Automated Software Reliability Services
Using Reliability Tools Should Be As Easy As Webmail

George Candea, Stefan Bucur, Vitaly Chipounov, Vova Kuznetsov, Cristian Zamfir

School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Software quality assurance (QA) is boring, resource-
hungry, labor-intensive, takes a long time, and is prone to
human omission and error. While research has offered a
wealth of new techniques, few made satisfactory progress
in all these directions, so industry still relies on relatively
primitive techniques for software testing and debugging.
Little has changed in QA practice over the last 20 years.

Studies have found bug density in production-ready
software to be staying constant over time, while average
code volume of software is increasing exponentially, with
the net effect that the number of bugs per product is in-
creasing. It is therefore necessary to quickly find a “dis-
ruptive technology” to reduce bug density by at least 10x.

We see two key challenges: First, few of today’s tools
can thoroughly handle real-sized software (i.e., 1 million
lines of code or more), mainly due to high CPU and mem-
ory requirements. Second, there is little incentive to pro-
duce bug-free software, given the exorbitant cost of doing
so—in the words of an software architect at a major soft-
ware firm, “as long as we don’t end up on the front page
of the New York Times, our software is reliable enough.”
Software providers compete on functionality and perfor-
mance, but don’t care much about reliability.

To reduce bug density by an order of magnitude, we
must (a) lower the cost of good QA, and (b) provide the
market with mechanisms that encourage and reward re-
liable software. Our research agenda therefore aims to
build (a) techniques that leverage massive clusters of com-
modity hardware to make automated testing and debug-
ging fast and cheap for real-sized software, and (b) ser-
vice models that enable consumers to assess and demand
software quality, as well as enable developers to deliver it.

Our vision is AutoSRS—reliability-enhancing tools as
simple cloud services. AutoSRS is to the status quo in
software QA what web-based email is to installing, con-
figuring, and managing one’s own sendmail server. We
want reliability services to make developing dependable
software as easy as using Webmail to communicate. Au-
toSRS automatically tests/debugs/validates/certifies soft-

ware, without human involvement from the service user’s
or provider’s side.! AutoSRS combines the concept of re-
liability tools as a competitive, simple web service, with
doing automated testing and debugging in the cloud, thus
harnessing vast, elastic resources toward making such au-
tomation practical for real software. AutoSRS consists of:

1. Programmer’s sidekick that continuously and thor-
oughly tests code as it is written, with no upfront in-
vestment from the developer;

2. Debugging service that turns bug reports into 100%
deterministically replayable bug scenarios;

3. Home edition on-demand testing service for con-
sumers to verify the software they are about to install
on their PC, phone, TiVo, camera, etc.

4. Certification service, akin to Underwriters Labs, that
independently (and automatically) assesses the relia-
bility, safety, and security of software.

Automated software testing/debugging/validation/cer-
tification, available to anyone and everyone at low cost,
could transform the current software business model in
which users must have blind faith in developers, and de-
velopers must invest more than half their time in QA.

Programmer’s sidekick: Software testing essentially
consists of exercising as many paths through a program as
possible, and checking that certain properties hold along
those paths (no crashes, no buffer overflows, etc.). In its
simplest form, the programmer’s sidekick service oper-
ates “in a loop” that pulls the latest code from the de-
velopers’ repository, exercises the various paths through
the code, and checks them against a collection of test
predicates. Continuous testing integrated into the devel-
opment environment allows developers to provide higher
level specifications of what should be tested: instead of
imperative test suites, they write test predicates, which
takes considerably less human time. This reduces the de-
veloper’s burden and allows checking deeper properties
faster, by using the resources of the cloud.

"Note that this is substantially different from today’s “testing as a
service” businesses, which employ low paid humans to write tests.



Predicates over program state or control flow character-
ize undesired behaviors, potentially using abstract, sym-
bolic program state to specify computation properties;
e.g., “if ever factorial(L) # A x factorial(A — 1), that is
a bug.” A testing service smartly exercises as many ex-
ecution paths through a program as possible and checks
whether any paths trigger these test predicates. Test pred-
icates fall into two categories: First, universal predi-
cates are broadly accepted as describing bugs (null pointer
dereferencing, deadlocks, race conditions, memory safety
errors, etc.). Second, application-specific predicates cap-
ture semantics that are particular to the tested program
(e.g., numConnections > maxPoolSize 4 delta). The goal
is to integrate predicate upload and testing into develop-
ers’ IDEs, and make such continuous testing be as indis-
pensable as automatic spell-checking in word processors.

