
The Session Initiation Protocol
(SIP) Common Log Format (CLF)

Vijay K. Gurbani <vkg@bell-labs.com>

Computer Systems and Security Research

Bell Laboratories/Alcatel-Lucent

Oct. 03, 2010

n

2 | USENIX SLAML | Oct. 2010

Joint work with ...

Tricha Anjali <tricha@ece.iit.edu>
Eric Burger <eburger@standardstrack.com>
Carol Davids <davids@iit.edu>

3 | USENIX SLAML | Oct. 2010

SIP: Background

 Textual protocol (modeled after http, ftp, etc.)

 Request-response pattern.

 6 requests: INVITE, BYE, ACK, OPTIONS, REGISTER, CANCEL

 6 classes of responses: 1xx, 2xx, 3xx, 4xx, 5xx, and 6xx.

 Many actors: UAC, UAS, Registrar, Redirect server, B2BUAs.

4 | USENIX SLAML | Oct. 2010

SIP: Background

Example SIP messages:

5 | USENIX SLAML | Oct. 2010

SIP: Background

Where are you? I want to talk
(INVITE)

Alerting her …
(180 Ringing)

I am ready to talk
(200 OK)

Gotcha!
(ACK)

6 | USENIX SLAML | Oct. 2010

SIP: Background

Gotcha!
(200 OK)

User location is important. It takes many forms:
First, a user registers at one place...

I can be reached here.
(REGISTER)

7 | USENIX SLAML | Oct. 2010

SIP: Background

Gotcha!
(200 OK)

User location is important. It takes many forms:
First, a user registers at one place...

I can be reached here.
(REGISTER)

… Or many places!

Gotcha!
(200 OK)

I can be reached here, and here,
and here.
 (REGISTER)

8 | USENIX SLAML | Oct. 2010

SIP: Background

Someone wants to talk to you
(INVITE)

Given location, now things become a bit complex:

I want to talk to her.
Where is she?
 (INVITE)

I am trying to find her
 (100 Trying)

9 | USENIX SLAML | Oct. 2010

SIP: Background

Someone wants to talk to you
(INVITE)

Alerting her …
(180 Ringing)

I am ready to talk
(200 OK)

Gotcha!
(ACK)

Given location, now things become a bit complex:

I want to talk to her.
Where is she?
 (INVITE)

I am trying to find her
 (100 Trying)

10 | USENIX SLAML | Oct. 2010

Need for a CLF

 Too many entities involved.

 Need some way to keep track of what is going on in real-time or post
processed.

 Model: HTTP CLF!

11 | USENIX SLAML | Oct. 2010

HTTP CLF

IP address of client
Making the request

Remote logname of
user as determined by
rfc931

Name by which user has
authenticated himself.

Date/time access
was made.

Request line

Status code (response
returned by server)

Length of document
transferred.

12 | USENIX SLAML | Oct. 2010

Benefits of HTTP CLF

 HTTP Common Log File format is used
widely:
 ... obviously, log access to resources.
Perform trend analysis.
Perform anomaly detection
Encourage third party tool developers.

 There isn't an analogous CLF format for SIP.

13 | USENIX SLAML | Oct. 2010

Benefits of a SIP CLF

 Benefits of a SIP CLF:

 Establishes a common reference for interpreting SIP transaction
state across vendor/open-source implementations.

 Train anomaly detection systems to trigger alarms.

 Allow independent tool providers to provide innovative tools for
trend analysis and traffic reports.

 Common diagnostic trail from testing of SIP equipment.

14 | USENIX SLAML | Oct. 2010

Use cases

 Trend analysis (“I want to find out which geographical
area are the most calls coming from at 2:00 AM”).

 Troubleshooting (“How long did it take to generate a
final response to an INVITE?”)

 Message correlation across transactions (“Find all
messages corresponding to Call-ID X, including all forked
branches”)

 Transaction correlation across dialogs (“Find all
messages for dialog created by Call-ID X and tags A and
B”)

 Establish concise and standardized diagnostic trail of
a SIP session locally and globally

 Establish concise and standardized format for
training automata (anomaly detection)

15 | USENIX SLAML | Oct. 2010

Challenges in defining a SIP CLF

 SIP is not a linear request-reply protocol

 HTTP is linear: pipelining okay, one request = one response.

