
FlexSC: Flexible System Call Scheduling with Exception-Less System Calls

Livio Soares
University of Toronto

Michael Stumm
University of Toronto

Abstract
For the past 30+ years, system calls have been the de facto
interface used by applications to request services from the
operating system kernel. System calls have almost uni-
versally been implemented as a synchronous mechanism,
where a special processor instruction is used to yield user-
space execution to the kernel. In the first part of this
paper, we evaluate the performance impact of traditional
synchronous system calls on system intensive workloads.
We show that synchronous system calls negatively affect
performance in a significant way, primarily because of
pipeline flushing and pollution of key processor structures
(e.g., TLB, data and instruction caches, etc.).

We propose a new mechanism for applications to
request services from the operating system kernel:
exception-less system calls. They improve processor effi-
ciency by enabling flexibility in the scheduling of operat-
ing system work, which in turn can lead to significantly in-
creased temporal and spacial locality of execution in both
user and kernel space, thus reducing pollution effects on
processor structures. Exception-less system calls are par-
ticularly effective on multicore processors. They primar-
ily target highly threaded server applications, such as Web
servers and database servers.

We present FlexSC, an implementation of exception-
less system calls in the Linux kernel, and an accompany-
ing user-mode thread package (FlexSC-Threads), binary
compatible with POSIX threads, that translates legacy
synchronous system calls into exception-less ones trans-
parently to applications. We show how FlexSC improves
performance of Apache by up to 116%, MySQL by up to
40%, and BIND by up to 105% while requiring no modi-
fications to the applications.

1 Introduction

System calls are the de facto interface to the operating sys-
tem kernel. They are used to request services offered by,
and implemented in the operating system kernel. While

0 2000 4000 6000 8000 10000 12000 14000 16000
0.3

0.5

0.7

0.9

1.1

1.3

1.5
Syscall impact on user-mode IPC

Time (in cycles)
U

s
e

r-
m

o
d

e
 IP

C
(h

ig
h

e
r 

is
 f

a
s

te
r)

Syscall exception

Lost performance (cycles)

Figure 1: User-mode instructions per cycles (IPC) of Xalan
(from SPEC CPU 2006) in response to a system call exception
event, as measured on an Intel Core i7 processor.

different operating systems offer a variety of different ser-
vices, the basic underlying system call mechanism has
been common on all commercial multiprocessed operat-
ing systems for decades. System call invocation typically
involves writing arguments to appropriate registers and
then issuing a special machine instruction that raises a
synchronous exception, immediately yielding user-mode
execution to a kernel-mode exception handler. Two im-
portant properties of the traditional system call design are
that: (1) a processor exception is used to communicate
with the kernel, and (2) a synchronous execution model is
enforced, as the application expects the completion of the
system call before resuming user-mode execution. Both of
these effects result in performance inefficiencies on mod-
ern processors.

The increasing number of available transistors on a chip
(Moore’s Law) has, over the years, led to increasingly
sophisticated processor structures, such as superscalar
and out-of-order execution units, multi-level caches, and
branch predictors. These processor structures have, in
turn, led to a large increase in the performance poten-
tial of software, but at the same time there is a widening
gap between the performance of efficient software and the
performance of inefficient software, primarily due to the
increasing disparity of accessing different processor re-
sources (e.g., registers vs. caches vs. memory). Server
and system-intensive workloads, which are of particular



interest in our work, are known to perform well below the
potential processor throughput [11, 12, 19]. Most studies
attribute this inefficiency to the lack of locality. We claim
that part of this lack of locality, and resulting performance
degradation, stems from the current synchronous system
call interface.

Synchronous implementation of system calls negatively
impacts the performance of system intensive workloads,
both in terms of the direct costs of mode switching and,
more interestingly, in terms of the indirect pollution of
important processor structures which affects both user-
mode and kernel-mode performance. A motivating ex-
ample that quantifies the impact of system call pollution
on application performance can be seen in Figure 1. It
depicts the user-mode instructions per cycles (kernel cy-
cles and instructions are ignored) of one of the SPEC CPU
2006 benchmarks (Xalan) immediately before and after a
pwrite system call. There is a significant drop in in-
structions per cycle (IPC) due to the system call, and it
takes up to 14,000 cycles of execution before the IPC of
this application returns to its previous level. As we will
show, this performance degradation is mainly due to inter-
ference caused by the kernel on key processor structures.

To improve locality in the execution of system intensive
workloads, we propose a new operating system mecha-
nism: the exception-less system call. An exception-less
system call is a mechanism for requesting kernel services
that does not require the use of synchronous processor ex-
ceptions. In our implementation, system calls are issued
by writing kernel requests to a reserved syscall page, us-
ing normal memory store operations. The actual execu-
tion of system calls is performed asynchronously by spe-
cial in-kernel syscall threads, which post the results of
system calls to the syscall page after their completion.

Decoupling the system call execution from its invoca-
tion creates the possibility for flexible system call schedul-
ing, offering optimizations along two dimensions. The
first optimization allows for the deferred batch execution
of system calls resulting in increased temporal locality of
execution. The second provides the ability to execute sys-
tem calls on a separate core, in parallel to executing user-
mode threads, resulting in spatial, per core locality. In
both cases, system call threads become a simple, but pow-
erful abstraction.

One interesting feature of the proposed decoupled sys-
tem call model is the possibility of dynamic core special-
ization in multicore systems. Cores can become temporar-
ily specialized for either user-mode or kernel-mode execu-
tion, depending on the current system load. We describe
how the operating system kernel can dynamically adapt
core specialization to the demands of the workload.

One important challenge of our proposed system is how
to best use the exception-less system call interface. One
option is to rewrite applications to directly interface with

the exception-less system call mechanism. We believe the
lessons learned by the systems community with event-
driven servers indicate that directly using exception-less
system calls would be a daunting software engineer-
ing task. For this reason, we propose a new M -on-N
threading package (M user-mode threads executing on N
kernel-visible threads, with M >>N ). The main purpose
of this threading package is to harvest independent sys-
tem calls by switching threads, in user-mode, whenever a
thread invokes a system call.

This research makes the following contributions:

• We quantify, at fine granularity, the impact of syn-
chronous mode switches and system call execution on
the micro-architectural processor structures, as well as
on the overall performance of user-mode execution.

• We propose a new operating system mechanism, the
exception-less system call, and describe an implemen-
tation, FlexSC1, in the Linux kernel.

• We present a M -on-N threading system, compati-
ble with PThreads, that transparently uses the new
exception-less system call facility.

• We show how exception-less system calls coupled with
our M -on-N threading system improves performance
of important system-intensive highly threaded work-
loads: Apache by up to 116%, MySQL by to 40%, and
BIND by up to 105%.

