
SIP CLF: A Common Log Format (CLF) for the Session Initiation Protocol
(SIP)

Vijay K. Gurbani
Bell Laboratories/Alctel-Lucent

Eric Burger
Georgetown University

Carol Davids, Tricha Anjali
Illinois Institute of Technology

Abstract

Web servers such as Apache and web proxies like Squid
support event logging using a common log format. The
logs produced using these de-facto standard formats are
invaluable to system administrators for trouble-shooting
a server and tool writers to craft tools that mine the log
files and produce reports and trends. The Session Initia-
tion Protocol (SIP) does not have a common log format,
and as a result, each server supports a distinct log for-
mat. This plethora of formats discourages the creation of
common tools. Whilst SIP is similar to HTTP, there are
a number of fundamental differences between a session-
mode protocol and a stateless request-response protocol.
We propose a common log file format for SIP servers
that can be used uniformly by proxies, registrars, redi-
rect servers as well as back-to-back user agents. Such a
canonical file can be used to train anomaly detection sys-
tems and feed events into a security event management
system.

1 Introduction and problem statement

Servers executing on Internet hosts produce log records
as part of their normal operations. A log record is, in
essence, a summary of an application layer protocol data
unit (PDU), that captures in precise terms an event that
was processed by the server. These log records serve
many purposes, including analysis and troubleshooting.

Web servers such as Apache and Squid support event
logging using a Common Log Format (CLF), the com-
mon structure for logging requests and responses ser-
viced by the web server. One can argue that a good part
of the success of Apache has been its CLF because it al-
lowed third parties to produce tools that analyzed the log
data and generated traffic reports and trends. The Apache
CLF has been so successful that it become the de-facto
standard in producing logging data for web servers. To-
day, one can configure many commercial web servers to

produce logs in this format.

The inspiration for the SIP CLF is the Apache CLF
[3] (see also http://httpd.apache.org/docs/2.2/logs.html).
However, the state machinery for a HTTP transaction is
much simpler than that of the SIP transaction, as we will
describe below. The SIP CLF needs to do considerably
more than the Apache CLF.

The Session Initiation Protocol [6] is an Internet mul-
timedia session signaling protocol. A typical deployment
of SIP includes SIP entities from multiple vendors. Cur-
rently, if these entities are capable of producing a log file
of the transactions being handled by them, the log files
are in a proprietary format. The result of the multiplicity
of log file formats is the inability of support staff to easily
trace a call from one entity to another. Likewise, it makes
it difficult to craft common tools that will perform trend
analysis, debugging and troubleshooting across the SIP
entities of multiple vendors. More importantly, a global
view of the call, following a call trace through multiple
devices from multiple vendors is very difficult to con-
struct.

SIP does not currently have a common log file format.
This paper provides the rationale to establish a SIP CLF
and identifies the required minimal information that must
appear in any SIP CLF record.

The rest of this paper is structured as follows. Sec-
tion 2 provides a background on SIP and introduces the
domain-specific nomenclature associated with the proto-
col. Section 3 motivates the use cases of SIP CLF. Sec-
tion 4 documents the complexity of the SIP protocol that
makes it harder to log entries atomically when compared
to the HTTP protocol. Section 5 outlines the alternative
approaches to SIP CLF, and Section 6 presents the SIP
CLF data model. Section 7 shows two examples of SIP
entities producing SIP CLF records. Section 8 summa-
rizes the paper and lists ongoing work we are involved
with in SIP CLF.

2 SIP background

A SIP ecosystem consists of user agents, proxy servers,
redirect servers, and registrars. Of special interest to
us with respect to this paper are user agents and proxy
servers.

There are two types of SIP user agents: a user agent
client (UAC) and a user agent server (UAS). A UAC and
a UAS are software programs that execute on a com-
puter, an Internet phone, or a personal digital assistant
(PDA). A UAC originates requests (i.e. start a multi-
media session) and a UAS accepts and acts upon a re-
quest. UASes typically register themselves with a regis-
trar, which binds their current IP address to an email-like
identifier used to identify the user. This registration in-
formation is used by SIP proxy servers to route the re-
quest to an appropriate UAS.

