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Abstract

Internet routing is mostly based on static information—
it’s dynamicity is limited to reacting to changes in
topology. Adaptive performance-based routing decisions
would not only improve the performance itself of the
Internet but also its security and availability. However,
previous approaches for making Internet routing adap-
tive based on optimizing network-wide objectives are not
suited for an environment in which autonomous and pos-
sibly malicious entities interact.

In this paper, we propose a different framework for
adaptive routing decisions based on regret-minimizing
online learning algorithms. These algorithms, as ap-
plied to routing, are appealing because adopters can in-
dependently improve their own performance while be-
ing robust to adversarial behavior. However, in contrast
to approaches based on optimization theory that provide
guarantees from the outset about network-wide behavior,
the network-wide behavior if online learning algorithms
were to interact with each other is less understood. In
this paper, we study this interaction in a realistic Internet
environment, and find that the outcome is a stable state
and that the optimality gap with respect to the network-
wide optimum is small. Our findings suggest that online
learning may be a suitable framework for adaptive rout-
ing decisions in the Internet.

1 Introduction
The global flow of Internet traffic depends on the inter-
action of independent networks that interconnect through
routing protocols to deliver the traffic. The routing deci-
sions are based for the most part onstatic information
(such as number of hops to destination or business rela-
tionships with neighboring networks) ignoringdynamic
performance metrics. Making routing decisions adaptive
would not only improve the performance but also the se-
curity of the global routing system by enabling the end
systems to route around adversaries [21].

Previous approaches to add adaptivity to routing de-
cisions have been mostly based onoptimization theory.
These efforts date back to the work of Gallager [14] and
have received significant attention since then (see, for ex-
ample, [9, 16, 18]). However, such optimal routing algo-
rithms rely on trust (assuming, for example, that routers
provide feedback about performance in a truthful man-
ner) and seek to optimize network-wide objectives possi-

bly at the expense of the performance of individual flows.
In the Internet, an adversary can exploit assumptions of
trust to disrupt communication, and, therefore, Internet
routing should be robust to such adversarial behavior.
Furthermore, in the general interdomain setting, individ-
ual networks are not likely to seek to optimize a network-
wide objective but rather their own performance.

In this paper, we propose a different framework for
adding adaptivity to routing decisions, one based on the
substantial body of work inlearning theoryand game
theoryon algorithms for making repeated decisions that
aim to minimizeregret. The regret of an algorithm is
the difference between the performance of the sequence
of decisions generated by the algorithm and the perfor-
mance of the best fixed decision in hindsight. Several
decision-making algorithms have been proposed that ap-
proach zero regret even against a fully adaptive adversary
(e.g., [2, 19]). The problem of routing data traffic be-
tween a source and a destination node over a set of paths
can be cast as a problem of repeated decision making in
which the routing algorithm must decide in a repeated
fashion over which paths to forward the traffic.

Casting the problem of routing as a decision-making
problem enables us to leverage recent theoretical results
on regret minimization to develop a framework for mak-
ing routing decisions adaptive. This framework is able to
address the disadvantages of optimization-theory-based
approaches. The reason is that a zero-regret routing algo-
rithm as employed by a single source-destination pair is
able to match the performance of the best path between
source and destination irrespective of how the remain-
ing pairs behave. This property is compatible with the
incentives of rational adopters that prioritize optimizing
their own performance over centrally designed network-
wide objectives. Furthermore, the performance of the
best path is matched even against a fully adaptive ad-
versary that controls routers in a subset of the paths and
behaves maliciously to disrupt communication. Using
regret minimization, this disruption is prevented as long
as an adversary-free path exists.

However, although previous work on regret minimiza-
tion has developed algorithms that make these guarantees
possible, it has largely neglected the question of what the
network-widebehavior of the system would be if zero-
regret routing algorithms were to interact with each other.
Note that although it is certainly true that each source-



destination pair is able to match the performance of the
best path, it is nevertheless important to demonstrate that
good performing paths do in fact exist. This is important
for deployment in Internet environments where achiev-
ing the ability to counter adversaries should not affect the
efficiency during normal operation. In this paper we seek
to answer the question of what the network-wide behav-
ior of a system of interacting zero-regret algorithms is
through a realistic simulation study using data collected
from the Internet2 backbone network.