2 The (Real) Costs of System Calls

In this section, we analyze the performance costs associ-
ated with a traditional, synchronous system call. We ana-
lyze these costs in terms of mode switch time, the system
call footprint, and the effect on user-mode and kernel-
mode IPC. We used the Linux operating system kernel
and an Intel Nehalem (Core i7) processor, along with its
performance counters to obtain our measurements. How-
ever, we believe the lessons learned are applicable to most
modern high-performance processors2 and other operat-
ing system kernels.

2.1 Mode Switch Cost
Traditionally, the performance cost attributed to system
calls is the mode switch time. The mode switch time con-
sists of the time necessary to execute the appropriate sys-
tem call instruction in user-mode, resuming execution in
an elevated protection domain (kernel-mode), and the re-
turn of control back to user-mode. Modern processors im-
plement the mode switch as a processor exception: flush-
ing the user-mode pipeline, saving a few registers onto the

1Pronounced as “flex” (/’fleks/).
2Experiments performed on an older PowerPC 970 processor yielded

similar insights than the ones presented here.



Syscall Instructions Cycles IPC i-cache d-cache L2 L3 d-TLB
stat 4972 13585 0.37 32 186 660 2559 21
pread 3739 12300 0.30 32 294 679 2160 20
pwrite 5689 31285 0.18 50 373 985 3160 44
open+close 6631 19162 0.34 47 240 900 3534 28
mmap+munmap 8977 19079 0.47 41 233 869 3913 7
open+write+close 9921 32815 0.30 78 481 1462 5105 49

Table 1: System call footprint of different processor structures. For the processors structures (caches and TLB), the numbers represent
number of entries evicted; the cache line for the processor is of 64-bytes. i-cache and d-cache refer to the instruction and data sections
of the L1 cache, respectively. The d-TLB represents the data portion of the TLB.

kernel stack, changing the protection domain, and redi-
recting execution to the registered exception handler. Sub-
sequently, return from exception is necessary to resume
execution in user-mode.

We measured the mode switch time by implement-
ing a new system call, gettsc that obtains the time
stamp counter of the processor and immediately returns
to user-mode. We created a simple benchmark that in-
voked gettsc 1 billion times, recording the time-stamp
before and after each call. The difference between each
of the three time-stamps identifies the number of cycles
necessary to enter and leave the operating system kernel,
namely 79 cycles and 71 cycles, respectively. The total
round-trip time for the gettsc system call is modest at
150 cycles, being less than the latency of a memory ac-
cess that misses the processor caches (250 cycles on our
machine).3

2.2 System Call Footprint

The mode switch time, however, is only part of the cost of
a system call. During kernel-mode execution, processor
structures including the L1 data and instruction caches,
translation look-aside buffers (TLB), branch prediction ta-
bles, prefetch buffers, as well as larger unified caches (L2
and L3), are populated with kernel specific state. The re-
placement of user-mode processor state by kernel-mode
processor state is referred to as the processor state pollu-
tion caused by a system call.

To quantify the pollution caused by system calls, we
used the Core i7 hardware performance counters (HPC).
We ran a high instruction per cycle (IPC) workload,
Xalan, from the SPEC CPU 2006 benchmark suite that
is known to invoke few system calls. We configured an
HPC to trigger infrequently (once every 10 million user-
mode instructions) so that the processor structures would
be dominated with application state. We then set up the
HPC exception handler to execute specific system calls,
while measuring the replacement of application state in
the processor structures caused by kernel execution (but
not by the performance counter exception handler itself).

3For all experiments presented in this paper, user-mode applications
execute in 64-bit mode and when using synchronous system calls, use
the “syscall” x86 64 instruction, which is currently the default in Linux.

Table 1 shows the footprint on several processor struc-
tures for three different system calls and three system call
combinations. The data shows that, even though the num-
ber of i-cache lines replaced is modest (between 2 and
5 KB), the number of d-cache lines replaced is signifi-
cant. Given that the size of the d-cache on this processor
is 32 KB, we see that the system calls listed pollute at
least half of the d-cache, and almost all of the d-cache in
the “open+write+close” case. The 64 entry first level d-
TLB is also significantly polluted by most system calls.
Finally, it is interesting to note that the system call impact
on the L2 and L3 caches is larger than on the L1 caches,
primarily because the L2 and L3 caches use more aggres-
sive prefetching.

2.3 System Call Impact on User IPC
Ultimately, the most important measure of the real cost
of system calls is the performance impact on the applica-
tion. To quantify this, we executed an experiment similar
to the one described in the previous subsection. However,
instead of measuring kernel-mode events, we only mea-
sured user-mode instructions per cycle (IPC), ignoring all
kernel execution. Ideally, user-mode IPC should not de-
crease as a result of invoking system calls, since the cy-
cles and instructions executed as part of the system call
are ignored in our measurements. In practice, however,
user-mode IPC is affected by two sources of overhead:

Direct: The processor exception associated with the sys-
tem call instruction that flushes the processor pipeline.

Indirect: System call pollution on the processor struc-
tures, as quantified in Table 1.

Figures 2 and 3 show the degradation in user-mode IPC
when running Xalan (from SPEC CPU 2006) and SPEC-
JBB, respectively, given different frequencies of pwrite
calls. These benchmarks were chosen since they have
been created to avoid significant use of system services,
and should spend only 1-2% of time executing in kernel-
mode. The graphs show that different workloads can have
different sensitivities to system call pollution. Xalan has
a baseline user-mode IPC of 1.46, but the IPC degrades
by up to 65% when executing a pwrite every 1,000-
2,000 instructions, yielding an IPC between 0.58 and 0.50.



1K 2K 5K 10K 20K 50K 100K 500K
0%

10%

20%

30%

40%

50%

60%

70%

Indirect
Direct

instructions between interrupts (log scale)

D
eg

ra
d

at
io

n
(l

o
w

er
 is

 f
as

te
r)

Figure 2: System call (pwrite) impact on user-mode IPC as a
function of system call frequency for Xalan.

1K 2K 5K 10K 20K 50K 100K 500K
0%

10%

20%

30%

40%

50%

Indirect
Direct

instructions between interrupts (log scale)

D
eg

ra
d

at
io

n
(l

o
w

er
 is

 f
as

te
r)

Figure 3: System call (pwrite) impact on user-mode IPC as a
function of system call frequency for SPEC JBB.

SPEC-JBB has a slightly lower baseline of 0.97, but still
observes a 45% degradation of user-mode IPC.

The figures also depict the breakdown of user-mode
IPC degradation due to direct and indirect costs. The
degradation due to the direct cost was measured by issu-
ing a null system call, while the indirect portion is cal-
culated subtracting the direct cost from the degradation
measured when issuing a pwrite system call. For high
frequency system call invocation (once every 2,000 in-
structions, or less), the direct cost of raising an exception
and subsequent flushing of the processor pipeline is the
largest source of user-mode IPC degradation. However,
for medium frequencies of system call invocation (once
per 2,000 to 100,000 instructions), the indirect cost of sys-
tem calls is the dominant source of user-mode IPC degra-
dation.

