Static Checking of Dynamically-Varying
Security Policies in Database-Backed
Applications

Adam Chlipala
OSDI 2010

Beyond Code Injection

L. Injection - Aapplisation ingides 8Bn-specific
? urgﬂ%%ﬁ%%ar&&%a REG&I B ntrol
2.Cross Site Scrlptmg interpreten

3.Broken Authentication and Session Mgmt.
4.Insecure Direct Object References ;
5.Cross Site Request Forgery
6.Security Misconfiguration

7.Insecure Cryptographic Storage

‘m

Authentication Snafus

National Cyber-Alert System

ulnerabil National Cyber-Alert System
Original re

ulnerabili National Cyber-Alert System

Last revist & e
o L/ In e rability Summary for CVE-2009-4929
Source: U' o<t revise

Original release date: 07/12/2010
Overvi 2°Y"® U= Last revised: 07/16/2010
source: US-CERT/NIST

WE News 2 Qvervie
authenticati

maodified Wl siteadmin/ac Overview
setting this FageDirectc
which allows admin/manage _users . php in TotalCalendar 2.4 does
restrictions : not require administrative authentication, which allows
request. remote attackers to change arbitrary passwords via 3
the newPW1 and newPWZ parameters.
ey e

Roads to Security

Attack vector #1

a Attack vector #2
i d

Audit

~ Surprise attack

2

Information flow:

@ who can learn what
2 % Access control:
who can change what

Dynamic Checking

3 Output to Use

Sensitive
Datum

/

Store security information with values | | Check before interaction with environment.

- Pros

*Easy to add to existing programs

Flexibility in coding security checks

Cons

*Bugs are only found for program paths that are tested.
*Performance overhead

Sensitive Stati 1€ Ckin 4

< -—’ Output to Use
Database — =

Subtyping check

Pros

*Checks all program paths at compile time

*No changes to run-time behavior required
Cons

eUsually requires extensive program annotation
Limited policy expressiveness

The Best of Both Worlds

Like Dynamic Checking: The Like Security Typing:
*NO program annotations *Checks all program paths
required UrF I O_VV statically

-Flexible and analysis <No run-time overhead

programmer-accessible
policy language (SQL) /,.H? 5

for the
Ur/Web
programming
language

S A Word About Ur/Web

Integrated parsing and
queryX ((SELECT * FROM t)) type-checking of SQL
> and HTML

(fn row ==

<td>{[row.T.A]}</to
<td>{[row.T.B] }</tac
<td>{[row. “.C:}</tc
<td>{[row.T.D] }</to
<td><form><submit

VV VYV

action={delete row.T.A}

value="Delete"/>
</form></td>
</tr></xml>):

Simple Policies
Secrets

Id Name Secret

Client may learn
anything this query
could return.

(:%:>policy sendClient
i (SELECT Id, Name
FROM Secrets)

9

‘-—_—_IJ .

Reasoning About Knowledge

Secrets

Id Name Secret Code

policy sendClient
(SELECT *
FROM Secrets

WHERE Iknown (Code))

_—_J

10

1-~-_|—_—_|J'_

What is “known”?

App source Web page that generated this request Cookies
New Secret
uf ” AUTH
°° Name: | n |
Q value: | Y | (Username, Password)
=, P
| Submit Query | / ()
known: “foo” 42 n v (U, P)

cedm ol (6]

A

(42, v), P)

11

Multi-Table Policies

Secrets Users
Id Name Secret Owne/r\\d Name Password

policy sendClient
(SELECT Secret
FROM Secrets, Users
WHERE Owner = Users.Id

AND known (Password))
12

‘-_———_J

Understanding SQL Usage

Program Execution

(U;iP) = readCookie(AUIE);
pass = SELECT Password known (U, P)
FROM Users
WHERE Id = U;
if (pass != P) abort();

-
due Users. u.ld =U A u.Password =P

rows = SELECT Secret
FROM Secrets
WHERE Owner = U;
// Send rows to client....

T YV v. mightSend(v) = 3 s € Secrets.
Y s.Owner = U A v = s.Secret i

‘-—_—_IJ .

Understanding SQL Usage

policy sendClient
(SELECT Secret
FROM Secrets, Users
WHERE Owner = Users.Id
AND known (Password))

Y s € Secrets. V u € Users.
s.Owner = u.ld A known(u.Password)

= allowed(s.Secret) |
du e Users. u.ld =U A u.Password = P

A YV v. mightSend(v) = 3 s € Secrets.
s.Owner = U A v = s.Secret

14

UrFlow Sketch

[Program Code] [Policies (SQL)]

- ¢

~ Finite set of ~ Policies
execution paths (First-Order Logic)

| _ Symbolic
(\ executions Automated
Theorem-Prover

S

Fancier Policies
Messages ACL /NJsers

Forum Body Forum User Level Id Password

policy sendClient
(SELECT Body
FROM Messages, ACL, Users
WHERE ACL.Forum = Messages.Forum
AND ACL.User User.Id
AND known(Password)
AND Level >= 42)

——

Secrets

Write Policies

Id

Name

Secret

Users
Owg;im\\\ﬁd Name

Password

policy mayInsert
(SELECT *
FROM Secrets AS New,
WHERE New.Owner
AND known (Password)
AND known(New.Secret))

Users

Users.Id

17

——

Case Studies

Application Program Policies Check
(LoC) (LoC) (sec)

Secret 138 24 0.02
Poll 196 50 0.035
User DB 84 8 -
Calendar 255 46 0.28
Forum 412 134 17.68
Gradebook 342 61 1.49

18

Progress

Imperative programs are too
hard to analyze!
Just use declarative
languages, and your life will be
SO0 much easier.

Maybe later. I'm going to get back to
coding my web application, which
does almost nothing besides SQL

gueries.

Programming
Languages
Researchers

UrFlow %

N

—
| -
L]

Practitioners

App

Database
19

Ur/Web Available At:

http://www.impredicative.com/ur/

Including online demos with syntax-highlighted source code

20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