Proxy servers are SIP intermediaries that provide criti-
cal services such as routing, authentication, and forking1.
A SIP proxy, upon the receipt of an incoming call setup
request, will determine how to best route the request to
a downstream UAS. The request to establish a session in
SIP is called an INVITE. An INVITE request generates
one or more responses. Responses to requests indicate
success or failure, distinguished by a status code. Re-
sponses with status code 1xx (100-199) are termed pro-
visional responses and serve to update the progress of the
call; the 2xx code is for success and higher number for
failures. 2xx-6xx responses are termed as final responses
and serve to complete the INVITE request. The INVITE
request is forwarded by a proxy (through possibly an-
other chain of proxies) until it gets to its destination. The
destination sends one or more provisional responses fol-
lowed by exactly one final response. The responses tra-
verse, in reverse order, over the same proxy chain as the
request.

Figure 1 provides a time-line of call establishment
between a UAC and a UAS. The request is forwarded
through a chain of proxies. With reference to Figure 1,
the UAC sends an INVITE to P1 and P1 routes the call
further downstream. From the UAC’s reference, P1 is
called an outbound proxy. P1 determined that the re-
quest should be forwarded to P2 (the UAS is in a differ-
ent domain). When the request arrives at P2, it queries
its location server and further proxies the request to the
UAS. From the UAS point of view, P2 is the inbound
proxy. The UAS issues a provisional response followed
by a final response. The session is setup when the UAC
receives the final response and sends out a new request
called an ACK (the ACK and any subsequent requests
may flow directly between the endpoints, as dictated by

1Forking is the act of replicating an incoming request to multiple
outgoing requests and subsequently collating the responses arriving on
each branch.

Figure 1:Session Setup in SIP

the routing policies of the intermediary proxies. Some
proxies may elect to stay in the session such that all sub-
sequent requests flow through them. In Figure 1, proxy
P2 has done so and thus receives the ACK request from
the UAC.) A salient note in Figure 1 is that media flows
directly between the two endpoints, unhindered by rout-
ing through the intermediaries as the signaling was.

SIP is a text-based, request-response protocol refer-
encing the familiarity of other similar protocols such
as HTTP and FTP. The base protocol as described in
RFC3261 [6] has six methods and six classes of re-
sponses (100 to 600.) For instance, a request using the
INVITE method to setup a multimedia session is de-
picted below. A request (and a response) consists of
headers separated by a blank line from the body (or pay-
load) of the SIP message. In the example below, the pay-
load consists of SDP and describes the capabilities of the
sender of the request.

INVITE sip:bob@example.com SIP/2.0
To: Robert <sip:bob@example.com>
From: Alice <sip:alice@example.org>;tag=0ij8z
Via: SIP/2.0/UDP a.example.org;branch=z9hG4bKnash
CSeq: 89187 INVITE
Call-ID: 78176714@example.org
Content-type: application/sdp

v=0
o=alice 2890844526 2890844526 IN IP4 a.example.org
s=-
c=IN IP4 192.0.2.101
t=0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

A corresponding response to the above request would
be:

SIP/2.0 180 Ringing

2

To: Robert <sip:bob@example.com>;tag=i8160
From: Alice <sip:alice@example.org>;tag=0ij8z
Via: SIP/2.0/UDP a.example.org;branch=z9hG4bKnash
CSeq: 89187 INVITE
Call-ID: 78176714@example.org

A request elicits one or more provisional response
(class 100) and exactly one final response (drawn from
200 - 600 class.) In the example above, the recipient
of the INVITE request is indicating that the recipient’s
phone is ringing. Note also that a payload is optional in
a SIP message; the response above does not contain one.

Finally, the notion of atransactionanddialog is used
pervasively in SIP. Atransactionis the logical grouping
of a request, one or more provisional responses and ex-
actly one final response. The definition of atransaction
is made more complex in SIP because of the manner in
which the protocol is defined. An INVITE request that
elicits a non-2xx response considers the ACK request to
be a part of the same INVITE transaction. On the other
hand, an ACK request that acknowledges a 2xx-class re-
sponse to the original INVITE is considered to be a trans-
action of its own (albeit one without any response.)

A dialog is the logical relation between a UAC and a
UAS. Dialogs are created end-to-end, i.e., SIP intermedi-
aries may route requests downstream and responses up-
stream, but they do not create a dialog, choosing instead
to be purely transactional entities. Adialog represents
shared state used by the UAC and UAS and is identified
by the Call-ID header and the tags from the To and From
headers. While transactions have a short timespan —
usually to the order of half a minute — dialogs may per-
sist for hours or even days between a UAC and a UAS.