To understand the implication of these results on typi-
cal server workloads, it is necessary to quantify the sys-
tem call frequency of these workloads. The average user-
mode instruction count between consecutive system calls
for three popular server workloads are shown in Table 2.
For this frequency range in Figures 2 and 3 we observe
user-mode IPC performance degradation between 20%
and 60%. While the excecution of the server workloads
listed in Table 2 is not identical to that of Xalan or SPEC-

Workload (server) Instructions per Syscall
DNSbench (BIND) 2445
ApacheBench (Apache) 3368
Sysbench (MySQL) 12435

Table 2: The average number of instructions executed on differ-
ent workloads before issuing a syscall.

100 500 1K 2K 5K 10K 20K 50K 100K 500K
0%

10%

20%

30%

40%

50%

60%

70%

80%

instructions between interrupts (log scale)

D
eg

ra
d

at
io

n
(l

o
w

er
 is

 f
as

te
r)

Figure 4: System call (pwrite), impact on kernel-mode IPCs
for x as a function of system call frequency.

JBB, the data presented here indicates that server work-
loads suffer from significant performance degradation due
to processor pollution of system calls.

2.4 Mode Switching Cost on Kernel IPC
The lack of locality due to frequent mode switches also
negatively affects kernel-mode IPC. Figure 4 shows the
impact of different system call frequencies on the kernel-
mode IPC. As expected, the performance trend is opposite
to that of user-mode execution. The more frequent the
system calls, the more kernel state is maintained in the
processor.

Note that the kernel-mode IPC listed in Table 1 for dif-
ferent system calls ranges from 0.18 to 0.47, with an av-
erage of 0.32. This is significantly lower than the 1.47
and 0.97 user-mode IPC for Xalan and SPEC-JBB, re-
spectively; up to 8x slower.

3 Exception-Less System Calls

To address (and partially eliminate) the performance im-
pact of traditional, synchronous system calls on system
intensive workloads, we propose a new operating system
mechanism called exception-less system call. Exception-
less system call is a mechanism for requesting kernel ser-
vices that does not require the use of synchronous pro-
cessor exceptions. The key benefit of exception-less sys-
tem calls is the flexibility in scheduling system call execu-
tion, ultimately providing improved locality of execution
of both user and kernel code. We explore two use cases:

System call batching: Delaying the execution of a series
of system calls and executing them in batches minimizes
the frequency of switching between user and kernel execu-
tion, eliminating some of the mode switch overhead and
allowing for improved temporal locality. This improves
both the direct and indirect costs of system calls.

Core specialization: In multicore systems, exception-
less system calls allow a system call to be scheduled on
a core different than the one on which the system call was
invoked. Scheduling system calls on a separate processor
core allows for improved spatial locality and with it lower



(a) Traditional, sync. system call

User

Kernel

sys
call
page

(b) Exception-less system call

Figure 5: Illustration of synchronous and exception-less system
call invocation. The left diagram shows the sequential nature
of exception-based system calls, while the right diagram depicts
exception-less user and kernel communication through shared
memory.

syscall
number

number of
arguments status arg 0 arg 6

return
value

Figure 6: 64-byte syscall entry from the syscall page.

indirect costs. In an ideal scenario, no mode switches are
necessary, eliminating the direct cost of system calls.

The design of exception-less system calls consists of
two components: (1) an exception-less interface for user-
space threads to register system calls, along with (2) an
in-kernel threading system that allows the delayed (asyn-
chronous) execution of system calls, without interrupting
or blocking the thread in user-space.

3.1 Exception-Less Syscall Interface
The interface for exception-less system calls is simply a
set of memory pages that is shared amongst user and ker-
nel space. The shared memory page, henceforth referred
to as syscall page, is organized to contain exception-less
system call entries. Each entry contains space for the re-
quest status, system call number, arguments, and return
value.

With traditional synchronous system calls, invocation
occurs by populating predefined registers with system call
information and issuing a specific machine instruction that
immediately raises an exception. In contrast, to issue an
exception-less system call, the user-space threads must
find a free entry in the syscall page and populate the en-
try with the appropriate values using regular store instruc-
tions. The user-space thread can then continue executing
without interruption. It is the responsibility of the user-
space thread to later verify the completion of the system
call by reading the status information in the entry. None
of these operations, issuing a system call or verifying its
completion, causes exceptions to be raised.

3.2 Syscall Pages
Syscall pages can be viewed as a table of syscall en-
tries, each containing information specific to a single sys-
tem call request, including the system call number, ar-
guments, status (free/submitted/busy/done), and the result

(Figure 6). In our 64-bit implementation, we have orga-
nized each entry to occupy 64 bytes. This size comes from
the Linux ABI which allows any system call to have up to
6 arguments, and a return value, totalling 56 bytes. Al-
though the remaining 3 fields (syscall number, status and
number of arguments) could be packed in less than the
remaining 8 bytes, we selected 64 bytes because 64 is a
divisor of popular cache line sizes of today’s processor.

To issue an exception-less system call, the user-space
thread must find an entry in one of its syscall pages that
contain a free status field. It then writes the syscall num-
ber and arguments to the entry. Lastly, the status field is
changed to submitted4, indicating to the kernel that the re-
quest is ready for execution. The thread must then check
the status of the entry until it becomes done, consume the
return value, and finally set the status of the entry to free.

3.3 Decoupling Execution from Invocation
Along with the exception-less interface, the operating sys-
tem kernel must support delayed execution of system
calls. Unlike exception-based system calls, the exception-
less system call interface does not result in an explicit ker-
nel notification, nor does it provide an execution stack. To
support decoupled system call execution, we use a spe-
cial type of kernel thread, which we call syscall thread.
Syscall threads always execute in kernel mode, and their
sole purpose is to pull requests from syscall pages and ex-
ecute them on behalf of the user-space thread. Figure 5
illustrates the difference between traditional synchronous
system calls, and our proposed split system call model.

The combination of the exception-less system call in-
terface and independent syscall threads allows for great
flexibility in the scheduling the execution of system calls.
Syscall threads may wake up only after user-space is un-
able to make further progress, in order to achieve tempo-
ral locality of execution on the processor. Orthogonally,
syscall threads can be scheduled on a different processor
core than that of the user-space thread, allowing for spa-
tial locality of execution. On modern multicore proces-
sors, cache to cache communication is relatively fast (in
the order of 10s of cycles), so communicating the entries
of syscall pages from a user-space core to a kernel core, or
vice-versa, should only cause a small number of processor
stalls.

