3. Receive reward;, (t) € [0, 1] minimal environment in which to study the interaction
4.Fori=1,..., K set of adaptive routing decisions, whereas the realistic set-
| | wi) eXp{%w?'gg}, i =4 ting is based on a more accurate model of an Internet
wi(t+1) = w;(t) b i i, (@) environment. We start with the artificial setting in which
S we are able to show a positive result that motivates our

investigation in the realistic setting.

3.1 Methodology

vide this information, i.e., they are not able to prEdICtNetworktopoIogy and traffic demands: In the artificial

the performance that would have been observed if th?0 oloav. shown on the riaht of Figure 2. there are three
data traffic had been forwarded over an alternate path. pology. 9 9 !

. . . . source nodes;,i = 1,2,3 that must simultaneously
Therefore, in a realistic environment, the routing algo- : . S
: e 2~ send a unit of traffic each to destinatidn Each source
rithm may only learn the rewards for the specific actions;

. . . "is able to access the destination through three alternate
that were taken, which corresponds to the bandit setting. . .
. 4 . . aths each crossing one of the nodgs = 1,2,3. We
In the remainder of this paper, we only consider this latte . : .
assume that all links have unit capacity and, therefore,

setting and, furthermore, assume that performance est,.—nkS (rs, d) are the bottleneck links

mates are obtained through end-to-end measurements. IIt_ v i o _

is worth noting that because in practice the numisesf Simulation setup: The _5|mulat|on proceeds in steps (or
paths available to the routing algorithm are limited androunds). At the beginning of a round each sourcée-
because the regret in the bandit setting is rougily ~ Cides according to algorithiixp3 along which path to
times worse than the regret in the full information set-forward its unit traffic demand (e.g. one packet). Then

ting, performance under both settings is comparable.  the load on each link is determined. Congestion is mod-
eled as follows. Ifthe load of a link is one, the load is suc-

2.3 Bandit-based routing algorithm cessfully delivered to the next hop. However, if the load
exceeds one, then one randomly selected unit of demand
is successfully delivered but the rest of the demands are
discarded. At the end of the round, the traffic sources are
pi(t),i =1,..., K is selected over the paths and a rout- able to determine whether their demands were success-
N P fully delivered. Based on this feedback, the distribution

ing decisioni; is made for one unit of traffic demand ector of Exp3 is updated assuming a reward of one if

(e.g., a packet). The outcome of the decision is a rewar(\éje delivery is successful and a reward of zero otherwise
x;, (t) that is used to update labels(¢),i = 1,..., K y :

according to formula (2). In the next round, these |a-Performance metrics: In this artificial setting, we mea-
bels are used to recompute the distributigt) accord- ~ Sure performance by counting the number of traffic units
ing to formula (1). Note that the probabilipy(¢) of se- that are successfully delivered to the destination. Given
lecting pathi depends not only on past performance putthe small size of the network, to study the stability of the
also on a random component determined by parameter interaction, we simply plot the distribution vectors as a
This parameter controls a tradeoff betwesxploration ~ function of the simulation step.

andexploitation If v = 1, the algorithm _only explores 3 2 Evaluation

(and does not exploit). H = 0, the algorithm only ex-

loits. 1f~ — mi KK | lized Figure 3 shows the probability of selecting each path in
ploits. 1fry = min {1’ V (e-DT } the normalized regret s artificial setting as a function of the simulation step.

of Exp3 provably approachesas?’ approachesc. After a transient period of exploration, the routing pro-
. . e . cesses converge to an outcome in which sousgges,,

3 Interaction in Artificial Setting ands, select pathssy, rs, d), (s, 72, d), and(ss, r1, d)

To study the optimality and stability of zero-regret rout- respectively with very high probability (and the remain-

ing algorithms, our evaluation is based on an artificialing paths with very low probability). This corresponds to

Figure 1: Pseudocode of algorithxp3.