We are building a system, called Cloud9, which aims
to scale symbolic execution—a popular test automation
technique—to large clusters. Doing automated testing in
a cloud instead of on individual developers’ machines in-
creases the available compute power by orders of magni-
tude, thus alleviating the memory and CPU bottlenecks.

Debugging service: Debugging real systems is hard,
requires deep knowledge of the code, and is time-
consuming. Developers turn into detectives searching for
an explanation of how the program could have arrived
at the reported failure point. We developed a technique,
called execution synthesis, for automating this detective
work: given a program and a bug report, it automatically
produces an execution of the program that leads to the
reported bug symptoms; it can be played back determinis-
tically in a regular debugger, like gdb. The challenge now
is to use large clusters to debug real bugs in seconds.

Testing @ home: We also wish to empower consumers
to be in control of the quality of the software they use.
Consider the following scenario: Mrs. X, a grandmother
who lives by herself, relies on her mobile phone to no-
tify her children whenever she experiences the symptoms
that precede her seizures. Her mobile phone operating
system recently notified her that it needs to be upgraded,
to improve the speech recognition component. Mrs. X
uses a testing website for end users to check the software
upgrade; within minutes, the service produces a webpage
with the results of the test, indicating whether it found any
serious bugs. Mrs. X allows the phone to update itself
only if the test report says no serious bugs were found.

This scenario is not far-fetched: we have built a stan-
dalone tool, called DDT, for testing closed-source bi-
nary device drivers. In preliminary experiments, DDT
tested six mature Windows-certified closed-source binary
drivers for less than 5 minutes each and found 14 different

serious bugs. We now need to parallelize DDT on clusters.

Certification service: A public certification service
provides an objective assessment of a software prod-
uct’s quality. It analyzes software (either in binary or
source code form) and, for each defect found, publishes
irrefutable evidence of the defect. Based on the defect
density, the service rates each product. Consumers use
the ratings to make their purchasing decisions, thus moti-
vating software vendors to compete (also) on reliability.

Feasibility of AutoSRS: AutoSRS providers benefit
from economies of scale, as users are likely to test com-
mon bodies of code (e.g, many programs use the same
libraries). The AutoSRS provider can exploit this redun-
dancy by not re-testing already-tested code, thus amortiz-
ing the cost of the first test run. More users means more
exploitable redundancy.

On the path to AutoSRS, there are both technical and
non-technical challenges. We must find ways to scale au-
tomatic testing to thousands of loosely-coupled machines.
We need incremental testing techniques that reuse exist-
ing test results and compose them with tests focused on
new or modified code. We need metrics for quantifying
the level of confidence we get from a test suite, which go
beyond mere line coverage. We need to aggressively par-
allelize constraint solvers, a key component of automated
test engines. We hope the vision presented here will moti-
vate researchers to design their techniques such that they
can be plugged into such cluster-based reliability services.

An open AutoSRS framework can provide a plat-
form for research on reliability techniques, enabling rapid
transfer of research results into practice. Community ef-
forts can produce databases of smart test predicates, in
the spirit of Wikipedia and Knol. AutoSRS can run on
public clouds, like Amazon EC2, on private clouds in-
side organizations, or even on “cooperative” clouds. A
cooperative test cloud is a federation of user machines,
akin to SETI@home, in which end users dedicate spare
cycles to testing the software they are most interested in.
Unlike SETI@home searching for extraterrestrial intelli-
gence, cooperative cloud testing can yield results sooner
and be more gratifying to those who provide the cycles.
The key to enabling a cooperative test cloud is devising
symbolic execution algorithms that scale with potentially
an order of magnitude more users, higher churn and net-
work latency, as well as more limited network bandwidth.

In summary, a combination of technical and non-
technical forces could achieve order-of-magnitude reduc-
tion in bug density. Cloud-based automated testing tech-
niques, together with simple web-service interfaces, can
make high-end testing and debugging accessible to all de-
velopers and consumers at low cost, or even for free.



