
© 2009 VMware Inc. All rights reserved

mClock: Handling Throughput Variability for

Hypervisor IO Scheduling

USENIX / ACM OSDI

October 6, 2010

Ajay Gulati, VMware Inc.

Arif Merchant, Google Inc. (work done while at HP Labs)

Peter J. Varman, Rice University

2

Resource Management—State of the Art

 Hypervisor multiplexes hardware resources between VMs

Three Controls

 Reservation: minimum guarantee

 Limits: maximum allowed

 Shares: proportional allocation

 Supported for CPU, Memory in ESX
since 2003

How about IO resource

allocation?

3

Variable IOPS Capacity Seen by VMs

 Contention for I/O resources can arbitrarily lower a VM’s allocation

14%

18%

10%

42%

VM 5
Active

+VM1
Active

+VMs 2 & 3
Active

+VM4
Active

VM1
Inactive

VMs 2
&3

Inactive

VM4
Inactive

Each VM is running DVDStore on MS SQL Server

4

Why is Storage IO Allocation Hard?

 Storage workload

characteristics are variable

 Available throughput

changes with time

 Must adjust allocation

dynamically

 Distributed shared access

Limit

Reservation

0

100

200

300

400

500

600

700

800

900

1000

1100

0 100 200 300

0

100

200

300

400

500

600

700

800

900

1000

1100

0 100 200 300

0

100

200

300

400

500

600

700

800

900

1000

1100

0 100 200 300

Time (s)

T
h

ro
u

g
h

p
u

t

P
ro

p
o

rt
io

n
a

l

A
ll

o
c

a
ti

o
n

5

Outline

 Problem Description & Motivation

 Related Work

 mClock Algorithm

 Experimental Results

 Conclusions & Future Work

6

Shoulders of Giants

A lot of fair-queuing, reservation control work precedes us

 Proportional Share Algorithms

WFQ, virtual-clock, SFQ, Self-clocked, WF2Q, SFQ(D), DRR, Argon, Aqua,

Stonehenge

 Algorithms with support for latency-sensitive applications

BVT, SMART, Lottery scheduling

 Reservation-based Algorithms

Rialto, CPU & Memory management in ESX, Hierarchical CPU scheduling

 Novel features of mClock

Supports all controls in a single algorithm

Handles variable & unknown capacity

Easy to implement

7

Outline

 Problem Description & Motivation

 Related Work

 mClock Algorithm

 Experimental Results

 Conclusions & Future Work

8

Typical Proportional-Share Scheduling

 Each application has a weight wi

 Each request is assigned a tag

 Tags are spaced 1/ wi apart  service allocated in proportion to wi

 Example: 3 VMs A, B, C with weights 1/2, 1/3, 1/6

 How to synchronize idle applications?

 Global virtual time (gvt) : gets updated on every request completion

),/1(1 gvtwsMaxs i
rr

gvt = minimum start tag in the system

B

A

C

2

3

6

4

3

6

4

6

6

6

6

6

8

6

6

8

9

6

8

9

12

10

9

12

10

12

12
time

9

mClock Algorithm

Three key ideas:

Real-time tags

• Needed for tracking reservations & limits

• Virtual time loses track of actual allocation vs. time

Separate tags for reservation, shares & limit

Dynamic tag selection and synchronization

• Need to decide which tag to use

• Need to synchronize tags after idleness

10

mClock Algorithm: Multiple Tags

Three real-time tags

• Reservation tag : R Reservation = ri

• Shares tag : P Shares = wi

• Limit tag : L Limit = li

),/1(1 ecurrentTimrRMaxR i
rr

),/1(1 ecurrentTimlLMaxL i
rr

),/1(1 ecurrentTimwPMaxP i
rr

11

mClock Algorithm: Tag selection

Two phases of Scheduling:

if (smallest reservation tag < current time) // constraint-based

Schedule smallest eligible reservation tag

else // weight-based, reservations are met

Schedule smallest eligible shares tag

Subtract 1/rk from reservation tags of VM k.