The learning algorithm we consider in this paper is al-
gorithm Exp3 [2] (Figure 1). The algorithm proceeds
in rounds. At each round a probability distribution



L each source-destination pair2s.
F 08l | Simulation setup: The simulation proceeds in rounds.
a = (s1,r1,d) . . .
° (sL.r2. d) At the beginning of each round, each routing process
5 osf Sees Al splits its traffic demand according to its distribution vec-
8 (s2.11,d)
5?’; ‘ gg > g; tor and forwards it along the corresponding paths. That
z % ——3ra)] is, if the traffic demand for source-destination paiis
£, L E;: . d; | r; and its distribution vector at roundis p!(t),i =
& 1,..., K, where K is the number of paths, then the
0 amount of flow that the routing process forwards over
0 2000 4000 6000 8000 10000 . . . i
Simulation Step pathi is p! (t)r;. (Note that this setup differs from the
setup in the artificial setting in which the traffic demands
Figure 3: Convergence in artificial setting. were unsplittable. We have omitted our simulation re-

sults for unsplittable demands in the realistic setting in
» o _ : .~ the interest of space as performance was generally infe-
probability of delivering three traffic units to the desti- fior to the performance when the demands could be split.

pat|0n IS very h'ghi Furthermore, this outcome IS SFab.le\Ne have chosen though to retain the positive result of the
in that the distribution vectors converge to a fixed distri- tificial setting for its elegance.)

: . . . r
bution. This behavior was observe_d for a wide range Ofa After computing the total flow on each link, the queu-
values of parametey. It is worth noting that the routing ing delay is determined. If utilization does not exceed

processes c_zlo n_ot converge fo fixed routing decisions_—gg%’ the queuing delay is determined by the M/M/1 for-
every combination of decisions has a non-zero prObabIIi”nula. However, similarly to [12], if utilization exceeds

ity of arising. This is typical for online It-aa.r.n.mg algo- 99%, the delay becomes proportional to the utilization
rithms that always explore alternate possibilities. according to a large constant. In this way, we can assign

a close-to-optimal network-wide outcome in which the

4 Interaction in Realistic Setting finite delay even to links whose utilization exceeds one.
Following the computation of the link delays, each
4.1 Methodology routing process learns the end-to-end delay of each path

Network topology and traffic demands: To study to which it forwarded data traffic. Then each process
adaptive routing in a realistic environment we use the In-updates its distribution vector by simulating algorithm
ternet2 network (Figure 2) that provides Internet connecExp3 as if the demand consisted of discrete traffic units.
tivity for research institutions in the US. In Internet2eth  Performance metrics: The network-wide metric we use
topology, routing, and traffic data are publicly available, to evaluate performance is the average queuing delay
enabling us to reproduce a realistic intradomain environover all links. We compare the average queuing delay in-
ment. Using these data we computed hourly traffic macurred by interacting instances of the learning algorithm
trices during one week in May 2008. To a certain extentto the optimal average queuing delay (assunimgti-

this environment also approximates an interdomain setpath routing) that we computed using tlerx convex
ting. An ideal approximation of an interdomain environ- gptimization software [1].

ment would correspond to each customer of Internet2 in-  In the Internet2 network, evaluating stability by plot-
dependently controlling its routing decisions. However,ting the distribution vectors is unwieldy. Instead we eval-
we found that data are not sufficient to calculate a trafficuate stability by observing over time the “differences”
matrix at this granularity. Instead we compute router-to-between successive distribution vectors (and summing
router traffic matrices and assume that the traffic betweesuch differences over all source-destination pairs). The
each pair O_f routers is controlled by an inde_penden_t promeasure of difference we use is the Kullback-Leibler di-
cess. In this way, we are able to study the interaction ofergence, a standard information-theoretic measure of
72 independent flows. We leave a more thorough evaluathe difference between probability distributions. The
tion in general interdomain environments as future work.KL-divergence Dy 1, (P||Q) between two probability

We found that the network utilization from the traffic vectorsP = (pi,...,px) andQ = (qi,...,qx) IS
matrices calculated by our direct measurements was lovgiven by the following formula:
To also study adapt|\{|ty un.der co_ndmons of .h|gh load Drr(P||Q) = Zpi log pi
we generated synthetic traffic matrices by scaling the real Z Qi
ones to achieve a maximum link utilization & %. Note that as the difference betwenand () decreases

Multiple paths between a source and destination werso doesD k. (P||Q), which becomes zero P = Q.
computed by successive shortest path computations in Let J be the set of all source-destination pairs. For
which at most one link was removed from the topology source-destination pajre .J let p’ (t) be its distribution
in an iterative fashion. The average number of paths fowector at round. Then our stability metric is the follow-
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tween successive samples implying that the time lapse
between iterations is on the order of a fewsec. There-
fore, assuming an iteration inverval bfnsec, the opti-
mality gap shrinks in less thahmin (10000 iterations)
and becomes negligible in less theimin (100000 iter-
ations) as shown in Figure 4.