3.4 Implementation – FlexSC
Our implementation of the exception-less system call
mechanism is called FlexSC (Flexible System Call) and
was prototyped as an extension to the Linux kernel. Al-
though our implementation was influenced by a mono-

4User-space must update the status field last, with an appropriate
memory barrier, to prevent the kernel from selecting incomplete syscall
entries to execute.



lithic kernel architecture, we believe that most of our de-
sign could be effective with other kernel architectures,
e.g., exception-less micro-kernel IPCs, and hypercalls in
a paravirtualized environment.

We have implemented FlexSC for the x86 64 and
PowerPC64 processor architectures. Porting FlexSC to
other architectures is trivial; a single function is needed,
which moves arguments from the syscall page to appropri-
ate registers, according to the ABI of the processor archi-
tecture. Two new system calls were added to Linux as part
of FlexSC, flexsc register and flexsc wait.
flexsc register() This system call is used by pro-
cesses that wish to use the FlexSC facility. Making this
registration procedure explicit is not strictly necessary, as
processes can be registered with FlexSC upon creation.
We chose to make it explicit mainly for convenience of
prototyping, giving us more control and flexibility in user-
space. One legitimate reason for making registration ex-
plicit is to avoid the extra initialization overheads incurred
for processes that do not use exception-less system calls.

Invocation of the flexsc register system call must
use the traditional, exception-based system call interface
to avoid complex bootstrapping; however, since this sys-
tem call needs to execute only once, it does not impact
application performance. Registration involves two steps:
mapping one or more syscall pages into user-space virtual
memory space, and spawning one syscall thread per entry
in the syscall pages.

flexsc wait() The decoupled execution model of
exception-less system calls creates a challenge in user-
space execution, namely what to do when the user-space
thread has nothing more to execute and is waiting on
pending system calls. With the proposed execution model,
the OS kernel loses the ability to determine when a user-
space thread should be put to sleep. With synchronous
system calls, this is simply achieved by putting the thread
to sleep while it is executing a system call if the call blocks
waiting for a resource.

The solution we adopted is to require that the user ex-
plicitly communicate to the kernel that it cannot progress
until one of the issued system calls completes by invok-
ing the flexsc wait system call. We implemented
flexsc wait as an exception-based system call, since
execution should be synchronously directed to the kernel.
FlexSC will later wake up the user-space thread when at
least one of posted system calls are complete.

3.5 Syscall Threads
Syscall threads is the mechanism used by FlexSC to allow
for exception-less execution of system calls. The Linux
system call execution model has influenced some imple-
mentation aspects of syscall threads in FlexSC: (1) the vir-
tual address space in which system call execution occurs

is the address space of the corresponding process, and (2)
the current thread context can be used to block execution
should a necessary resource not be available (for example,
waiting for I/O).

To resolve the virtual address space requirement,
syscall threads are created during flexsc register.
Syscall threads are thus “cloned” from the registering pro-
cess, resulting in threads that share the original virtual ad-
dress space. This allows the transfer of data from/to user-
space with no modification to Linux’s code.

FlexSC would ideally never allow a syscall thread to
sleep. If a resource is not currently available, notification
of the resource becoming available should be arranged,
and execution of the next pending system call should be-
gin. However, implementing this behavior in Linux would
require significant changes and a departure from the basic
Linux architecture. Instead, we adopted a strategy that al-
lows FlexSC to maintain the Linux thread blocking archi-
tecture, as well as requiring only minor modifications (3
lines of code) to Linux context switching code, by creat-
ing multiple syscall threads for each process that registers
with FlexSC.

In fact, FlexSC spawns as many syscall threads as there
are entries available in the syscall pages mapped in the
process. This provisions for the worst case where ev-
ery pending system call blocks during execution. Spawn-
ing hundreds of syscall threads may seem expensive, but
Linux in-kernel threads are typically much lighter weight
than user threads: all that is needed is a task struct
and a small, 2-page, stack for execution. All the other
structures (page table, file table, etc.) are shared with the
user process. In total, only 10KB of memory is needed
per syscall thread.

Despite spawning multiple threads, only one syscall
thread is active per application and core at any given point
in time. If system calls do not block all the work is exe-
cuted by a single syscall thread, while the remaining ones
sleep on a work-queue. When a syscall thread needs to
block, for whatever reason, immediately before it is put
to sleep, FlexSC notifies the work-queue. Another thread
wakes-up and immediately starts executing the next sys-
tem call. Later, when resources become free, current
Linux code wakes up the waiting thread (in our case, a
syscall thread), and resumes its execution, so it can post its
result to the syscall page and return to wait in the FlexSC
work-queue.

3.6 FlexSC Syscall Thread Scheduler

FlexSC implements a syscall thread scheduler that is re-
sponsible for determining when and on which core sys-
tem calls will execute. This scheduler is critical to per-
formance, as it influences the locality of user and kernel
execution.



On a single-core environment, the FlexSC scheduler
assumes the user-space will attempt to post as many
exception-less system calls as possible, and subsequently
call flexsc wait(). The FlexSC scheduler then
wakes up an available syscall thread that starts executing
the first system call. If the system call does not block,
the same syscall thread continues to execute the next sub-
mitted syscall entry. If the execution of a syscall thread
blocks, the currently scheduled syscall thread notifies the
scheduler to wake another thread to continue to execute
more system calls. The scheduler does not wake up the
user-space thread until all available system calls have been
issued, and have either finished or are currently blocked
with at least one system call having been completed. This
is done to minimize the number of mode switches to user-
space.

For multicore execution, the scheduler biases execution
of syscall threads on a subset of available cores, dynam-
ically specializing cores according to the workload re-
quirements. In our current implementation, this is done
by attempting to schedule syscall threads using a prede-
termined, static list of cores. Upon a scheduling decision,
the first core on the list is selected. If a syscall thread of
a process is currently running on that core, the next core
on the list is selected as the target. If the selected core is
not currently executing a syscall thread, an inter-processor
interrupt is sent to the remote core, signalling that it must
wake a syscall thread.

As previously described, there is never more than one
syscall thread concurrently executing per core, for a given
process. However in the multicore case, for the same pro-
cess, there can be as many syscall threads as cores con-
currently executing on the entire system. To avoid cache-
line contention of syscall pages amongst cores, before a
syscall thread begins executing calls from a syscall page,
it locks the page until all its submitted calls have been
issued. Since FlexSC processes typically map multiple
syscall pages, each core on the system can schedule a
syscall thread to work independently, executing calls from
different syscall pages.

4 System Calls Galore – FlexSC-Threads

Exception-less system calls present a significant change to
the semantics of the system call interface with potentially
drastic implications for application code and program-
mers. Programming using exception-less system calls di-
rectly is more complex than using synchronous system
calls, as they do not provide the same, easy-to-reason-
about sequentiality. In fact, our experience is that pro-
gramming using exception-less system calls is akin to
event-driven programming, which has itself been criti-
cized for being a complex programming model [21]. The
main difference is that with exception-less system calls,

not only are I/O related calls scheduled for future comple-
tion, any system calls can be requested, verified for com-
pletion, and handled, as if it were an asynchronous event.