Our findings can be summarized along two dimen-
sions. First, we find that the outcome of the interaction
is a stable state, which agrees with previous theoretical
results derived in the Wardrop model of infinite traffic
sources controlling infinitesimal amounts of traffic [6].
This model differs, however, from ours in that we con-
sider finite traffic demands. Second, we find that perfor-
mance at the equilibrium is close to optimal. This result
is in contrast to previous theoretical results on theprice
of total anarchythat predict a large optimality gap in the
worst case [7]. Furthermore, our findings assume that the
routing algorithms only have access to end-to-end mea-
surements and do not rely on feedback from intermedi-
ate nodes. Our results suggest that regret minimization is
aptly positioned to drive Internet routing decisions.

2 Regret minimization

2.1 Online decision problems

An online decision problem can be formulated as a re-
peated game between adecision makerand theenviron-
ment [8]. The game proceeds in rounds, and at each
round (or time step)t = 1, . . . , T of the time horizon
T , the decision maker must choose a probability distri-
butionpi(t), i = 1, . . . , K over a set ofK actions. Then
the environment (that is possibly controlled by an adver-
sary) chooses one rewardxi(t) ∈ [0, 1] for each action
i ∈ {1, . . . , K}. The actionit of the decision maker
is drawn according to distributionp(t) and the decision
maker receives rewardxit

(t).
The gain of action i is the sum of the action’s re-

wards over the time horizon, i.e.,Gi(T ) =
∑T

t=1 xi(t),
and the gain of the decision maker is the sum of the
received rewards over the time horizon, i.e.,G(T ) =
∑T

t=1 xit
(t). Theregretof the decision maker is defined

asmaxi Gi(T ) − G(T ) (often normalized by dividing
by T ). The goal of the decision maker is to minimize the
regret, and approach the gain of the best action.

In the course of the game, the decision maker gath-
ers and uses as input information about the environment.
Performance depends on the amount of information that
can be gathered. In thefull information setting, after a
decision is made at each time stept the decision maker
observes(x1(t), . . . , xK(t)). That is, access is given not

only to the rewards that were received because of the ac-
tions that were taken but also to the rewards that would
have been received if alternate actions had been taken. In
themulti-armed bandit setting, at each time stept the de-
cision maker only observes the reward for the action that
was actually takenxit

(t). In both settings, there exist
algorithms whose normalized regret approaches zero as
the time horizon approaches infinity even if the rewards
are generated by a fully adaptive adversary who controls
the environment and is able to observe the decisions of
the decision maker. In the full information setting, the
regret is lower by roughly a factor proportional to

√
K.

2.2 Routing as an online decision problem

The problem of routing data traffic between a source
node and a destination node in a network can be cast as
a decision making problem as follows.

The decision maker is an independent instance of the
routing algorithm (making routing decisions for the traf-
fic between, say, a given pair of source and destination
nodes), and the actions available correspond to the paths
along which data packets can be forwarded. The prob-
ability distributionpi(t), i = 1, . . . , K chosen at each
time step determines the routing decisions for the data
packets and essentially corresponds to how incoming
traffic is split over theK outgoing paths. We call this
probability vector thedistribution vector. The routing
algorithm must decide at each time step how to adjust
the distribution vector. The time steps correspond to the
instants that the algorithm can revise its decision. The re-
ward for each decision corresponds to some performance
metric such as packet loss, delay, or throughput. Such
performance metrics can be estimated in practice through
measurements (whether based on simple active probes or
more secure measurement techniques [3, 15]).

In modeling the decision process of the routing algo-
rithm, we furthermore take into account the following
in a realistic Internet environment. First, the decisions
made by the routing algorithm have an impact on future
rewards. This is true not only because of the time re-
quired to deliver packets from source to destination but
also because of the interaction of the decisions made by
different source-destination pairs. Because of this inter-
action, the response of the environment to the actions of
the decision maker should not be considered independent
of, orobliviousto, those actions (as has been assumed by
a significant body of work on regret minimization) but
rather dependent on them, i.e.,adaptive.

Second, we make the following observations about
the amount of information that is available to the rout-
ing algorithm. The full information setting assumes that
the decision maker has access to the rewards that would
have been obtained if alternate decisions had been made.
However, standard measurement techniques cannot pro-



Algorithm Exp3
Parameters:γ ∈ (0, 1]
Initialization: wi(1) = 1 for i = 1, . . . , K

For eacht = 1, 2, . . ., T
1. Fori = 1, . . . , K set

pi(t) = (1 − γ)
wi(t)

∑K

j=1 wj(t)
+

γ

K
(1)

2. Drawit according to probabilitiesp1(t), . . . , pK(t)
3. Receive rewardxit

(t) ∈ [0, 1]
4. Fori = 1, . . . , K set

wi(t + 1) =

{

wi(t) exp{ γ
K

xi(t)
pi(t)

