Analyzing Web Logs to Detect User-Visible Failures

Wanchun LiGeorgia Institute of TechnologyIan GortonPacific Northwest National Laboratory

- I. Introduction
- II. Technique
- III. Model Training
- IV. Evaluation
- V. Discussion
- VI. Conclusion

INTRODUCTION

- Web applications suffer from poor reliability
 - Top 40 Web sites about 10 days of downtime per year
 - 32% of shoppers experienced online shopping problems during the 2006 holiday season

89% of all online customers experienced errors

Practitioners rely on fast failure detection and recovery to reduce the effects of failures on other users.

INTRODUCTION

- Early failure detection can mitigate about 65% of failures
- Failure detection is challenging
 - Requires up to 75% of failure recovery time
- User feedback has limited help for detecting failures
 - User survey of <u>www.clinicalguard.com</u> in 2008
 - 200 users
 - 9 responses
 - 1 specified the failure

Existing Detection Techniques

- Resource usages analysis
 - Constructing statistics using data of resources usage
 - Focusing on performance failures
 - Not on failures related to software bugs
- Runtime components interaction analysis
 - Detecting runtime execution path anomalies
 - Not always effective to software bugs
- User-behavior-based analysis
 - Analyzing request bursts to a URL/resource
 - Assume users refreshing browsers for failures
 - Users have different behavior than refreshing

I. Introduction

II. <u>Technique</u>

- III. Model Training
- IV. Evaluation
- V. Discussion
- VI. Conclusion

Overview

The Goal: Detecting failures caused by software bugs

Assumptions

HCI Rational Principle

Users must respond if the result of a sequence of interactions is not satisfactory

Navigation Patterns

- Web users follow certain navigation patterns
- Users' response to failures may break these patterns

The Idea: Detecting anomalous navigation paths as indications that users encountered failures

The Model

- A directed graph representing a Web site
 - Nodes are Web pages
 - Edges are users' navigation

S={A, B, C, C, D, A, D}

- A Markov model in the 1st order for estimating the probability of a navigation path
 - The transition probability to the next state is conditionally dependent on only the current state
 P[AB]=P[A]P[B|A]

P[S]=P[A]P[B|A]P[C|B] P[C|C] P[D|C] P[A|D] P[D|A]

Transition Probability

- Two types of transition probability
 - Outgoing Transition Probability (OTP)
 The probability that users go from page A to page B
 - Incoming Transition Probability (ITP)
 The probability that users at page B coming from page A
- OTP usually is different from ITP
 - A user can navigate to the Home page from any page
 - But not vice versa

Occurrence Probability for Failure Detection

- Given a sequence of user requests
 - Compute the occurrence probability
 - Using 1st-order Markov model
- Outgoing Occurrence Probability (OOP)
 The occurrence probability computed using OTP
- Incoming Occurrence Probability (IOP)
 The occurrence probability computed using ITP

If *min* (OOP, IOP) < *threshold* Raise a failure alarm

- I. Introduction
- II. Technique

III. Model Training

- IV. Evaluation
- V. Discussion
- VI. Conclusion

Bayesian Learning

- Assume
 - The parameter to estimate is a random variable
- Estimate
 - The distribution of the parameter as a random variable
 - A statistic as the estimator
- Process
 - Assume a distribution of the parameter
 - Find a conjugate prior distribution
 - Compute the *posterior distribution*
 - Update the prior distribution using the training data
 - Decide an estimator
 - *posterior mean*: the mean of *the posterior distribution*

Bayesian Learning Transition Probability

- Bayesian Learning to train a First-order Markov Model
 - A Multinomial distribution
 - A Direchlet distribution as the conjugate prior
- Learn Outgoing/Incoming Transition Probability
- The learning process
 - A small amount of training data for setting prior
 - The rest training data for updating prior
 - *The posterior mean* as the estimator

Estimated Transition Probability

$$\hat{\theta}_{ij} = \frac{n_{ij} + \alpha q_j}{n_i + \alpha}$$

 $\hat{\theta}_{ij}$ Estimated OTP from state *i* to state *j*

- n_i All hits on state *i* in data for setting the prior
- $n_{ij}\,$ Transitions from *i to j* in data for setting the prior
- α All hits on state *i* in the rest training data
- *q_j* Transition frequency from *i to j* in the rest training data

- I. Introduction
- II. Technique
- III. Model Training

IV. Evaluation

- V. Discussion
- VI. Conclusion

Subject

- NASA Web site
- Construct user-sessions using one month access log
 - 1,891,714 HTTP requests from real users
- Training data $\hat{\theta}_{ij} = \frac{n_{ij} + \alpha q_j}{n_i + \alpha}$
 - $n_i n_{ij}$ Prior: 572 user-sessions on 1st day
 - αq_j Learning: 2404 user-sessions on 2nd to 10th day
- Testing data
 - 7941 non-error sessions for detection
 - 500 error sessions for false positive

Result

Equal Error Rate (i.e., EER): the decision boundary when detection and false-positive have the same loss function. Our model's EER=0.71/0.26

- I. Introduction
- II. Technique
- III. Model Training
- IV. Evaluation

V. Discussion

VI. Conclusion

Discussion

- Improving the detection power
 - Semi-Markov model (e.g., time)
 - Hidden state
- The "ground truth"
 - Error sessions as user-visible failures
- More case studies
 - Controlled environments
 - Recruit users
 - Instrument real-world Web sites

- I. Introduction
- II. Technique
- III. Model Training
- IV. Evaluation
- V. Discussion

VI.Conclusion

Conclusion

- Detecting User-visible failures
 - Improving both reliability and user's satisfaction
- User's behavior changes when encounter failures
 - Breaking navigation patterns
- Our technique detects anomaly user navigation paths
- The experiment results demonstrate our technique can detect failures with reasonable cost
- Future work aims at model improvements and case studies

Thank You!