To address the programming complexities, we propose
the use of exception-less system calls in two different
modes that might be used depending on the concurrency
model adopted by the programmer. We argue that if used
according to our recommendations, exception-less sys-
tem calls should pose no more complexity than their syn-
chronous counter-parts.

4.1 Event-driven Servers, a Case for Hybrid
Execution

For event-driven systems, we advocate a hybrid approach
where both synchronous and exception-less system calls
coexist. System calls that are executed in performance
critical paths of applications should use exception-less
calls while all other calls should be synchronous. After
all, there is no good justification to make a simple getpid()
complex to program.

Event-driven servers already have their code structured
so that performance critical paths of execution are split
into three parts: request event, wait for completion and
handle event. Adapting an event-driven server to use
exception-less system calls, for the already considered
events, should be straightforward. However, we have not
yet attempted to evaluate the use of exception-less system
calls in an event-driven program, and leave this as future
work.

4.2 FlexSC-Threads

Multiprocessing has become the default for computation
on servers. With the emergence and ubiquity of multi-
core processors, along with projection of future chip man-
ufacturing technologies, it is unlikely that this trend will
reverse in the medium future. For this reason, and be-
cause of its relative simplicity vis-a-vis event-based pro-
gramming, we believe that the multithreading concur-
rency model will continue to be the norm.

In this section, we describe the design and implementa-
tion of FlexSC-Threads, a threading package that trans-
forms legacy synchronous system calls into exception-
less ones transparently to applications. It is intended
for server-type applications with many user-mode threads,
such as Apache or MySQL. FlexSC-Threads is compli-
ant with POSIX Threads, and binary compatible with
NPTL [8], the default Linux thread library. As a re-
sult, Linux multi-threaded programs work with FlexSC-
Threads “out of the box” without modification or recom-
pilation.

FlexSC-Threads uses a simple M -on-N threading
model (M user-mode threads executing on N kernel-



User

Kernel

z z z z z

z

flexsc_wait()

user-mode switchone kernel-visible thread per core

multiple user-mode
threads

multiple syscall
threads per core

sys
call

pages

sys
call

pages

sys
call

pages

Figure 7: The left-most diagram depicts the components of FlexSC-Threads pertaining to a single core. Each core executes a pinned
kernel-visible thread, which in turn can multiplex multiple user-mode threads. Multiple syscall pages, and consequently syscall
threads, are also allocated (and pinned) per core. The middle diagram depicts a user-mode thread being preempted as a result of
issuing a system call. The right-most diagram depicts the scenario where all user-mode threads are waiting for system call requests;
in this case FlexSC-Threads library synchronously invokes flexsc wait() to the kernel.

User

Kernel

Core 0 Core 1

sys
call

pages

sys
call

pages

Figure 8: Multicore example. Opaque threads are active, while
grayed-out threads are inactive. Syscall pages are accessible to
both cores, as we run using shared-memory, leveraging the fast
on-chip communication of multicores.

visible threads). We rely on the ability to perform user-
mode thread switching solely in user-space to transpar-
ently transform legacy synchronous calls into exception-
less ones. This is done as follows:

1. We redirect to our library each libc call that issues a
legacy system call. Typically, applications do not di-
rectly embed code to issue system calls, but instead
call wrappers in the dynamically loaded libc. We use
the dynamic loading capabilities of Linux to redirect
execution of such calls to our library.

2. FlexSC-Threads then post the corresponding
exception-less system call to a syscall page and
switch to another user-mode thread that is ready.

3. If we run out of ready user-mode threads, FlexSC
checks the syscall page for any syscall entries that
have been completed, waking up the appropriate
user-mode thread so it can obtain the result of the
completed system call.

4. As a last resort, flexsc wait() is called, putting
the kernel visible thread to sleep until one of the
pending system calls has completed.

FlexSC-Threads implements multicore support by cre-
ating a single kernel visible thread per core available to
the process, and pinning each kernel visible thread to a

specific core. Multiple user-mode threads multiplex exe-
cution on the kernel visible thread. Since kernel-visitble
threads only block when there is no more available work,
there is no need to create more than one kernel visi-
ble thread per core. Figure 7 depicts the components of
FlexSC-Threads and how they interact during execution.

As an optimization, we have designed FlexSC-Threads
to register a private set of syscall pages per kernel vis-
ible thread (i.e., per core). Since syscall pages are pri-
vate to each core, there is no need to synchronize their
access with costly atomic instructions. The FlexSC-
Threads user-mode scheduler implements a simple form
of cooperative scheduling, with system calls acting as
yield points. Consequently, syscall pages behave as lock-
free single-producer (kernel-visible thread) and single-
consumer (syscall thread) data structures.

From the kernel side, although syscall threads are
pinned to specific cores, they do not only execute system
call requests from syscall pages registered to that core. An
example of this is shown in Figure 8, where user-mode
threads execute on core 0, while syscall threads running
on core 1 are satisfying system call requests.

It is important to note that FlexSC-Threads relies on a
large number of independent user-mode threads to post
concurrent exception-less system calls. Since threads are
executing independently, there is no constraint on order-
ing or serialization of system call execution (thread-safety
constraints should be enforced at the application level
and is orthogonal to the system call execution model).
FlexSC-Threads leverages the independent requests to ef-
ficiently schedule operating system work on single or mul-
ticore systems. For this reason, highly threaded work-
loads, such as internet/network servers, are ideal candi-
dates for FlexSC-Threads.

5 Experimental Evaluation

We first present the results of a microbenchmark that
shows the overhead of the basic exception-less system



Component Specification
Cores 4

Cache line 64 B for all caches
Private L1 i-cache 32 KB, 3 cycle latency
Private L1 d-cache 32 KB, 4 cycle latency
Private L2 cache 512 KB, 11 cycle latency
Shared L3 cache 8 MB, 35-40 cycle latency

Memory 250 cycle latency (avg.)
TLB (L1) 64 (data) + 64 (instr.) entries
TLB (L2) 512 entries

Table 3: Characteristics of the 2.3GHz Core i7 processor.

0 10 20 30 40 50 60 70
0

10
20
30
40
50
60
70
80
90

flexsc
sync

Number of batched requests

T
im

e 
(n

an
o

se
co

n
d

s)

Figure 9: Exception-less system call cost on a single-core.

call mechanism, and then we show the performance of
two popular server applications, Apache and MySQL,
transparently using exception-less system calls through
FlexSC-Threads. Finally, we analyze the sensitivity of
the performance of FlexSC to the number of system call
pages.