000 ierations | In summary, the perfor_manC(_eEkps is close to opti-
mal under normal operation while at the same tER@3

is able to counter malicious attacks, a property that pre-
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0.6F 100000 iterations
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0.2

Empirical Cumulative Distribution Function

i i i i i
1 1.02 1.04 1.06 1.08 11 112

Optimality Gap vious optimal routing algorithms do not have.
(b) Scaled Internet2 demands It is worth noting that althouglxp3 is designed to

match the performance of the best path between source
and destination, in our simulation, its performance ap-
ina sums™._ . D It 1)1 (1), _p_roaches_that ofthg best distribution vector. We have_ver—
g ZJE" _KL(p ( P ®) ified that in our setting the gap between between optimal
4.2 Evaluation single-path and multipath routing is small. It is an inter-
Optimality: In Figures 4(a) and 4(b), we compare the esting question whethdétxp3 can compete against the

network queuing delay incurred by interacting instanceé)eSt distribution vector in other Internet environments.
of the learning algorithm with that of optimal routing Stability: Figure 5 plots the previously defined stability
by plotting the empirical cumulative distribution func- Metric on alogarithmic scale as a function of the iteration
tion (CDF) of the optimality gap. We define the op- step for one traffic matrix (noting that the behavior in the
timality gap as the ratio of the average queuing delayfigure is typical). The figure shows that the stability met-
of Exp3 over the optimal average queuing delay. Inricis a strictly decreasing function of the simulation step
Figure 4(a), the ratios correspond to the traffic matri-(that, in fact, drops about four orders of magnitude in the
ces from our measurements in the Internet2 network. Irfluration of the simulation), implying that the distributio
Figure 4(b), the traffic matrices from our measurement¥/ectors converge to a fixed distribution. Observe that the
have been scaled so that the maximum link utilizationchanges in the distribution vector from one iteration to
under static shortest-path routing according to operatorthe next have a diminishing effect on the network cost
selected IS-IS weights i80%. We plot the CDF of the that becomes negligible after the cost reaches a plateau.
_optim_ality gap at thd, 000th, 1Q,OOch, and100, 000th 5 Related work
iteration. Observe that the optimality gap decreases with
the iterations and almost vanishes @6, 000 iterations. ~ 1raffic engineering: Traffic engineering refers to the
In fact, the optimality gap is a strictly decreasing func- Process by which routing adapts to the traffic demands
tion of the simulation step. This is shown in Figure 5 thatand can be performed eitheffline (e.g., see [12] for
plots the optimality gap on a semilogarithmic scale as & Survey) oronline (e.g., [11, 18]). Related to this pa-
function of the simulation step for one particular traffic Per are online traffic engineering protocols. However,
matrix (noting that the behavior in the figure is typical). these protocols are not resilient to attacks by compro-
Translating simulation steps into real time depends orlised routers. Furthermore, as they are designed for de-
the measurement methodology. For example, if meaPloyment inside a routing domain, they are not general
surements are performed through randomly sampling in€nough to be applicable to interdomain settings.
bound packets, each iteration corresponds to the time bdRegret minimization: From the perspective of an in-

Figure 4: Optimality of learning algorithm.



dividual player, regret minimization has been studied [2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire.

in the general repeated game setting (e.g., [2, 8, 19]),
and in more specificouting games In such games,
an algorithm must repeatedly choose a path betweenl®)
source and destination assuming an adversary controls
the edge costs. Zero-regret algorithms in this setting ap-(4]
pear in [5, 17]. These studies laid the foundation for the
approach proposed in this paper, but are not concerned
with the stability or optimality of the interaction of zero-
regret algorithms. A routing algorithm that minimizes
regret from the perspective of a single source-destination
pair is presented in [4], but this algorithm is not studied

when multiple source-destination pairs interact.
Interaction of regret-minimizing algorithms: Previ-

The non-stochastic multi-armed bandit problei8IAM
Journal on Computing32(1):48-77, 2002.