3 Motivation and use cases

As SIP becomes pervasive in multiple business domains
and ubiquitous in academic and research environments, it
is beneficial to establish a CLF for the following reasons:

• Common reference for interpreting events: In a lab-
oratory environment or an enterprise service offer-
ing there will typically be SIP entities from multiple
vendors participating in routing requests. Absent a
CLF format, each entity will produce output records
in a native format making it hard to establish com-
monality for tools that operate on the log file.

• Writing common tools: A CLF format allows in-
dependent tool providers to craft tools and applica-
tions that interpret the CLF data to produce insight-
ful trend analysis and detailed traffic reports. The
format should be such that it retains the ability to
be read by humans and processed using traditional
Unix text processing tools.

• Session correlation across diverse processing ele-
ments: In operational SIP networks, a request will
typically be processed by more than one SIP server.
A SIP CLF will allow the network operator to trace
the progression of the request (or a set of requests)
as they traverse through the different servers to es-
tablish a concise diagnostic trail of a SIP session.
Note that tracing a request through a set of servers
is considerably easier when all the servers belong to
the same administrative domain.

• Message correlation across transactions: A SIP
CLF can enable a quick lookup of all messages
that comprise a transaction (e.g., ”Find all messages
corresponding to server transaction X, including all
forked branches.”)

• Trend analysis: A SIP CLF allows an administra-
tor to collect data and spot patterns or trends in the
information (e.g., ”What is the domain where the
most sessions are routed to between 9:00 AM and
12:00 PM?”)

• Train anomaly detection systems: A SIP CLF will
allow for the training of anomaly detection systems
that once trained can monitor the CLF file to trig-
ger an alarm on the subsequent deviations from ac-
cepted patterns in the data set. Currently, anomaly
detection systems monitor the network and parse
raw packets that comprise a SIP message – a process
that is unsuitable for anomaly detection systems [5].
With all the necessary event data at their disposal,
network operations managers and information tech-
nology operation managers are in a much better po-
sition to correlate, aggregate, and prioritize log data
to maintain situational awareness.

• Testing: A SIP CLF allows for automatic testing of
SIP equipment by writing tools that can parse a SIP
CLF file to ensure behavior of a device under test.

• Troubleshooting: A SIP CLF can enable cursory
trouble shooting of a SIP entity (e.g., ”How long did
it take to generate a final response for the INVITE
associated with Call-ID X?”)

• Offline analysis: A SIP CLF allows for offline anal-
ysis of the data gathered. Once a SIP CLF file has
been generated, it can be transported to a host with
appropriate computing resources to perform subse-
quent analysis.

• Real-time monitoring: A SIP CLF allows admin-
istrators to visually notice the events occurring at
a SIP entity in real-time providing accurate situa-
tional awareness.

3

4 Challenges in establishing a SIP CLF

Establishing a CLF for SIP is a challenging task. The be-
havior of a SIP entity is more complex when compared
to the equivalent HTTP entity. Unlike HTTP, where the
origin server has all the information required to gener-
ate the HTTP CLF when it services a request, in SIP the
information becomes available over time at a SIP server.

Base protocol services such as parallel or serial fork-
ing elicit multiple final responses. Ensuing delays be-
tween sending a request and receiving a final response
all add complexity when considering what fields should
comprise a CLF and in what manner. Furthermore, un-
like HTTP, SIP groups multiple discrete transactions into
a dialog, and these transactions may arrive at a varying
inter-arrival rate at a proxy. For example, the BYE trans-
action usually arrives much after the corresponding IN-
VITE transaction was received, serviced and expunged
from the transaction list. Nonetheless, it is advantageous
to relate these transactions such that automata or a human
monitoring the log file can construct a set consisting of
related transactions.

ACK requests in SIP need careful consideration as
well. In SIP, an ACK is a special method that is associ-
ated with an INVITE only. It does not require a response,
and furthermore, if it is acknowledging a non-2xx re-
sponse, then the ACK is considered part of the original
INVITE transaction. If it is acknowledging a 2xx-class
response, then the ACK is a separate transaction consist-
ing of a request only (i.e., there is not a response for an
ACK request.) CANCEL is another method that is tied
to an INVITE transaction, but unlike ACK, the CANCEL
request elicits a final response.