FlexSC was implemented in the Linux kernel, version
2.6.33. The baseline line measurements we present were
collected using unmodified Linux (same version), and the
default native POSIX threading library (NPTL). We iden-
tify the baseline configuration as “sync”, and the system
with exception-less system calls as “flexsc”.

The experiments presented in this section were run on
an Intel Nehalem (Core i7) processor with the character-
istics shown in Table 3. The processor has 4 cores, each
with 2 hyper-threads. We disabled the hyper-threads, as
well as the “TurboBoost” feature, for all our experiments
to more easily analyze the measurements obtained.

For the Apache and MySQL experiments, requests
were generated by a remote client connected to our test
machine through a 1 Gbps network, using a dedicated
router. The client machine contained a dual core Core2
processor, running the same Linux installation as the test
machine, and was not CPU or network constrained in any
of the experiments.

All values reported in our evaluation represent the av-
erage of 5 separate runs.

5.1 Overhead

The overhead of executing an exception-less system call
involves switching to a syscall thread, de-marshalling ar-
guments from the appropriate syscall page entry, switch-

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700
flexsc
sync (same 
core)

Number of batched requests

T
im

e 
(n

an
o

se
co

n
d

s)

Figure 10: Exception-less system call cost, in the worst case, for
remote core execution.

ing back to the user-thread, and retrieving the return value
from the syscall page entry. To measure this overhead,
we created a micro-benchmark that successively invokes a
getppid() system call. Since the user and kernel foot-
prints of this call is small, the time measured corresponds
to the direct cost of issuing system calls.

We varied the number of batched system calls, in the
exception-less case, to verify if the direct costs are amor-
tized when batching an increasing number of calls. The
results obtained executing on a single core are shown in
Figure 9. The baseline time, show as a horizontal line, is
the time to execute an exception-based system call on a
single core. Executing a single exception-less system call
on a single core is 43% slower than a synchronous call.
However, when batching 2 or more calls there is no over-
head, and when batching 32 or more calls, the execution
of each call is up to 130% faster than a synchronous call.

We also measured the time to execute system calls on
a remote core (Figure 10). In addition to the single core
operations, remote core execution entails sending an inter-
processor interrupt (IPI) to wake up the remote syscall
thread. In the remote core case, the time to issue a sin-
gle exception-less system call can be more than 10 times
slower than a synchronous system call on the same core.
This measurement represents a worst case scenario when
there is no currently executing syscall thread. Despite the
high overhead, the overhead on remote core execution is
recouped when batching 32 or more system calls.

5.2 Apache
We used Apache version 2.2.15 to evaluate the perfor-
mance of FlexSC-Threads. Since FlexSC-Threads is bi-
nary compatible with NPTL, we used the same Apache
binary for both FlexSC and Linux/NPTL experiments.
We configured Apache to use a different maximum num-
ber of spawned threads for each case. The performance
of Apache running on NPTL degrades with too many
threads, and we experimentally determined that 200 was
optimal for our workload and hence used that configura-
tion for the NPTL case. For the FlexSC-Threads case, we
raised the maximum number of threads to 1000.

The workload we used was ApacheBench, a HTTP



0 200 400 600 800 1000
0

5000

10000

15000

20000

25000

30000

35000

40000

45000
flexsc
sync

Request Concurrency

T
h

ro
u

g
h

p
u

t 
(r

e
q

u
e

s
ts

/s
e

c
.)

(a) 1 Core

0 200 400 600 800 1000
0

5000

10000

15000

20000

25000

30000

35000

40000

45000
flexsc
sync

Request Concurrency

T
h

ro
u

g
h

p
u

t 
(r

e
q

u
e

s
ts

/s
e

c
.)

(b) 2 Cores

0 200 400 600 800 1000
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

flexsc
sync

Request Concurrency

T
h

ro
u

g
h

p
u

t 
(r

e
q

u
e

s
ts

/s
e

c
.)

(c) 4 Cores

Figure 11: Comparison of Apache throughput of Linux/NPTL and FlexSC executing on 1, 2 and 4 cores.

sync flexsc
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

28% 27%

22%
37%

50%
36%

idle
user
kernelT

im
e

(a) Apache

sync flexsc
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

24%
14%

76%
86% idle

user
kernelT

im
e

(b) MySQL

Figure 12: Breakdown of execution time of Apache and MySQL
workloads on 4 cores.

1 core 2 cores 4 cores
0

5

10

15

20

25

sync
flexsc

L
a

te
n

c
y

 (
m

s
)

Figure 13: Comparison of Apache latency of Linux/NPTL and
FlexSC executing on 1, 2 and 4 cores, with 256 concurrent re-
quests.

workload generator that is distributed with Apache. It
is designed to stress-test the Web server determining the
number of requests per second that can be serviced, with
varying number of concurrent requests.

Figure 11 shows the results of Apache running on 1, 2
and 4 cores. For the single core experiments, FlexSC em-
ploys system call batching, and for the multicore experi-
ments it additionally dynamically redirects system calls to
maximize core locality. The results show that, except for
a very low number of concurrent requests, FlexSC outper-
forms Linux/NPTL by a wide margin. With system call
batching alone (1 core case), we observe a throughput im-
provement of up to 86%. The 2 and 4 core experiments
show that FlexSC achieves up to 116% throughput im-
provement, showing the added benefit of dynamic core
specialization.

Table 4 shows the effects of FlexSC on the microarchi-
tectural state of the processor while running Apache. It
displays various processor metrics, collected using hard-
ware performance counters during execution with 512

concurrent requests. The most important metric listed
is the instruction per cycles (IPC) of the user and ker-
nel mode for the different setups, as it summarizes the
efficiency of execution. The other values listed are nor-
malized values using misses per kilo-instructions (MPKI).
MPKI is a widely used normalization method that makes
it easy to compare values obtained from different execu-
tions.

The most efficient execution of the four listed in the
table is FlexSC on 1 core, yielding an IPC of 0.94 on both
kernel and user execution, which is 95–108% higher than
for NPTL. While the FlexSC execution of Apache on 4
cores is not as efficient as the single core case, with an
average IPC of 0.75, there is still an 71% improvement,
on average, over NPTL.

Most metrics we collected are significantly improved
with FlexSC. Of particular importance are the perfor-
mance critical structures that have a high MPKI value
on NPTL such as d-cache, i-cache, and L2 cache. The
better use of these microarchitectural structures effec-
tively demonstrates the premise of this work, namely that
exception-less system calls can improve processor effi-
ciency. The only structure which observes more misses
on FlexSC is the user-mode TLB. We are currently inves-
tigating the reason for this.

