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SIP: Background

 Textual protocol (modeled after http, ftp, etc.)

 Request-response pattern.

 6 requests: INVITE, BYE, ACK, OPTIONS, REGISTER, CANCEL

 6 classes of responses: 1xx, 2xx, 3xx, 4xx, 5xx, and 6xx.

 Many actors: UAC, UAS, Registrar, Redirect server, B2BUAs.
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SIP: Background

Example SIP messages:
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SIP: Background

Where are you? I want to talk
(INVITE)

Alerting her …
(180 Ringing)

I am ready to talk
(200 OK)

Gotcha!
(ACK)
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SIP: Background

Gotcha!
(200 OK)

User location is important.  It takes many forms:
First, a user registers at one place...

I can be reached here.
(REGISTER)
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SIP: Background

Gotcha!
(200 OK)

User location is important.  It takes many forms:
First, a user registers at one place...

I can be reached here.
(REGISTER)

… Or many places!

Gotcha!
(200 OK)

I can be reached here, and here, 
and here.
                    (REGISTER)
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SIP: Background

Someone wants to talk to you
(INVITE)

Given location, now things become a bit complex:

I want to talk to her.
Where is she?
          (INVITE)

I am trying to find her
          (100 Trying)
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Need for a CLF

 Too many entities involved.

 Need some way to keep track of what is going on in real-time or post 
processed. 

 Model: HTTP CLF!
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HTTP CLF

IP address of client
Making the request

Remote logname of
user as determined by
rfc931

Name by which user has
authenticated himself.

Date/time access
was made.

Request line

Status code (response
returned by server)

Length of document
transferred.
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Benefits of HTTP CLF

 HTTP Common Log File format is used 
widely:
 ... obviously, log access to resources. 
Perform trend analysis.
Perform anomaly detection
Encourage third party tool developers.

 There isn't an analogous CLF format for SIP.
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Benefits of a SIP CLF

 Benefits of a SIP CLF:

  Establishes a common reference for interpreting SIP transaction 
state across vendor/open-source implementations.

  Train anomaly detection systems to trigger alarms.

  Allow independent tool providers to provide innovative tools for 
trend analysis and traffic reports.

  Common diagnostic trail from testing of SIP equipment.
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Use cases

 Trend analysis (“I want to find out which geographical 
area are the most calls coming from at 2:00 AM”).

 Troubleshooting (“How long did it take to generate a 
final response to an INVITE?”)

 Message correlation across transactions (“Find all 
messages corresponding to Call-ID X, including all forked 
branches”)

 Transaction correlation across dialogs (“Find all 
messages for dialog created by Call-ID X and tags A and 
B”)

 Establish concise and standardized diagnostic trail of 
a SIP session locally and globally

  Establish concise and standardized format for 
training automata (anomaly detection)
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Challenges in defining a SIP CLF

 SIP is not a linear request-reply protocol 

  HTTP is linear: pipelining okay, one request = one response.

 Complexity inherent in the protocol:

  Serial and parallel forking elicit multiple responses.

  Delays between getting a request and sending a response (origin 
server in HTTP is quick; UAS not quite so.  Impact on proxies.)

  Multiple transactions grouped in a dialog; dialog persists for a long 
time, transactions short-lived (e.g., BYE comes much later, but 
relation between INV and BYE should be preserved in a log file.)
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Challenges in defining a SIP CLF

 ACK requests need careful considerations:
  Only tied to an INVITE. 
  No responses for ACKs.
  For non-2xx, ACKs hop-by-hop (part of INV transaction.)
  For 2xx, ACK end-to-end.

 CANCEL requests need careful considerations:
  Only tied to an INVITE.
  Requires exactly one response.
  Is propagated hop-by-hop.

 INV can pend, resulting in a 1xx response (200ms rule.)  This 1xx 
response needs to be captured to train automata.

 SIP has a richer set of actors: UAS, UAC, B2BUA, proxy, registrar, 
redirect server, ...
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Need for CLF in literature

 [Rieck et al., 2008] extracts a feature set into a high-dimension 
vector space to express normality and deviation geometrically.  

 [Abdelnur et al. 2007] train a FSM on raw SIP messages.

 Problems:

  SIP parsing is a horribly complex (grammar is not LL(1) so tools 
like yacc(1) don't quite work).

  SIP parsing is an expensive operation.

  The SIP messages could be encrypted on the wire.

[Rieck et al., 2008] A Self-learning System for Detection of Anomalous 
SIP Messages, IPTComm 2008.

 [Rieck et al., 2008] extracts a feature set into a high-dimension 
vector space to express normality and deviation geometrically.  

 Problems:

  SIP parsing is a horribly complex (grammar is not LL(1) so tools 
like yacc(1) don't quite work).

  SIP parsing is an expensive operation.
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vector space to express normality and deviation geometrically.  
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  SIP parsing is a horribly complex (grammar is not LL(1) so tools 
like yacc(1) don't quite work).

  SIP parsing is an expensive operation.

  The SIP messages could be encrypted on the wire.