 Complexity inherent in the protocol:

 Serial and parallel forking elicit multiple responses.

 Delays between getting a request and sending a response (origin
server in HTTP is quick; UAS not quite so. Impact on proxies.)

 Multiple transactions grouped in a dialog; dialog persists for a long
time, transactions short-lived (e.g., BYE comes much later, but
relation between INV and BYE should be preserved in a log file.)

16 | USENIX SLAML | Oct. 2010

Challenges in defining a SIP CLF

 ACK requests need careful considerations:
 Only tied to an INVITE.
 No responses for ACKs.
 For non-2xx, ACKs hop-by-hop (part of INV transaction.)
 For 2xx, ACK end-to-end.

 CANCEL requests need careful considerations:
 Only tied to an INVITE.
 Requires exactly one response.
 Is propagated hop-by-hop.

 INV can pend, resulting in a 1xx response (200ms rule.) This 1xx
response needs to be captured to train automata.

 SIP has a richer set of actors: UAS, UAC, B2BUA, proxy, registrar,
redirect server, ...

17 | USENIX SLAML | Oct. 2010

Need for CLF in literature

 [Rieck et al., 2008] extracts a feature set into a high-dimension
vector space to express normality and deviation geometrically.

 [Abdelnur et al. 2007] train a FSM on raw SIP messages.

 Problems:

 SIP parsing is a horribly complex (grammar is not LL(1) so tools
like yacc(1) don't quite work).

 SIP parsing is an expensive operation.

 The SIP messages could be encrypted on the wire.

[Rieck et al., 2008] A Self-learning System for Detection of Anomalous
SIP Messages, IPTComm 2008.

 [Rieck et al., 2008] extracts a feature set into a high-dimension
vector space to express normality and deviation geometrically.

 Problems:

 SIP parsing is a horribly complex (grammar is not LL(1) so tools
like yacc(1) don't quite work).

 SIP parsing is an expensive operation.

 The SIP messages could be encrypted on the wire.

[Rieck et al., 2008] A Self-learning System for Detection of Anomalous
SIP Messages, IPTComm 2008.

 [Rieck et al., 2008] extracts a feature set into a high-dimension
vector space to express normality and deviation geometrically.

 Problems:

 SIP parsing is a horribly complex (grammar is not LL(1) so tools
like yacc(1) don't quite work).

 SIP parsing is an expensive operation.

 The SIP messages could be encrypted on the wire.

[Rieck et al., 2008] A Self-learning System for Detection of Anomalous
SIP Messages, IPTComm 2008.

 [Rieck et al., 2008] extracts a feature set into a high-dimension
vector space to express normality and deviation geometrically.

 Problems:

 SIP parsing is a horribly complex (grammar is not LL(1) so tools
like yacc(1) don't quite work).

 SIP parsing is an expensive operation.

 The SIP messages could be encrypted on the wire.

[Rieck et al., 2008] A Self-learning System for Detection of Anomalous
SIP Messages, IPTComm 2008.

[Abdelnur, et al., 2007] KiF: A stateful SIP Fuzzer, IPTCOMM 2007.

18 | USENIX SLAML | Oct. 2010

What SIP CLF is and is not ...

 SIP CLF is NOT…

 … a replacement for a CDR
(Call Detail Record).

 … a billing tool.

 … a QoS measurement tool.

SIP CLF IS:

 … a standardized format that
can be used by all SIP entities.

 … an easily digestible log of
past and current transactions.

 … a format that allows quick
parsing to discover relation-ships
between transactions

 $ grep yuhyt6 sip-clf.txt

gets all transactions with this
label.

 … amenable for easy parsing
and creating other innovative
tools.

