
UC Berkeley

Ari Rabkin, Wei Xu, Avani Wildani, Armando
Fox, David Patterson and Randy Katz

SLAML
 October 3, 2010

A Graphical representation for
identifier structure in application logs

Motivation & Summary

•  Log analysis is fundamentally constrained
by the information content of the
underlying logs

•  Need tools to help developers spot flaws
in their loging

•  We propose a compact graph-based
representation for log structure

•  Differs from previous work in analyzing
logging behavior, not logs of particular
executions

Focus on identifers
•  We focus on identifiers in logs

– Variable fields that refer to entities in a system.
– Can be operationally defined as variable fields

with increasingly many possible strings [Xu 09]
•  Previous work has modeled logs as sets of

concurrent state machines. [Fu 09, Tan 08]
–  Identifiers tie together messages that correlate to

the same state machine

Some defects

•  Imagine a transaction processing system.

3:45 Starting transaction t123 
3:46 Transaction failed 
3:50 Starting transaction t123 
3:51 Finished trans that was
started at 3:50.

Missing IDs

•  Imagine a transaction processing system.

3:45 Starting transaction t123 
3:46 Transaction failed 
3:50 Starting transaction t123 
3:51 Finished trans that was
started at 3:50.

No ID

Inconsistent IDs

•  Imagine a transaction processing system.

3:45 Starting transaction t123 
3:46 Transaction failed 
3:50 Starting transaction t123 
3:51 Finished trans that was
started at 3:50. Inconsistent

identification

Ambiguous IDs

•  Imagine a transaction processing system.

3:45 Starting transaction t123 
3:46 Transaction failed 
3:50 Starting transaction t123 
3:51 Finished trans that was
started at 3:50.

Ambiguous
identification

Goals

•  Seek a compact representation for logs
•  Make common logging flaws visible
•  Facilitate comparison across related logs
•  Not depend on details of particular

execution traces

A real example

!

"#$%&'&#$()*&+

'&#$(

,

-.

/

!0 !1

!-

!2

!/!!

!3

4

!,

5)67&*+89

:%;(

<99+=>9

?#@

Hadoop datanode
logs from Yahoo!
M45 cluster

Definitions

•  Definitions:
– A log message is a string.
– Each log message is associated with a

specific message type.
– All messages of a type are structurally

identical. (same set of identifier fields)
–  Identifiers belong to identifier classes.

Assumptions

•  Assumptions
– Have representative sample of logs
– Can find message type from message
– Can extract identifiers from messages
– Have identifier class for each identifier field in

a message type

Core structure

•  Ex: Starting task t123 on node n

Task ID Host name

Starting task… Host name Task ID

Formally: a graph with
V = { identifier classes} U {message
types}
E = { (i,m) | message m includes an
identifier of class i}

Subsumption

•  Sometimes, one identifier includes
another.

•  Model this by adding a graph edge
between two identifiers if one inclues
another.

•  Call this subsumption
– E.g., URLs subsume host names

Host name URL

Frequency

•  Can encode frequency information on
diagram

Rare Common Medium

•  Scaled relative to most-frequent message
or identifier

•  γ-correction: scale by sqrt(freq / Max(freq))

Ubiquity

•  Can show information about joint ID-
message statistics

•  Want to distinguish (ab)normal messages
•  Defn:

 The ubiquity of identifier class C for
message type T is the fraction of
identifiers belonging to class C appearing
in messages of type T.

•  Orthogonal to frequency of message

Drawing ubiquity

•  Line thickness proportional to ubiquity

Abnormal failure Task ID Starting task…

Diagramming defects

•  Missing ID:

Message 1 Message 2

•  Inconsistent IDs
Message 1 Message 2

ID 1 ID 2

Our prototype

•  Have a prototype that converts logs
into .dot files for rendering with GraphViz

•  Pluggable parsers
•  Omit message strings; output alongside

A real example, part 2

!

"#$%&'&#$()*&+

'&#$(

,

-.

/

!0 !1

!-

!2

!/!!

!3

4

!,

5)67&*+89

:%;(

<99+=>9

?#@

Hadoop datanode
logs from Yahoo!
M45 cluster

Inconsistent identifiers

Logs from Chukwa, an open-source log collection system [Boulon 08, Rabkin 10]

!"#$%&'()

*+

,-

!"#$%&'.)/01'2$%2&3

-4

567

-,

,+
-8

9:'/#"()

Old New

!

"#$%&'()*

+,

-.

-/
-0

"#$%&'(1*234(5%&5'6

+0

7'3&

+!

/8

9:;

+<

Ambiguous identifiers

Logs from SCADS, an experimental system at Berkeley

Ambiguous identifiers

Logs from SCADS, an experimental system at Berkeley

Comparing logs

Comparing Hadoop JobTracker logs

!

"#$

%&'(

)*

+,,-./,
)0

1!

11

2

3

)4

5

!6

)1

!3

!2

!4

30

!*

)!1)

)6

7-8#9-:;

*

4

6

<#',=&.-

7&8(

36

)3

10

1*

>?#8(

*1

*4
**

15

@ABC?D-=,

*!

15-node cluster at Berkeley

Missing ID/message

M45 cluster
 (professional management)

!

"#$

%&'(

)*

*+

,,

)! *!

*)

-.

!*

).

*/

0112341

,)

-!

)5

*,

*-

)-

)/

,*

-+

*6

)6 !.

!,

!- !5

+!

+*

**

*

7#'18&32

9&:(

.*

+.

Conclusions

•  Aspects of log structure can be encoded in
succinct diagrams.

•  Our choice of representation captures:
– missing identifiers, inconsistent identifiers, and

ambiguous identifiers
– How much detail about different topics
– Ratio of routine vs peculiar messages + types

•  Usable on real systems, even with limited
understanding of system and logs

•  No need for temporal information

Questions?

A note on parsing

•  I used semi-hand-written parsers.
•  Wrote rules to tag identifiers:

– e.g., "job_..." is a job ID
•  Tokenized lines, identified line by token

sequence + constants
– Special cases for numbers

•  Explored using program analysis to extract
messages
– Came out ugly, but cleanable.
– Need to fix names
– Need to merge some categories

Related work

•  Xu 09
•  State machines
•  Entropy as metric?