[Rieck et al., 2008] A Self-learning System for Detection of Anomalous 
SIP Messages, IPTComm 2008.

 [Rieck et al., 2008] extracts a feature set into a high-dimension 
vector space to express normality and deviation geometrically.  

 Problems:

  SIP parsing is a horribly complex (grammar is not LL(1) so tools 
like yacc(1) don't quite work).

  SIP parsing is an expensive operation.

  The SIP messages could be encrypted on the wire.

[Rieck et al., 2008] A Self-learning System for Detection of Anomalous 
SIP Messages, IPTComm 2008.

[Abdelnur, et al., 2007] KiF: A stateful SIP Fuzzer, IPTCOMM 2007.
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What SIP CLF is and is not ...

 SIP CLF is NOT…

 … a replacement for a CDR 
(Call Detail Record).

 … a billing tool.

 … a QoS measurement tool.

SIP CLF IS:

 … a standardized format that 
can be used by all SIP entities.

 … an easily digestible log of 
past and current transactions.

 … a format that allows quick 
parsing to discover relation-ships 
between transactions

   $ grep yuhyt6 sip-clf.txt

gets all transactions with this 
label.

 … amenable for easy parsing 
and creating other innovative 
tools.
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SIP CLF template

Canonical record format:

     Record-Size Timestamp Message-Type Directionality CSeq R-URI 
Destination:port:transport, Source:port:transport To From Call-ID 
Status Server-transaction Client-transaction [TLV, [TLV] ...]
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SIP CLF: Examples

 
In the following example, Alice is registering herself 
with her domain's registrar, which accepts the 
registration:

172 1275930743.699 R s REGISTER-1 sip:example.com 
198.51.100.10:5060:udp 198.51.100.1:5060:udp
sip:example.com sip:alice@example.com;tag=76yhh f81-d4-
f6@example.com - - c-tr-1

173 1275930744.100 r r REGISTER-1 - 198.51.100.1:5060:udp 
198.51.100.10:5060:udp sip:example.com;tag=reg-1xtr 
sip:alice@example.com;tag=76yhh f81-d4-f6@example.com 200 
- c-tr-1

Registration
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SIP CLF: Examples

 A complex session setup call flow.
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SIP CLF: Examples
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SIP CLF: Using text tools

$ grep c-2-tr /var/log/sip-msgs.log
186 1275930745.500 R s INVITE-43 sip:bob@bob2.example.net [2001:db8::9]:5060:udp 203.0.113.200:5060:udp 
sip:bob@example.net sip:alice@example.com;tag=a1-1 tr-88h@example.com - s-1-tr c-2-tr
174 1275930746.100 r r INVITE-43 - 203.0.113.200:5060:udp [2001:db8::9]:5060:udp sip:bob@example.net;tag=b2-2 
sip:alice@example.com;tag=a1-1 tr-88h@example.com 100 s-1-tr c-2-tr
174 1275930746.700 r r INVITE-43 - 203.0.113.200:5060:udp [2001:db8::9]:5060:udp sip:bob@example.net;tag=b2-2 
sip:alice@example.com;tag=a1-1 tr-88h@example.com 180 s-1-tr c-2-tr
170 1275930746.990 r s INVITE-43 - 198.51.100.1:5060:udp 203.0.113.200:5060:udp sip:bob@example.net;b2-2 
sip:alice@example.com;tag=a1-1 tr-88h@example.com 180 s-1-tr c-2-tr
191 1275930748.201 R s CANCEL-43 sip:bob@bob2.example.net [2001:db8::9]:5060:udp 203.0.113.200:5060:udp 
sip:bob@example.net;b2-2 sip:alice@example.com;tag=a1-1 tr-88h@example.com - s-1-tr c-2-tr
170 1275930748.991 r r INVITE-43 - 203.0.113.200:5060:udp [2001:db8::9]:5060:udp sip:bob@example.net;b2-2 
sip:alice@example.com;tag=a1-1 tr-88h@example.com 487 s-1-tr c-2-tr
188 1275930749.455 R s ACK-43 sip:bob@bob2.example.net [2001:db8::9]:5060:udp 203.0.113.200:5060:udp 
sip:bob@example.net;b2-2 sip:alice@example.com;tag=a1-1 tr-88h@example.com - s-1-tr c-2-tr
170 1275930750.001 r r CANCEL-43 - 203.0.113.200:5060:udp [2001:db8::9]:5060:udp sip:bob@example.net;b2-2 
sip:alice@example.com;tag=a1-1 tr-88h@example.com 200 s-1-tr c-2-tr
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SIP CLF: Next steps

 
1/ In the process of standardizing SIP-CLF in the IETF, including a
    standardized representation of the messages.

2/ Implement SIP-CLF in various proxies (open source as
well as ALU).

3/ Redo [Abdelnur et al., 2007] and [Rieck et al., 2008] to
use SIP-CLF instead of parsing raw SIP messages.

4/ We extrapolate that using SIP-CLF will be optimal from
a parsing point of view and more complete from a transaction
state point of view.
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