19 | USENIX SLAML | Oct. 2010

SIP CLF template

Canonical record format:

 Record-Size Timestamp Message-Type Directionality CSeq R-URI
Destination:port:transport, Source:port:transport To From Call-ID
Status Server-transaction Client-transaction [TLV, [TLV] ...]

20 | USENIX SLAML | Oct. 2010

SIP CLF: Examples

In the following example, Alice is registering herself
with her domain's registrar, which accepts the
registration:

172 1275930743.699 R s REGISTER-1 sip:example.com
198.51.100.10:5060:udp 198.51.100.1:5060:udp
sip:example.com sip:alice@example.com;tag=76yhh f81-d4-
f6@example.com - - c-tr-1

173 1275930744.100 r r REGISTER-1 - 198.51.100.1:5060:udp
198.51.100.10:5060:udp sip:example.com;tag=reg-1xtr
sip:alice@example.com;tag=76yhh f81-d4-f6@example.com 200
- c-tr-1

Registration

21 | USENIX SLAML | Oct. 2010

SIP CLF: Examples

 A complex session setup call flow.

22 | USENIX SLAML | Oct. 2010

SIP CLF: Examples

23 | USENIX SLAML | Oct. 2010

SIP CLF: Using text tools

$ grep c-2-tr /var/log/sip-msgs.log
186 1275930745.500 R s INVITE-43 sip:bob@bob2.example.net [2001:db8::9]:5060:udp 203.0.113.200:5060:udp
sip:bob@example.net sip:alice@example.com;tag=a1-1 tr-88h@example.com - s-1-tr c-2-tr
174 1275930746.100 r r INVITE-43 - 203.0.113.200:5060:udp [2001:db8::9]:5060:udp sip:bob@example.net;tag=b2-2
sip:alice@example.com;tag=a1-1 tr-88h@example.com 100 s-1-tr c-2-tr
174 1275930746.700 r r INVITE-43 - 203.0.113.200:5060:udp [2001:db8::9]:5060:udp sip:bob@example.net;tag=b2-2
sip:alice@example.com;tag=a1-1 tr-88h@example.com 180 s-1-tr c-2-tr
170 1275930746.990 r s INVITE-43 - 198.51.100.1:5060:udp 203.0.113.200:5060:udp sip:bob@example.net;b2-2
sip:alice@example.com;tag=a1-1 tr-88h@example.com 180 s-1-tr c-2-tr
191 1275930748.201 R s CANCEL-43 sip:bob@bob2.example.net [2001:db8::9]:5060:udp 203.0.113.200:5060:udp
sip:bob@example.net;b2-2 sip:alice@example.com;tag=a1-1 tr-88h@example.com - s-1-tr c-2-tr
170 1275930748.991 r r INVITE-43 - 203.0.113.200:5060:udp [2001:db8::9]:5060:udp sip:bob@example.net;b2-2
sip:alice@example.com;tag=a1-1 tr-88h@example.com 487 s-1-tr c-2-tr
188 1275930749.455 R s ACK-43 sip:bob@bob2.example.net [2001:db8::9]:5060:udp 203.0.113.200:5060:udp
sip:bob@example.net;b2-2 sip:alice@example.com;tag=a1-1 tr-88h@example.com - s-1-tr c-2-tr
170 1275930750.001 r r CANCEL-43 - 203.0.113.200:5060:udp [2001:db8::9]:5060:udp sip:bob@example.net;b2-2
sip:alice@example.com;tag=a1-1 tr-88h@example.com 200 s-1-tr c-2-tr

24 | USENIX SLAML | Oct. 2010

SIP CLF: Next steps

1/ In the process of standardizing SIP-CLF in the IETF, including a
 standardized representation of the messages.

2/ Implement SIP-CLF in various proxies (open source as
well as ALU).

3/ Redo [Abdelnur et al., 2007] and [Rieck et al., 2008] to
use SIP-CLF instead of parsing raw SIP messages.

4/ We extrapolate that using SIP-CLF will be optimal from
a parsing point of view and more complete from a transaction
state point of view.

25 | USENIX SLAML | Oct. 2010

www.Alcatel-Lucent.com

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

