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Resource Management—State of the Art

 Hypervisor multiplexes hardware resources between VMs

Three Controls

 Reservation: minimum guarantee

 Limits: maximum allowed

 Shares: proportional allocation

 Supported for CPU, Memory in ESX 
since 2003 

How about IO resource 

allocation?
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Variable IOPS Capacity Seen by VMs

 Contention for I/O resources can arbitrarily lower a VM’s allocation
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Why is Storage IO Allocation Hard?

 Storage workload 

characteristics are variable

 Available throughput 

changes with time

 Must adjust allocation 

dynamically

 Distributed shared access
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Outline

 Problem Description & Motivation

 Related Work

 mClock Algorithm

 Experimental Results

 Conclusions & Future Work
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Shoulders of Giants

A lot of fair-queuing, reservation control work precedes us

 Proportional Share Algorithms

WFQ, virtual-clock, SFQ, Self-clocked, WF2Q, SFQ(D), DRR, Argon, Aqua, 

Stonehenge

 Algorithms with support for latency-sensitive applications

BVT, SMART, Lottery scheduling

 Reservation-based Algorithms 

Rialto, CPU & Memory management in ESX, Hierarchical CPU scheduling

 Novel features of mClock

Supports all controls in a single algorithm

Handles variable & unknown capacity

Easy to implement
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Outline

 Problem Description & Motivation

 Related Work

 mClock Algorithm

 Experimental Results

 Conclusions & Future Work
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Typical Proportional-Share Scheduling

 Each application has a weight wi

 Each request is assigned a tag

 Tags are spaced 1/ wi apart   service allocated in proportion to wi

 Example: 3 VMs A, B, C with weights 1/2, 1/3, 1/6

 How to synchronize idle applications?

 Global virtual time (gvt) : gets updated on every request completion
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mClock Algorithm

Three key ideas:

Real-time tags 

• Needed for tracking reservations & limits

• Virtual time loses track of actual allocation vs. time

Separate tags for reservation, shares & limit

Dynamic tag selection and synchronization

• Need to decide which tag to use

• Need to synchronize tags after idleness
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mClock Algorithm: Multiple Tags

Three real-time tags

• Reservation tag : R Reservation = ri

• Shares tag : P Shares = wi

• Limit tag : L Limit = li
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rr

),/1( 1 ecurrentTimlLMaxL i
rr

),/1( 1 ecurrentTimwPMaxP i
rr



11

mClock Algorithm: Tag selection

Two phases of Scheduling:

if ( smallest reservation tag < current time)        // constraint-based

Schedule smallest eligible reservation tag

else                                                 // weight-based, reservations are met

Schedule smallest eligible shares tag

Subtract 1/rk from reservation tags of VM k.

A VM is eligible if (limit tag < current time)

Synchronization on request arrival from VM vi:

if ( vi was idle)

Make minimum P tag = current time

Shift all P tags accordingly to maintain the relative ordering
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mClock: Storage-specific Issues

 Burst Handling

• Allow VMs to gain idle-credit by pushing back P tags by 

• Key property: reservations are not impacted

 IO size

• IO cost increases sub-linearly with request size 

• Scale the number of requests based on size

 Request Location

• mClock schedules a bounded batch from a VM if addresses
within 2 - 4 MB
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rr wtwPMaxP
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dmClock: Clustered Storage Architectures

 A LUN is striped across local storage devices

 Host forwards VMs traffic, with certain tags

 dmClock enforces R, L, S controls (details in paper)

LAN
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Outline

 Problem Description & Motivation

 Related Work

 mClock Algorithm

 Experimental Results

 Conclusions & Future Work
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Experimental Setup

 Dell PowerEdge 2950 server running VMware ESX hypervisor

• 3 to 6 virtual machines (VMs) – mix of Windows, Linux OSes

• Data stores on EMC CLARiiON storage array – 10 disk Raid 0, Raid 5 groups

 Workloads

• Iometer configurations and a Linux based micro-benchmark

• Filebench: OLTP

mClock

ESX host
VMFS Datastore over SAN

Virtual-disks
virtual machines
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mClock: Reservation & Limits Enforcement

 4 VMs, Shares in ratio 2:2:1:1

 VM2 has a limit of 700 IOPS, VM4 has reservation of 250 IOPS

 VMs are started every 60 sec

SFQ(D) mClock

Enforces reservations, Limits
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mClock: Burst Handling

 Recall idle VM gets benefit when next there is spare capacity 

 2 VMs

 Results with idle credit of 1 and 64

VM R, L,S Workload

VM1 0,Unlimited, 1 Bursty:128 IOs every 400ms, 80% random

VM2 0, Unlimited, 1 16 KB reads, 20% random,32 OIOs

= 1 = 64

VM IOPS Latency IOPS Latency

VM1 312 49 ms 316 30.8 ms 

VM2 2420 13.2 ms 2460 12.9 ms
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mClock: Filebench workloads

 VM1, VM2 running Filebench OLTP workload

 Windows VM3 running Iometer started at t = 115 sec

SFQ(D),

OLTP2 misses reservation

mClock,

Reservations are met
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dmClock Result

 3 Servers, 3 Clients (VMs) with shares in ratio 1:4:6

 Clients accessing servers in a uniform manner

 No Reservations to  reservations of [800,1000,100]

Shares are 

respected

Reservations are 

enforced along 

with shares
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Outline

 Problem Description & Motivation

 Related Work

 mClock Algorithm

 Experimental Results

 Conclusions & Future Work
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Conclusions and Future Work

 Storage IO allocation is hard

 mClock contributions

• Supports reservation, limit and shares in one place

• Handles variable IO performance seen by hypervisor

• Can be used for other resources such as CPU, memory & Network IO 

allocation as well

 Future work

• Better estimation of reservation capacity in terms of IOPS

• Add priority control along with RLS

• Mechanisms to set R, L,S and other controls to meet application-level goals

Can we abstract out such controls into application’s SLAs –

i.e. An upper bound on latency, lower bound on IOPS
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Backup Slides
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mClock: Reservation & Limits Enforcement

 4 VMs, Shares in ratio 2:2:1:1

 VM2 has a limit of 700 IOPS, VM4 has reservation of 250 IOPS

 VMs are started every 60 sec

 VM workloads:
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mClock: Filebench Application Performance
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mClock: Limit Enforcement

VM Shares Limit Workload

VDI 200 Unlimited Bursty (128 IOs/s)

OLTP 200 Unlimited 8 KB, random, 75% reads, 16 OIOs

DM 100 300 (at t=140) 32 KB, seq reads, 32 OIOs

Throughput Latency 
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mClock: Reservation Enforcement

 5 VMs, Shares in ratio 1:1:2:2:2

 VM1 and VM2 have reservation of 250 and 300 IOPS

 VMs are started every 60 sec

SFQ(D) mClock

Meets reservations
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Scheduling Goals

 Support  - Reservation, Limit (in IOPS),     Shares (no units)

 An example:

VM Reservation Shares Limit

A 250 100 Unlimited

B 250 200 Unlimited

C 0 300 1000
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