While most requests elicit a response immediately, the
INVITE request in SIP can pend at a proxy as it forks
branches downstream or at a user agent server while it
alerts the user. Rosenberg et al. [6] require the server
transaction to send a 1xx-class provisional response if
a final response is delayed for more than 200 ms. A
SIP CLF log file needs to include such provisional re-
sponses because they help train automata associated with
anomaly detection systems and provide some positive
feedback for a human observer monitoring the log file.

5 Alternative approaches to SIP CLF

The two existing approaches that approximate what SIP
CLF does are Call Detail Records (CDRs) and Wireshark
packet sniffing.

5.1 SIP CLF and CDRs

CDRs are used in operator networks widely and with the
adoption of SIP, standardization bodies such as 3GPP

have subsequently defined SIP-related CDRs as well. To-
day, CDRs are used to implement the functionality ap-
proximated by SIP CLF, however, there are important
differences.

First, SIP CLF operates natively at the transaction
layer and maintains enough information in the informa-
tion elements being logged that dialog-related data can
be subsequently derived from the transaction logs. Thus,
esoteric SIP fields and parameters like the To header, in-
cluding tags; the From header, including tags, the CSeq
number, etc. are logged in SIP CLF. By contrast, a CDR
is used mostly for charging and thus saves information
to facilitate that very aspect. A CDR will most certainly
log the public user identification of a party requesting a
service (which may not correspond to the From header)
and the public user identification of the party called party
(which may not correspond to the To header.) Further-
more, the sequence numbers maintained by the CDR
may not correspond to the SIP CSeq header. Thus it will
be hard to piece together the state of a dialog through a
sequence of CDR records.

Second, SIP is also being deployed outside of
operator- managed VoIP networks. Universities, research
laboratories, and small-to-medium size companies are
deploying SIP-based VoIP solutions on networks owned
and managed by them. Much of the latter constituencies
will not have an interest in generating CDRs, but they
will like to have a concise representation of the messages
being handled by the SIP entities in a common format.

Finally, out of necessity, CDR generation will tie sig-
naling to media packets and thus be available only on
network servers that can correlate the media and signal-
ing packets. By contrast, SIP CLF is not tied to media
packets. As such, it can be generated by network servers
as well as end user agents. The latter entities in particular
increasingly include resource constrained devices (mo-
bile phones); thus, a light-weight log generation method
like SIP CLF is more amenable to these devices.

5.2 SIP CLF and Wireshark packet cap-
ture

Wireshark (http://www.wireshark.org) is a popular raw
packet capture tool. It contains filters that interpret SIP
at the protocol level and decompose a captured message
into its individual header components. While Wireshark
is appropriate to capture and view discrete SIP messages,
it does not suffice to serve in the same capacity as SIP
CLF for two reasons.

First, all SIP entities that need to save SIP CLF records
would require a Wireshark library for different operat-
ing systems and configurations to link into. Second, and
more importantly, if the SIP messages are exchanged
over a TLS-oriented transport, Wireshark will be unable

4

to decrypt them and render them as individual SIP head-
ers.

6 Data model

The list below contains definitions of the fields that will
provide minimal information that must be present in a
SIP CLF record. We present these fields in Table 1, dis-
tinguishing between transactions that are initiated at the
end points (UAS and UAC) and those that are initiated at
intermediary proxies, (UAS-half, UAC-half).

• Timestamp — Date and time of the request or re-
sponse represented as the number of seconds and
milliseconds since the Unix epoch.

• Size of the SIP CLF record — The total number of
bytes that comprise the SIP CLF record. This allows
systems that do post-analysis on the log file to skip
the record if it is not of interest.

• Message type — An indicator of whether the SIP
message is a request or a response. The allowable
values for this field areR (for Request) andr (for
response).

• Directionality - An indicator of whether the SIP
message is received by the SIP entity or sent by the
SIP entity. The allowable values for this field ares
(for message sent) andr (for message received).

• Source:port:xport — The DNS name or IP address
of the upstream client, including the port number
and the transport over which the SIP message was
received. The port number must be separated from
the DNS name or IP address by a single ’:’. The
transport must be separated from the port by a sin-
gle ’:’. The allowable values for the transport are
governed by the ”transport” production rule in Sec-
tion 25.1 of Rosenberg et al. [6]2.