There is an interesting disparity between the through-
put improvement (94%) and the IPC improvement (71%)
in the 4 core case. The difference comes from the added
benefit of localizing kernel execution with core specializa-
tion. Figure 12a shows the time breakdown of Apache ex-
ecuting on 4 cores. FlexSC execution yields significantly
less idle time than the NPTL execution.5 The reduced
idle time is a consequence of lowering the contention
on a specific kernel semaphore. Linux protects address
spaces with a per address-space read-write semaphore
(mmap sem). Profiling shows that every Apache thread
allocates and frees memory for serving requests, and both
of these operations require the semaphore to be held with
write permission. Further, the network code in Linux in-
vokes copy user(), which transfers data in and out
of the user address-space. This function verifies that the
user-space memory is indeed valid, and to do so acquires

5The execution of Apache on 1 or 2 core did not present idle time.



Apache User Kernel
Setup IPC L3 L2 d-cache i-cache TLB Branch IPC L3 L2 d-cache i-cache TLB Branch
sync (1 core) 0.48 3.7 68.9 63.8 130.8 7.7 20.9 0.45 1.4 80.0 78.2 159.6 4.6 15.7
flexsc (1 core) 0.94 1.7 27.5 35.3 41.3 8.8 12.6 0.94 1.0 15.8 31.6 45.2 3.3 11.2
sync (4 cores) 0.45 3.9 64.6 67.9 127.6 9.6 20.2 0.43 4.4 49.5 73.8 124.9 4.4 15.2
flexsc (4 cores) 0.74 1.0 37.5 55.5 49.4 19.3 13.0 0.76 1.5 19.1 50.2 63.7 4.2 11.6

Table 4: Micro-architectural breakdown of Apache execution on uni- and quad-core setups. All values shown, except for IPC, are
normalized using misses per kilo-instruction (MPKI): therefore, lower numbers yield more efficient execution and higher IPC.

the semaphore with read permissions. In the NPTL case,
threads from all 4 cores compete on this semaphore, re-
sulting in 50% idle time. With FlexSC, kernel code is
dynamically scheduled to run predominantly on 2 out of
the 4 cores, halving the contention to this resource, elimi-
nating 38% of the original idle time.

Another important metric for servicing Web requests
besides throughput is latency of individual requests. One
might intuitively expect that latency of requests to be
higher under FlexSC because of batching and asyn-
chronous servicing of system calls, but the opposite is the
case. Figure 13 shows the average latency of requests
when processing 256 concurrent requests (other concur-
rency levels showed similar trends). The results show that
Web requests on FlexSC are serviced within 50-60% of
the time needed on NPTL, on average.

5.3 MySQL
In the previous section, we demonstrated the effectiveness
of FlexSC running on a workload with a significant pro-
portion of kernel time. In this section, we experiment with
OLTP on MySQL, a workload for which the proportion of
kernel execution is smaller (roughly 25%). Our evaluation
used MySQL version 5.5.4 with an InnoDB backend en-
gine, and as in the Apache evaluation, we used the same
binary for running on NPTL and on FlexSC. We also used
the same configuration parameters for both the NPTL and
FlexSC experiments, after tuning them for the best NPTL
performance.

To generate requests to MySQL, we used the sysbench
system benchmark utility. Sysbench was created for
benchmarking MySQL processor performance and con-
tains an OLTP inspired workload generator. The bench-
mark allows executing concurrent requests by spawning
multiple client threads, connecting to the server, and se-
quentially issuing SQL queries. To handle the concurrent
clients, MySQL spawns a user-level thread per connec-
tion. At the end, sysbench reports the number of trans-
actions per second executed by the database, as well as
average latency information. For these experiments, we
used a database with 5M rows, resulting in 1.2 GB of data.
Since we were interested in stressing the CPU component
of MySQL, we disabled synchronous transactions to disk.
Given that the configured database was small enough to
fit in memory, the workload presented no idle time due to

disk I/O.
Figure 14 shows the throughput numbers obtained on

1, 2 and 4 cores when varying the number of concur-
rent client threads issuing requests to the MySQL server.6

For this workload, system batching on one core provides
modest improvements: up to 14% with 256 concurrent re-
quests. On 2 and 4 cores, however, we see that FlexSC
provides a consistent improvement with 16 or more con-
current clients, achieving up to 37%-40% higher through-
put.

Table 5 contains the microarchitectural processor met-
rics collected for the execution of MySQL. Because
MySQL invokes the kernel less frequently than Apache,
kernel execution yields high miss rates, resulting in a low
IPC of 0.33 on NPTL. In the single core case, FlexSC does
not greatly alter the execution of user-space, but increases
kernel IPC by 36%. FlexSC allows the kernel to reuse
state in the processor structures, yielding lower misses
across most metrics. In the case of 4 cores, FlexSC also
improves the performance of user-space IPC by as much
as 30%, compared to NPTL. Despite making less of an
impact in the kernel IPC than in single core execution,
there is still a 25% kernel IPC improvement over NPTL.

Figure 15 shows the average latencies of individual re-
quests for MySQL execution with 256 concurrent clients.
As is the case with Apache, the latency of requests on
FlexSC is improved over execution on NPTL. Requests
on FlexSC are satisfied within 70-88% of the time used
by requests on NPTL.

5.4 Sensitivity Analysis

In all experiments presented so far, FlexSC was config-
ured to have 8 system call pages per core, allowing up to
512 concurrent exception-less system calls per core.

Figure 16 shows the sensitivity of FlexSC to the num-
ber of available syscall entries. It depicts the throughput
of Apache, on 1 and 4 cores, while servicing 2048 concur-
rent requests per core, so that there would always be more
requests available than syscall entries. Uni-core perfor-
mance approaches its best with 200 to 250 syscall entries

6For both NPTL and FlexSC, increasing the load on MySQL yields
peak throughput between 32 and 128 concurrent clients after which
throughput degrades. The main reason for performance degradation is
the costly and coarse synchronization used in MySQL. MySQL and
Linux kernel developers have observed similar performance degradation.



0 50 100 150 200 250 300
0

50
100
150
200
250
300
350
400
450
500

flexsc
sync

Request Concurrency

T
h

ro
u

g
h

p
u

t 
(r

e
q

u
e

s
ts

/s
e

c
.)

(a) 1 Core

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

flexsc
sync

Request Concurrency

T
h

ro
u

g
h

p
u

t 
(r

e
q

u
e

s
ts

/s
e

c
.)

(b) 2 Cores

0 50 100 150 200 250 300
0

100
200
300
400
500
600
700
800
900

1000

flexsc
sync

Request Concurrency

T
h

ro
u

g
h

p
u

t 
(r

e
q

u
e

s
ts

/s
e

c
.)

(c) 4 Cores

Figure 14: Comparison of MySQL throughput of Linux/NPTL and FlexSC executing on 1, 2 and 4 cores.

