-

A Graphical representation for
identifier structure in application logs

Ari Rabkin, Wei Xu, Avani Wildani, Armando
Fox, David Patterson and Randy Katz

SLAML
October 3, 2010

.QAD Motivation & Summary

* Log analysis is fundamentally constrained
by the information content of the
underlying logs

* Need tools to help developers spot flaws
In their loging

* We propose a compact graph-based
representation for log structure

» Differs from previous work in analyzing
logging behavior, not logs of particular
executions

Focus on identifers

* We focus on identifiers in logs
— Variable fields that refer to entities in a system.

— Can be operationally defined as variable fields
with increasingly many possible strings [Xu 09]
* Previous work has modeled logs as sets of
concurrent state machines. [Fu 09, Tan 08]
— Identifiers tie together messages that correlate to
the same state machine

Some defects

* Imagine a transaction processing system.

3:45 Starting transaction t123
3:46 Transaction failed

3:50 Starting transaction t123
3:51 Finished trans that was
started at 3:50.

Missing IDs

* Imagine a transaction processing system.

3:45 Starting transaction t123

3:46 Transaction failed €<— NolD
3:50 Starting transaction t123

3:51 Finished trans that was
started at 3:50.

Inconsistent IDs

* Imagine a transaction processing system.

3:45 Starting transaction t123
3:46 Transaction failed

3:50 Starting transaction t123
3:51 Finished trans that was

started at 3:50. <€— Inconsistent
identification

Ambiguous IDs

* Imagine a transaction processing system.

3:45 Starting transaction t123<«—
3:46 Transaction failed Amplguous
3:50 Starting transaction t123 «—

3:51 Finished trans that was

started at 3:50.

Goals

» Seek a compact representation for logs
 Make common logging flaws visible
» Facilitate comparison across related logs

* Not depend on details of particular
execution traces

Hadoop datanode :
logs from Yahoo!
M45 cluster

RAD

/

Definitions

I\

Definitions:
— A log message is a string.

— Each log message is associated with a
specific message type.

— All messages of a type are structurall
identical. (same set of identifier fields

— Identifiers belong to identifier classes.

Assumptions

* Assumptions
— Have representative sample of logs
— Can find message type from message
— Can extract identifiers from messages

— Have identifier class for each identifier field in
a message type

Core structure

e EX: starting task t123 on node n

Task ID Host name

< Task ID >__|Starting task... I__< Host name >

Formally: a graph with
V = {identifier classes} U {message
types}
E = {]gi,m)# message m includes an
identifier of class #}

e —

« Sometimes, one identifier includes
another.

* Model this by adding a graph edge
between two identifiers If one inclues
another.

« Call this subsumption
— E.g., URLs subsume host names

(URL >_ _______ < Host name >

Subsumption

EAD Frequency

» Can encode frequency information on
diagram

(=) ()

« Scaled relative to most-frequent message
or identifier

* y-correction: scale by sqrt(freq / Max(freq))

s — iqui
Ubiquity

» Can show information about joint ID-
message statistics

* Want to distinguish (ab)normal messages

* Defn:

The ubiquity of identifier class C for
message tgpe T is the fraction of
identifiers belonging to class C appearing
In messages of type T.

* Orthogonal to frequency of message

Drawing ubiquity

 Line thickness proportional to ubiquity

Starting task... I—-(TaskID >_|Abnorma| failure

Diagramming defects

* Missing ID:

| Message 1 | Message 2

* |nconsistent IDs

| Message 1 | | Message 2 |

| |
<ID1 > <ID2 >

- —
Our prototype

» Have a prototype that converts logs
into .dot files for rendering with GraphViz

* Pluggable parsers
* Omit message strings; output alongside

e~ A real example, part 2

\
NS
.
\
Hadoop datanode
logs from Yahoo!
M45 cluster

E‘Mj '—ZT-' ‘

Crost)
URL URL
45} AdaptorID
AdaptorID ThreadID P
[s]
Adaptor Description Adaptor Description
Old New

Logs from Chukwa, an open-source log collection system [Boulon 08, Rabkin 10]

RAD Lot

V

S~ Ambiguous identifiers

16

@ 10 22 20

removefrom
17

26

(%]
%)

getNodeRange >
'\()
= 25
35 32
mergetwo
33 30 36 9 12 11
i W—
<_ remove > replicatefrom
_ -
34 15 18 19

Logs from SCADS, an experimental system at Berkeley

QAD Ambiguous identifiers

< getNodeRange =

Logs from SCADS, an experimental system at Berkeley

Recovery

41

15-node cluster at Berkeley M45 cluster
(professional management)

Comparing Hadoop JobTracker logs

Conclusions

* Aspects of log structure can be encoded in
succinct diagrams.
* Our choice of representation captures:

— missing identifiers, inconsistent identifiers, and
ambiguous identifiers

— How much detail about different topics
— Ratio of routine vs peculiar messages + types

 Usable on real systems, even with limited
understanding ot system and logs

* No need for temporal information

Questions?

A note on parsing

* | used semi-hand-written parsers.

* Wrote rules to tag identifiers:
—e.g., 'job .."isajob ID

* Tokenized lines, identified line by token
sequence + constants

— Special cases for numbers

» Explored using program analysis to extract
messages

— Came out ugly, but cleanable.
— Need to fix names

— Need to merge some categories

Related work

« Xu 09
« State machines
* Entropy as metric?