• Destination:port:xport — The DNS name or IP ad-
dress of the downstream server, including the port
number. The port number must be separated from
the DNS name or IP address by a single ’:’. The
transport must be separated from the port by a sin-
gle ’:’. The allowable values for the transport are
governed by the ”transport” production rule in Sec-
tion 25.1 of Rosenberg et al. [6].

• From — The From URI, including the tag. In SIP,
the From URI specifies the sender of a request. The
tag is a URI parameter that is used to identify a dia-
log between two endpoints.

2The valid values aretcp, udp, tls andsctp. The production rule
allows for the set of values to be extended in the future.

• To — The To URI, including the tag. In SIP, the To
URI is the logical recipient of the request. The tag
has the same semantics as that of the From URI.

• Callid — The Call-ID header. In SIP, a Call-ID
header groups all transactions exchanged between
a UAC and UAS.

• CSeq — The CSeq header, used for sequencing.

• R-URI — The Request-URI, including any URI
parameters. In SIP, the R-URI identifies the ulti-
mate recipient of the request. SIP intermediaries
use it to route the request towards the destination
UAS. The R-URI occurs on the topmost line of a
SIP request (it is not present in a SIP response); in
the SIP request shown in Section 2, the R-URI is
sip:bob@example.com.

• Status — The SIP response status code (i.e., 100,
200, etc.) Status lines occur only in responses; in
the SIP response shown in Section 2, the status is
180.

SIP Proxies may fork, creating several client transac-
tions that correlate to a single server transaction. Re-
sponses arriving on these client transactions, or new re-
quests (CANCEL, ACK) sent on the client transaction
need log file entries that correlate with a server trans-
action. The last two data model elements provide this
correlation.

• Server-Txn - Server transaction identification code
- the transaction identifier associated with the server
transaction. Implementations can reuse the UAS
server transaction identifier (the topmost branch-id
of the incoming request, with or without the magic
cookie), or they could generate a unique identifi-
cation string for a server transaction (this identifier
needs to be locally unique to the server only.) This
identifier is used to correlate ACKs and CANCELs
to an INVITE transaction; it is also used to aid in
forking as explained later in this section. (See Sec-
tion 7 for usage.)

• Client-Txn - Client transaction identification code -
this field is used to associate client transactions with
a server transaction for forking proxies or B2BUAs.
Upon forking, implementations can reuse the value
they inserted into the topmost Via header’s branch
parameter, or they can generate a unique identifica-
tion string for the client transaction. (See Section 7
for usage.)

Building extensibility in the SIP CLF log model is
essential because invariably, implementers will want to
save other SIP headers not covered by the mandatory

5

Table 1: SIP CLF fields logged per entity
UAC UAS UAS- UAC-

half half
Timestamp R,r R,r R,r R,r
CLF record size R,r R,r R,r R,r
Message type R,r R,r R,r R,r
Directionality R,r R,r R,r R,r
CSeq R,r R,r R,r R,r
R-URI R R R R
Dest:port:xport R,r R,r R,r R,r
Source:port:xport R,r R,r R,r R,r
To R,r R,r R,r R,r
From R,r R,r R,r R,r
Call-ID R,r R,r R,r R,r
Status r r r r
Server-Txn — R,r R,r R,r
Client-Txn R,r — r R,r

ones listed above. In order to do so, the SIP CLF log for-
mat supports one or more type-length-value (TLV) fields
that appear at the end of the SIP CLF record. As an ex-
ample, the SIP CLF record shown in Figure 3 logs the
”Subject” header as an optional TLV field that occurs at
the end on line 3.

Each SIP CLF record will contain the data elements in
the order shown in the template below:

Record-size Timestamp Message-type
Directionality CSeq R-URI
Destination:port:xport
Source:port:xport To From Call-ID
Status Server-Txn Client-Txn [TLV [TLV]...]

Table 1 summarizes how the data elements are logged
by a UAC, UAS, UAC-half and UAS-half of a SIP proxy.
In Table 1,R implies that the field is logged when a re-
quest is handled by that SIP entity,r implies the field
is logged when a response is handled by that SIP entity
and— implies that the field is not applicable to that SIP
entity.