}, i = it

wi(t), i 6= it
(2)

Figure 1: Pseudocode of algorithmExp3.

vide this information, i.e., they are not able to predict
the performance that would have been observed if the
data traffic had been forwarded over an alternate path.
Therefore, in a realistic environment, the routing algo-
rithm may only learn the rewards for the specific actions
that were taken, which corresponds to the bandit setting.
In the remainder of this paper, we only consider this latter
setting and, furthermore, assume that performance esti-
mates are obtained through end-to-end measurements. It
is worth noting that because in practice the numberK of
paths available to the routing algorithm are limited and
because the regret in the bandit setting is roughly

√
K

times worse than the regret in the full information set-
ting, performance under both settings is comparable.

2.3 Bandit-based routing algorithm

The learning algorithm we consider in this paper is al-
gorithmExp3 [2] (Figure 1). The algorithm proceeds
in rounds. At each roundt a probability distribution
pi(t), i = 1, . . . , K is selected over the paths and a rout-
ing decisionit is made for one unit of traffic demand
(e.g., a packet). The outcome of the decision is a reward
xit

(t) that is used to update labelswi(t), i = 1, . . . , K

according to formula (2). In the next round, these la-
bels are used to recompute the distributionp(t) accord-
ing to formula (1). Note that the probabilitypi(t) of se-
lecting pathi depends not only on past performance but
also on a random component determined by parameterγ.
This parameter controls a tradeoff betweenexploration
andexploitation. If γ = 1, the algorithm only explores
(and does not exploit). Ifγ = 0, the algorithm only ex-

ploits. If γ = min
{

1,
√

K ln K
(e−1)T

}

, the normalized regret

of Exp3 provably approaches0 asT approaches∞.

3 Interaction in Artificial Setting

To study the optimality and stability of zero-regret rout-
ing algorithms, our evaluation is based on an artificial
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Figure 2: Internet2 and artificial topology.

and a realistic setting. The artificial setting provides a
minimal environment in which to study the interaction
of adaptive routing decisions, whereas the realistic set-
ting is based on a more accurate model of an Internet
environment. We start with the artificial setting in which
we are able to show a positive result that motivates our
investigation in the realistic setting.

3.1 Methodology
Network topology and traffic demands: In the artificial
topology, shown on the right of Figure 2, there are three
source nodessi, i = 1, 2, 3 that must simultaneously
send a unit of traffic each to destinationd. Each source
is able to access the destination through three alternate
paths each crossing one of the nodesri, i = 1, 2, 3. We
assume that all links have unit capacity and, therefore,
links (ri, d) are the bottleneck links.

Simulation setup: The simulation proceeds in steps (or
rounds). At the beginning of a round each sourcesi de-
cides according to algorithmExp3 along which path to
forward its unit traffic demand (e.g. one packet). Then
the load on each link is determined. Congestion is mod-
eled as follows. If the load of a link is one, the load is suc-
cessfully delivered to the next hop. However, if the load
exceeds one, then one randomly selected unit of demand
is successfully delivered but the rest of the demands are
discarded. At the end of the round, the traffic sources are
able to determine whether their demands were success-
fully delivered. Based on this feedback, the distribution
vector ofExp3 is updated assuming a reward of one if
the delivery is successful and a reward of zero otherwise.

Performance metrics: In this artificial setting, we mea-
sure performance by counting the number of traffic units
that are successfully delivered to the destination. Given
the small size of the network, to study the stability of the
interaction, we simply plot the distribution vectors as a
function of the simulation step.

3.2 Evaluation
Figure 3 shows the probability of selecting each path in
this artificial setting as a function of the simulation step.
After a transient period of exploration, the routing pro-
cesses converge to an outcome in which sourcess1, s2,
ands3 select paths(s1, r3, d), (s2, r2, d), and(s3, r1, d)
respectively with very high probability (and the remain-
ing paths with very low probability). This corresponds to
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Figure 3: Convergence in artificial setting.

a close-to-optimal network-wide outcome in which the
probability of delivering three traffic units to the desti-
nation is very high. Furthermore, this outcome is stable
in that the distribution vectors converge to a fixed distri-
bution. This behavior was observed for a wide range of
values of parameterγ. It is worth noting that the routing
processes do not converge to fixed routing decisions—
every combination of decisions has a non-zero probabil-
ity of arising. This is typical for online learning algo-
rithms that always explore alternate possibilities.