A VM is eligible if (limit tag < current time)

Synchronization on request arrival from VM vi:

if (vi was idle)

Make minimum P tag = current time

Shift all P tags accordingly to maintain the relative ordering

12

mClock: Storage-specific Issues

 Burst Handling

• Allow VMs to gain idle-credit by pushing back P tags by

• Key property: reservations are not impacted

 IO size

• IO cost increases sub-linearly with request size

• Scale the number of requests based on size

 Request Location

• mClock schedules a bounded batch from a VM if addresses
within 2 - 4 MB

)/,/1(1
ii

rr wtwPMaxP

13

dmClock: Clustered Storage Architectures

 A LUN is striped across local storage devices

 Host forwards VMs traffic, with certain tags

 dmClock enforces R, L, S controls (details in paper)

LAN

14

Outline

 Problem Description & Motivation

 Related Work

 mClock Algorithm

 Experimental Results

 Conclusions & Future Work

15

Experimental Setup

 Dell PowerEdge 2950 server running VMware ESX hypervisor

• 3 to 6 virtual machines (VMs) – mix of Windows, Linux OSes

• Data stores on EMC CLARiiON storage array – 10 disk Raid 0, Raid 5 groups

 Workloads

• Iometer configurations and a Linux based micro-benchmark

• Filebench: OLTP

mClock

ESX host
VMFS Datastore over SAN

Virtual-disks
virtual machines

16

mClock: Reservation & Limits Enforcement

 4 VMs, Shares in ratio 2:2:1:1

 VM2 has a limit of 700 IOPS, VM4 has reservation of 250 IOPS

 VMs are started every 60 sec

SFQ(D) mClock

Enforces reservations, Limits

17

mClock: Burst Handling

 Recall idle VM gets benefit when next there is spare capacity

 2 VMs

 Results with idle credit of 1 and 64

VM R, L,S Workload

VM1 0,Unlimited, 1 Bursty:128 IOs every 400ms, 80% random

VM2 0, Unlimited, 1 16 KB reads, 20% random,32 OIOs

= 1 = 64

VM IOPS Latency IOPS Latency

VM1 312 49 ms 316 30.8 ms

VM2 2420 13.2 ms 2460 12.9 ms

18

mClock: Filebench workloads

 VM1, VM2 running Filebench OLTP workload

 Windows VM3 running Iometer started at t = 115 sec

SFQ(D),

OLTP2 misses reservation

mClock,

Reservations are met

19

dmClock Result

 3 Servers, 3 Clients (VMs) with shares in ratio 1:4:6

 Clients accessing servers in a uniform manner

 No Reservations to reservations of [800,1000,100]

Shares are

respected

Reservations are

enforced along

with shares

20

Outline

 Problem Description & Motivation

 Related Work

 mClock Algorithm

 Experimental Results

 Conclusions & Future Work

21

Conclusions and Future Work

 Storage IO allocation is hard

 mClock contributions

• Supports reservation, limit and shares in one place

• Handles variable IO performance seen by hypervisor

• Can be used for other resources such as CPU, memory & Network IO

allocation as well

 Future work

• Better estimation of reservation capacity in terms of IOPS

• Add priority control along with RLS

• Mechanisms to set R, L,S and other controls to meet application-level goals

Can we abstract out such controls into application’s SLAs –

i.e. An upper bound on latency, lower bound on IOPS

22

Backup Slides

23

mClock: Reservation & Limits Enforcement

 4 VMs, Shares in ratio 2:2:1:1

 VM2 has a limit of 700 IOPS, VM4 has reservation of 250 IOPS

 VMs are started every 60 sec

 VM workloads:

24

mClock: Filebench Application Performance

0

200

400

600

800

1000

1200

VM1 (lat) VM2 (lat) VM1 (Ops/s) VM2 (Ops/s)

Without-mClock

With-mClock

 VM1, VM2 running Filebench OLTP workload

 Windows VM3 running Iometer started at t=115s

With mClock VM2’s latency is lower; application Ops/s are higher

Application

Ops/s or

ms/Op

25

mClock: Limit Enforcement

VM Shares Limit Workload

VDI 200 Unlimited Bursty (128 IOs/s)

OLTP 200 Unlimited 8 KB, random, 75% reads, 16 OIOs

DM 100 300 (at t=140) 32 KB, seq reads, 32 OIOs

Throughput Latency

26

mClock: Reservation Enforcement

 5 VMs, Shares in ratio 1:1:2:2:2

 VM1 and VM2 have reservation of 250 and 300 IOPS

 VMs are started every 60 sec

SFQ(D) mClock

Meets reservations

27

Scheduling Goals

 Support - Reservation, Limit (in IOPS), Shares (no units)

 An example:

VM Reservation Shares Limit

A 250 100 Unlimited

B 250 200 Unlimited

C 0 300 1000

0

200

400

600

800

1000

1200

1400

500 700 875 1,500 2,000 2,500 3,000

T
h
ro

u
g
h
p
u
t
A

llo
c
a
ti
o
n

Total Throughput T (IOPS)

RD OLTP DM