Each SIP entity that generates a SIP CLF log file stores
it on local disk, appropriately protected through directory
permissions. A log file by its nature reveals both the state
of the entity producing it and the nature of the informa-
tion being logged. Techniques such as anonymization
of user’s private data (URIs, IP addresses, etc.) and ac-
cess control to the log file seems reasonable to protect
the user’s privacy.

There isn’t any public literature that benchmarks a
production-grade commercial SIP proxy with real-world
traffic arrival patterns, thus it is difficult to authoritatively
derive a message rate and from that, calculate the disk-
space requirements associated with a SIP CLF file. Early

academic work on SIP performance [1] and more recent
work on SIP overload [2, 4, 7] appear to indicate that
steady state is obtained around 200-300 sessions set up
per second. Based on this, we make some simplifying
assumptions to calculate the disk-space requirements.

One, we assume that SIP proxies fork to at most two
end-points (as shown in Figure 2) and there are no mid-
dialog messages. Once set up, the session is terminated
by a BYE request, which the proxy will have to forward
(the BYE request is not shown in Figure 2, but adds 4
messages to the call flow.) In steady state, the server
will generate a maximum of 6,000 SIP CLF records (300
sessions per second× 20 messages per session.) The
second assumption we make is that the SIP CLF record
contains at most 840 bytes (14 mandatory fields at an
average of 60 bytes per field.) Thus, in steady state, the
server will generate approximately 5 MBytes per second
or 435 GBytes per day.

7 Examples

We now present two examples to demonstrate the SIP
CLF record format. The first example is simple and only
involves Alice registering with her SIP registrar. Alice
sends a REGISTER request and the registrar responds
with a 200 OK response. The SIP CLF record is gen-
erated from the viewpoint of Alice’s UAC; lines 1 and
2 in Figure 3 show how the UAC would log the request
and response, respectively (note that in the figure, the
line numbers are not part of the SIP CLF record, but are
provided to aid subsequent discussion.)

The data model elements on lines 1 and 2 in Figure 3
correspond to the data element template of Section 6.

The next example is more complex since it involves a
forking proxy. Figure 2 shows the time-line diagram of
the call. The numbers in parenthesis besides the requests
and responses correspond to the line numbers in Figure
3. In this example, Alice sends out an invitation to Bob.
Bob’s proxy (P1) knows that Bob is registered on two
endpoints, so it forks the call to both registered instances.
After a few provisional responses are received by P1 and
proxied back to Alice, Bob’s instance 1 decides to accept
the invitation by sending a 200 (line 13). Following the
machinations of the SIP protocol, P1 immediately sends
the 200 OK to Alice and prepares to cancel the remaining
call leg by sending a CANCEL request (line 15) towards
Bob’s instance 2. This CANCEL elicits a 200 (line 18),
and the pending invitation elicits a 487 (line 16). The 487
is acknowledged by P1 (line 17). The SIP CLF log file
created by the exchange of Figure 2 is captured in lines
3 to 18 in Figure 3.

There are some salient points in the SIP CLF log cor-
responding to Figure 2. In line 3 of Figure 3, P1 has
created a server transaction identification code based on

6

INVITE (3)

100 (4)

INVITE (5)

Alice P1
 Bob
(instance 1)

 Bob
(Instance 2)

INVITE (6)

100 (7)

100 (8)

180 (9)

180 (10)

180 (11)

180 (12)

200 (13)

200 (14)

CANCEL (15)

487 (16)

ACK (17)

200 (18)

Alice IP:port - 198.51.100.1:5060
P1 IP:port - 203.0.113.200:5060
Bob’s instance 1 IP:port - 203.0.113.1:5060
Bob’s instance 2 IP:port - [2001:db8::9]:5060

Figure 2: Forking call flow in SIP

the request it received from Alice and has populated the
SIP CLF fieldServer-Txnwith it. P1 has not yet cre-
ated a client transaction identification code, thus the field
Client-Txncontains a- (horizontal dash.)

In lines 5 and 6, P1 creates two client transactions cor-
responding to the two forked branches. Upon the cre-
ation of these transactions, a client transaction identifica-
tion code is inserted into the SIP CLF log file.

The SIP CLF log file in Figure 3 makes it easy to
search for a specific transaction or a state of the session.
On a Linux system, a command of"grep c-1-tr" on
the logs in the archive will readily yield the information
that anINVITE was sent tosip:bob@bob1.example.com,
it elicited a100followed by a180and then a200.