I. Avramopoulos and J. Rexford. Stealth probing: Effi-
cient data-plane security for IP routing. Pmoc. USENIX
Annual Technical ConferencMay/Jun. 2006.

B. Awerbuch, D. Holmer, H. Rubens, and R. Kleinberg.
Provably competitive adaptive routing. Rroc. IEEE In-
focom Mar. 2007.

B. Awerbuch and R. Kleinberg. Online linear optimiza-
tion and adaptive routingJournal of Computer and Sys-
tem Science¥4(1):97-114, 2008.

[6] A. Blum, E. Even-Dar, and K. Ligett. Routing with-

out regret: On convergence to Nash equilibria of regret-
minimizing algorithms in routing games. Rroc. PODG
Jul. 2006.

ous work has studied whether zero-regret algorithms in [7] A. Blum, M. Hajiaghayi, K. Ligett, and A. Roth. Re-

a repeated game setting converge to a Nash equilibrium.
In two-player zero-sum games, the outcome of the inter- 8]
action is a minimax solution [13]. However, in general
games, a Nash equilibrium may not be approachable in[g]
polynomial time by any polynomial algorithm [10]. Pos-
itive stability results are known for routing games in the
Wardrop model of an infinite number of traffic sources
each controlling infinitesimal traffic, in which conver-
gence to a Nash equilibrium is shown in [6]. Different

from this work, we consider finite traffic demands.

The optimality of the interaction of zero-regret algo-
rithms is studied in [7] where it is shown that in the

gret minimization and the price of total anarchy.Aroc.

STOGC May 2008.
N. Cesa-Bianchi and G. LugosiPrediction, Learning,

and GamesCambridge University Press, 2006.
M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle.

Layering as optimization decomposition: A mathematical
theory of network architectureBroceedings of the IEEE
95(1):255-312, 2007.

0] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou.

The complexity of computing a Nash equilibrium. In

Proc. STOCMay 2006.
S. Fischer, N. Kammenhuber, and A. Feldmann.

REPLEX—Dynamic traffic engineering based on
Wardrop routing policies. liProc. CONEXT Dec. 2006.

worst-case there is a high price in moving from central-[12] B. Fortz, J. Rexford, and M. Thorup. Traffic engineering

ized to independent routing decisions. Our findings sug-
gest that, in practice, the optimality gap is small. Small
optimality gap under selfish routing was previously ob-

served in a related study on tipeice of anarchyin re-

alistic Internet environments [20]. This study measuredz4]
the optimality gap of Nash equilibria whereas we study

the interaction of regret minimization algorithms.

6 Conclusion

In this paper, we proposed online learning algorithms a
a framework for adding adaptivity to routing decisions
and studied how such algorithms interact in a realistic
Internet environment. We found that the outcome of the

with traditional IP routing protocolslEEE Communica-
tion Magazine40(10):118-124, 2002.

Y. Freund and R. E. Schapire. Adaptive game playing
using multiplicative weights.Games and Economic Be-
havior, 29:79-103, 1999.

R. Gallager. A minimum delay routing algorithm using
distributed computationlEEE Transactions on Commu-
nications 25(1):73-85, 1977.

S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rex-
ford. Path-quality monitoring in the presence of adver-
saries. InProc. ACM SIGMETRICSJun. 2008.

J. He, M. Suchara, M. Bresler, J. Rexford, and M. Chiang.
Rethinking internet traffic management: From multiple
decompositions to a practical protocol.Rroc. CONEXT
Dec. 2007.

interaction is a stable state and that the optimality gag17] A.Kalai and S. Vempala. Efficient algorithms for ondin

with respect to the network-wide optimum is small. We

optimization. InProc. COLT, Aug. 2003.

conclude that online learning may be a suitable frame{18] S.Kandula, D. Katabi, B. Davie, and A. Charny. Walking

work for routing in the Internet.
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