4 Interaction in Realistic Setting

4.1 Methodology
Network topology and traffic demands: To study
adaptive routing in a realistic environment we use the In-
ternet2 network (Figure 2) that provides Internet connec-
tivity for research institutions in the US. In Internet2, the
topology, routing, and traffic data are publicly available,
enabling us to reproduce a realistic intradomain environ-
ment. Using these data we computed hourly traffic ma-
trices during one week in May 2008. To a certain extent
this environment also approximates an interdomain set-
ting. An ideal approximation of an interdomain environ-
ment would correspond to each customer of Internet2 in-
dependently controlling its routing decisions. However,
we found that data are not sufficient to calculate a traffic
matrix at this granularity. Instead we compute router-to-
router traffic matrices and assume that the traffic between
each pair of routers is controlled by an independent pro-
cess. In this way, we are able to study the interaction of
72 independent flows. We leave a more thorough evalua-
tion in general interdomain environments as future work.

We found that the network utilization from the traffic
matrices calculated by our direct measurements was low.
To also study adaptivity under conditions of high load
we generated synthetic traffic matrices by scaling the real
ones to achieve a maximum link utilization of70%.

Multiple paths between a source and destination were
computed by successive shortest path computations in
which at most one link was removed from the topology
in an iterative fashion. The average number of paths for

each source-destination pair is2.5.

Simulation setup: The simulation proceeds in rounds.
At the beginning of each round, each routing process
splits its traffic demand according to its distribution vec-
tor and forwards it along the corresponding paths. That
is, if the traffic demand for source-destination pairj is
rj and its distribution vector at roundt is p

j
i (t), i =

1, . . . , K, whereK is the number of paths, then the
amount of flow that the routing process forwards over
path i is p

j
i (t)rj . (Note that this setup differs from the

setup in the artificial setting in which the traffic demands
were unsplittable. We have omitted our simulation re-
sults for unsplittable demands in the realistic setting in
the interest of space as performance was generally infe-
rior to the performance when the demands could be split.
We have chosen though to retain the positive result of the
artificial setting for its elegance.)

After computing the total flow on each link, the queu-
ing delay is determined. If utilization does not exceed
99%, the queuing delay is determined by the M/M/1 for-
mula. However, similarly to [12], if utilization exceeds
99%, the delay becomes proportional to the utilization
according to a large constant. In this way, we can assign
finite delay even to links whose utilization exceeds one.

Following the computation of the link delays, each
routing process learns the end-to-end delay of each path
to which it forwarded data traffic. Then each process
updates its distribution vector by simulating algorithm
Exp3 as if the demand consisted of discrete traffic units.

Performance metrics:The network-wide metric we use
to evaluate performance is the average queuing delay
over all links. We compare the average queuing delay in-
curred by interacting instances of the learning algorithm
to the optimal average queuing delay (assumingmulti-
path routing) that we computed using thecvx convex
optimization software [1].

In the Internet2 network, evaluating stability by plot-
ting the distribution vectors is unwieldy. Instead we eval-
uate stability by observing over time the “differences”
between successive distribution vectors (and summing
such differences over all source-destination pairs). The
measure of difference we use is the Kullback-Leibler di-
vergence, a standard information-theoretic measure of
the difference between probability distributions. The
KL-divergenceDKL(P ||Q) between two probability
vectorsP = (p1, . . . , pK) and Q = (q1, . . . , qK) is
given by the following formula:

DKL(P ||Q) =
∑

i

pi log
pi

qi

.

Note that as the difference betweenP andQ decreases
so doesDKL(P ||Q), which becomes zero ifP = Q.

Let J be the set of all source-destination pairs. For
source-destination pairj ∈ J let pj(t) be its distribution
vector at roundt. Then our stability metric is the follow-
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Figure 4: Optimality of learning algorithm.

ing sum
∑

j∈J DKL(pj(t + 1)||pj(t)).

4.2 Evaluation

Optimality: In Figures 4(a) and 4(b), we compare the
network queuing delay incurred by interacting instances
of the learning algorithm with that of optimal routing
by plotting the empirical cumulative distribution func-
tion (CDF) of the optimality gap. We define the op-
timality gap as the ratio of the average queuing delay
of Exp3 over the optimal average queuing delay. In
Figure 4(a), the ratios correspond to the traffic matri-
ces from our measurements in the Internet2 network. In
Figure 4(b), the traffic matrices from our measurements
have been scaled so that the maximum link utilization
under static shortest-path routing according to operator-
selected IS-IS weights is70%. We plot the CDF of the
optimality gap at the1, 000th, 10, 000th, and100, 000th
iteration. Observe that the optimality gap decreases with
the iterations and almost vanishes at100, 000 iterations.
In fact, the optimality gap is a strictly decreasing func-
tion of the simulation step. This is shown in Figure 5 that
plots the optimality gap on a semilogarithmic scale as a
function of the simulation step for one particular traffic
matrix (noting that the behavior in the figure is typical).