A command of "grep c-2-tr" yields a more
complex scenario of sending an INVITE to
sip:bob@bob2.example.net, receiving 100 and 180.
However, the log makes it apparent that the request
to sip:bob@bob2.example.netwas subsequentlyCAN-
CEL’ed before a final response was generated, and
that the pendingINVITE returned a487. The ACK to
the final non-2xx response and a200 to the CANCEL
request complete the exchange on that branch.

8 Conclusions and future work

We have presented a canonical SIP CLF that is uniquely
suited to how SIP operates at the protocol level. The

SIP CLF represents the minimum fields that lend them-
selves to trend analysis and serve as information that al-
lows system administrators to post-process the records to
trace requests, create call trees, or correlate transactions
and dialogs.

We have been instrumental in the formation of work-
ing group related to SIP CLF in the Internet Engineer-
ing Task Force (IETF). This working group, called SIP-
CLF, will standardize the SIP CLF log format. We con-
tinue to work in the SIPCLF working group to standard-
ize a canonical format that can be used by all vendors.
We are also in the process of implementing SIP CLF
in two of the most widely used open source SIP stacks:
Asterisk (http://www.asterisk.org) and the Kamailio SIP
Server (http://www.kamailio.org/w). Both of these SIP
servers are used by universities and private and public
enterprises; a common SIP CLF will allow all the bene-
fits of the SIP CLF format to the system administrators
of these SIP servers.

Acknowledgments

We thank the members of the IETF SIPCLF working
group, where this work is being standardized for release
as a Request for Comment (RFC) document. Aalok
Singhvi, Gnaneshwar Gatla, Srilakshmi Sheelavati Ka-
malanath and Shyam Gajjar at Illinois Institute of Tech-
nology (IIT) are implementing SIP CLF in open source
SIP servers at the IIT VoIP lab

References

[1] GURBANI , V. K., JAGADEESAN, L., AND MENDIRATTA , V. B.
Characterizing session initiation protocol (SIP) networkperfor-
mance and reliability. InISAS(2005), pp. 196–211.

[2] H ILT, V., AND WIDJAJA, I. Controlling overload in networks of
sip servers. InIEEE International Conference on Network Proto-
cols (October 2008).

[3] L AURIE, B., AND LAURIE, P. Apache: The Definitive Guide,
third ed. 2002.

[4] NOEL, E., AND JOHNSON, C. Initial simulation results that an-
alyze sip based voip networks under overload. InInternational
Teletraffic Congress(June 2007).

[5] RIECK, K., WAHL , S., LASKOV, P., DOMSCHITZ, P., AND

M ÜLLER, K.-R. A self-learning system for detection of anoma-
lous sip messages.Principles, Systems and Applications of IP
Telecommunications. Services and Security for Next Generation
Networks: Second International Conference, IPTComm 2008,
Heidelberg, Germany, July 1-2, 2008. Revised Selected Papers
(2008), 90–106.

[6] ROSENBERG, J., SCHULZRINNE, H., CAMARILLO , G., JOHN-
STON, A., PETERSON, J., SPARKS, R., HANDLEY, M., AND

SCHOOLER, E. SIP: Session Initiation Protocol. RFC 3261 (Pro-
posed Standard), June 2002.

[7] SHEN, C., SCHULZRINNE, H., AND NAHUM , E. Session initia-
tion protocol (SIP) server overload control: Design and evaluation.
Springer-Verlag, pp. 149–173.

7

1: 172 1275930743.699 R s REGISTER-1 sip:example.com 198.51.100.10:5060:udp 198.51.100.1:5060:udp
sip:example.com sip:alice@example.com;tag=76yhh f81-d4-f6@example.com - - c-tr-1

2: 173 1275930744.100 r r REGISTER-1 - 198.51.100.1:5060:udp 198.51.100.10:5060:udp
sip:example.com;tag=reg-1xtr sip:alice@example.com;tag=76yhh f81-d4-f6@example.com 200 - c-tr-1

3: 175 1275930743.699 R r INVITE-43 sip:bob@example.net 203.0.113.200:5060:udp
198.51.100.1:5060:udp sip:bob@example.net sip:alice@example.com;tag=a1-1 tr-88h@example.com - s-1-tr -
Subject,13,"Call me ASAP!"