Translating simulation steps into real time depends on
the measurement methodology. For example, if mea-
surements are performed through randomly sampling in-
bound packets, each iteration corresponds to the time be-
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Figure 5: Convergence of network cost and distribution vectors.

tween successive samples implying that the time lapse
between iterations is on the order of a fewmsec. There-
fore, assuming an iteration inverval of5msec, the opti-
mality gap shrinks in less than1min (10000 iterations)
and becomes negligible in less than10min (100000 iter-
ations) as shown in Figure 4.

In summary, the performance ofExp3 is close to opti-
mal under normal operation while at the same timeExp3
is able to counter malicious attacks, a property that pre-
vious optimal routing algorithms do not have.

It is worth noting that althoughExp3 is designed to
match the performance of the best path between source
and destination, in our simulation, its performance ap-
proaches that of the best distribution vector. We have ver-
ified that in our setting the gap between between optimal
single-path and multipath routing is small. It is an inter-
esting question whetherExp3 can compete against the
best distribution vector in other Internet environments.

Stability: Figure 5 plots the previously defined stability
metric on a logarithmic scale as a function of the iteration
step for one traffic matrix (noting that the behavior in the
figure is typical). The figure shows that the stability met-
ric is a strictly decreasing function of the simulation step
(that, in fact, drops about four orders of magnitude in the
duration of the simulation), implying that the distribution
vectors converge to a fixed distribution. Observe that the
changes in the distribution vector from one iteration to
the next have a diminishing effect on the network cost
that becomes negligible after the cost reaches a plateau.

5 Related work
Traffic engineering: Traffic engineering refers to the
process by which routing adapts to the traffic demands
and can be performed eitheroffline (e.g., see [12] for
a survey) oronline (e.g., [11, 18]). Related to this pa-
per are online traffic engineering protocols. However,
these protocols are not resilient to attacks by compro-
mised routers. Furthermore, as they are designed for de-
ployment inside a routing domain, they are not general
enough to be applicable to interdomain settings.

Regret minimization: From the perspective of an in-



dividual player, regret minimization has been studied
in the general repeated game setting (e.g., [2, 8, 19]),
and in more specificrouting games. In such games,
an algorithm must repeatedly choose a path between
source and destination assuming an adversary controls
the edge costs. Zero-regret algorithms in this setting ap-
pear in [5, 17]. These studies laid the foundation for the
approach proposed in this paper, but are not concerned
with the stability or optimality of the interaction of zero-
regret algorithms. A routing algorithm that minimizes
regret from the perspective of a single source-destination
pair is presented in [4], but this algorithm is not studied
when multiple source-destination pairs interact.

Interaction of regret-minimizing algorithms: Previ-
ous work has studied whether zero-regret algorithms in
a repeated game setting converge to a Nash equilibrium.
In two-player zero-sum games, the outcome of the inter-
action is a minimax solution [13]. However, in general
games, a Nash equilibrium may not be approachable in
polynomial time by any polynomial algorithm [10]. Pos-
itive stability results are known for routing games in the
Wardrop model of an infinite number of traffic sources
each controlling infinitesimal traffic, in which conver-
gence to a Nash equilibrium is shown in [6]. Different
from this work, we consider finite traffic demands.

The optimality of the interaction of zero-regret algo-
rithms is studied in [7] where it is shown that in the
worst-case there is a high price in moving from central-
ized to independent routing decisions. Our findings sug-
gest that, in practice, the optimality gap is small. Small
optimality gap under selfish routing was previously ob-
served in a related study on theprice of anarchyin re-
alistic Internet environments [20]. This study measured
the optimality gap of Nash equilibria whereas we study
the interaction of regret minimization algorithms.

6 Conclusion
In this paper, we proposed online learning algorithms as
a framework for adding adaptivity to routing decisions
and studied how such algorithms interact in a realistic
Internet environment. We found that the outcome of the
interaction is a stable state and that the optimality gap
with respect to the network-wide optimum is small. We
conclude that online learning may be a suitable frame-
work for routing in the Internet.
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