4: 159 1275930744.001 r s INVITE-43 - 198.51.100.1:5060:udp 203.0.113.200:5060:udp sip:bob@example.net
sip:alice@example.com;tag=a1-1 tr-88h@example.com 100 s-1-tr -

5: 184 1275930744.998 R s INVITE-43 sip:bob@bob1.example.net 203.0.113.1:5060:udp 203.0.113.200:5060:udp
sip:bob@example.net sip:alice@example.com;tag=a1-1 tr-88h@example.com - s-1-tr c-1-tr

6: 186 1275930745.500 R s INVITE-43 sip:bob@bob2.example.net [2001:db8::9]:5060:udp 203.0.113.200:5060:udp
sip:bob@example.net sip:alice@example.com;tag=a1-1 tr-88h@example.com - s-1-tr c-2-tr

7: 172 1275930745.800 r r INVITE-43 - 203.0.113.200:5060:udp 203.0.113.1:5060:udp sip:bob@example.net;tag=b1-1
sip:alice@example.com;tag=a1-1 tr-88h@example.com 100 s-1-tr c-1-tr

8: 174 1275930746.100 r r INVITE-43 - 203.0.113.200:5060:udp [2001:db8::9]:5060:udp sip:bob@example.net;tag=b2-2
sip:alice@example.com;tag=a1-1 tr-88h@example.com 100 s-1-tr c-2-tr

9: 174 1275930746.700 r r INVITE-43 - 203.0.113.200:5060:udp [2001:db8::9]:5060:udp sip:bob@example.net;tag=b2-2
sip:alice@example.com;tag=a1-1 tr-88h@example.com 180 s-1-tr c-2-tr

10: 170 1275930746.990 r s INVITE-43 - 198.51.100.1:5060:udp 203.0.113.200:5060:udp sip:bob@example.net;b2-2
sip:alice@example.com;tag=a1-1 tr-88h@example.com 180 s-1-tr c-2-tr

11: 170 1275930747.100 r r INVITE-43 203.0.113.200:5060:udp 203.0.113.1:5060:udp sip:bob@example.net;tag=b1-1
sip:alice@example.com;tag=a1-1 tr-88h@example.com 180 s-1-tr c-1-tr

12: 173 1275930747.300 r s INVITE-43 - 198.51.100.1:5060:udp 203.0.113.200:5060:udp sip:bob@example.net;tag=b1-1
sip:alice@example.com;tag=a1-1 tr-88h@example.com 180 s-1-tr c-1-tr

13: 172 1275930747.800 r r INVITE-43 - 203.0.113.200:5060:udp 203.0.113.1:5060:udp sip:bob@example.net;tag=b1-1
sip:alice@example.com;tag=a1-1 tr-88h@example.com 200 s-1-tr c-1-tr

14: 173 1275930748.000 r s INVITE-43 - 198.51.100.1:5060:udp 203.0.113.200:5060:udp sip:bob@example.net;tag=b1-1
sip:alice@example.com;tag=a1-1 tr-88h@example.com 200 s-1-tr c-1-tr

15: 191 1275930748.201 R s CANCEL-43 sip:bob@bob2.example.net [2001:db8::9]:5060:udp 203.0.113.200:5060:udp
sip:bob@example.net;b2-2 sip:alice@example.com;tag=a1-1 tr-88h@example.com - s-1-tr c-2-tr

16: 170 1275930748.991 r r INVITE-43 - 203.0.113.200:5060:udp [2001:db8::9]:5060:udp sip:bob@example.net;b2-2
sip:alice@example.com;tag=a1-1 tr-88h@example.com 487 s-1-tr c-2-tr

17: 188 1275930749.455 R s ACK-43 sip:bob@bob2.example.net [2001:db8::9]:5060:udp 203.0.113.200:5060:udp
sip:bob@example.net;b2-2 sip:alice@example.com;tag=a1-1 tr-88h@example.com - s-1-tr c-2-tr

18: 170 1275930750.001 r r CANCEL-43 - 203.0.113.200:5060:udp [2001:db8::9]:5060:udp sip:bob@example.net;b2-2
sip:alice@example.com;tag=a1-1 tr-88h@example.com 200 s-1-tr c-2-tr

Figure 3: SIP CLF record examples

8