MySQL User Kernel
Setup IPC L3 L2 d-cache i-cache TLB Branch IPC L3 L2 d-cache i-cache TLB Branch
sync (1 core) 1.12 0.6 21.1 34.8 24.2 3.8 7.8 0.33 16.5 125.2 209.6 184.9 3.9 17.4
flexsc (1 core) 1.10 0.8 19.6 36.3 23.6 5.4 6.9 0.45 23.2 55.1 131.9 86.5 3.7 13.6
sync (4 cores) 0.55 3.7 15.8 25.2 18.9 3.1 5.9 0.36 16.6 78.0 147.0 120.0 3.6 15.7
flexsc (4 cores) 0.72 2.7 16.7 30.6 20.9 4.1 6.5 0.45 18.4 46.6 104.4 63.5 2.5 11.5

Table 5: Micro-architectural breakdown of MySQL execution on uni- and quad-core setups. All values shown, except for IPC, are
normalized using misses per kilo-instruction (MPKI): therefore, lower numbers yield more efficient execution and higher IPC.

1 core 2 cores 4 cores
0

100

200

300

400

500

600

700
sync
flexsc

L
a

te
n

c
y

 (
m

s
)

Figure 15: Comparison of MySQL latency of Linux/NPTL and
FlexSC executing on 1, 2 and 4 cores, with 256 concurrent re-
quests.

0 100 200 300 400 500 600
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

4 cores
1 core

Number of syscall entries (per core)

T
h

ro
u

g
h

p
u

t 
(r

e
q

u
e

s
ts

/s
e

c
.)

Figure 16: Execution of Apache on FlexSC-Threads, showing
the performance sensitivity of FlexSC to different number of
syscall pages. Each syscall page contains 64 syscall entries.

(3 to 4 syscall pages), while quad-core execution starts
to plateau with 300 to 400 syscall entries (6 to 7 syscall
pages).

It is particularly interesting to compare Figure 16 with
figures 9 and 10. The direct cost of mode switching, ex-
emplified by the micro-benchmark, has a lesser effect on
performance when compared to the indirect cost of mix-
ing user- and kernel-mode execution.

6 Related Work

6.1 System Call Batching

The idea of batching calls in order to save crossings
has been extensively explored in the systems community.
Specific to operating systems, multi-calls are used in both
operating systems and paravirtualized hypervisors as a
mechanism to address the high overhead of mode switch-
ing. Cassyopia is a compiler targeted at rewriting pro-
grams to collect many independent system calls, and sub-
mitting them as a single multi-call [18]. An interesting
technique in Cassyopia, which could be eventually ex-
plored in conjunction with FlexSC, is the concept of a
looped multi-call where the result of one system call can
be automatically fed as an argument to another system call
in the same multi-call. In the context of hypervisors, both
Xen and VMware currently support a special multi-call
hypercall feature [4][20].

An important difference between multi-calls and
exception-less system calls is the level of flexibility ex-
posed. The multi-call proposals do not investigate the
possibility of parallel execution of system calls, or ad-
dress the issue of blocking system calls. In multi-calls,
system calls are executed sequentially; each system call
must complete before a subsequent can be issued. With
exception-less system calls, system calls can be executed
in parallel, and in the presence of blocking, the next call
can execute immediately.

6.2 Locality of Execution and Multicores

Several researchers have studied the effects of operating
system execution on application performance [1, 3, 7, 6,
11, 13]. Larus and Parkes also identified processor inef-



ficiencies of server workloads, although not focusing on
the interaction with the operating system. They proposed
Cohort Scheduling to efficiently execute staged computa-
tions to improve locality of execution [11].

Techniques such as Soft Timers [3] and Lazy Receiver
Processing [9] also address the issue of locality of execu-
tion, from the other side of the compute stack: handling
device interrupts. Both techniques describe how to limit
processor interference associated with interrupt handling,
while not impacting the latency of servicing requests.

Most similar to the multicore execution of FlexSC
is Computation Spreading proposed by Chakraborty et.
al [6]. They introduced processor modifications to al-
low for hardware migration of threads, and evaluated the
effects on migrating threads upon entering the kernel to
specialize cores. Their simulation-based results show an
improvement of up to 20% on Apache, however, they ex-
plicitly do not model TLBs and provide for fast thread mi-
gration between cores. On current hardware, synchronous
thread migration between cores requires a costly inter-
processor interrupt.

Recently, both Corey and Factored Operating System
(fos) have proposed dedicating cores for specific operating
system functionality [24, 25]. There are two main differ-
ences between the core specialization possible with these
proposals and FlexSC. First, both Corey and fos require
a micro-kernel design of the operating system kernel in
order to execute specific kernel functionality on dedicated
cores. Second, FlexSC can dynamically adapt the propor-
tion of cores used by the kernel, or cores shared by user
and kernel execution, depending on the current workload
behavior.

Explicit off-loading of select OS functionality to cores
has also been studied for performance [15, 16] and power
reduction in the presence of single-ISA heterogeneous
multicores [14]. While these proposals rely on expen-
sive inter-processor interrupts to offload system calls, we
hope FlexSC can provide for a more efficient, and flexible,
mechanism that can be used by such proposals.

6.3 Non-blocking Execution

Past research on improving system call performance has
focused extensively on blocking versus non-blocking be-
havior. Typically researchers have analyzed the use of
threading, event-based (non-blocking), and hybrid sys-
tems for achieving high performance on server applica-
tions [2, 10, 17, 21, 22, 23]. Capriccio described tech-
niques to improve performance of user-level thread li-
braries for server applications [22]. Specifically, Behren
et al. showed how to efficiently manage thread stacks,
minimizing wasted space, and propose resource aware
scheduling to improver server performance. For an
extensive performance comparison of thread-based and

event-driven Web server architectures we refer the reader
to [17].

Finally, the Linux community has proposed a generic
mechanism for implementing non-blocking system calls,
which is call asynchronous system calls [5]. In their pro-
posal, system calls are still exception-based, and tenta-
tively execute synchronously. Like scheduler activations,
if a blocking condition is detected, they utilize a “syslet”
thread to block, allowing the user thread to continue exe-
cution.

The main difference between many of the proposals for
non-blocking execution and FlexSC is that none of the
non-blocking system call proposals completely decouple
the invocation of the system call from its execution. As
we have discussed, the flexibility resulting from this de-
coupling is crucial for efficiently exploring optimizations
such as system call batching and core specialization.

7 Concluding Remarks

In this paper, we introduced the concept of exception-less
system calls that decouples system call invocation from
execution. This allows for flexible scheduling of system
call execution which in turn enables system call batching
and dynamic core specialization that both improve local-
ity in a significant way. System calls are issued by writ-
ing kernel requests to a reserved syscall page using nor-
mal store operations, and they are executed by special in-
kernel syscall threads, which then post the results to the
syscall page.

In fact, the concept of exception-less system calls origi-
nated as a mechanism for low-latency communication be-
tween user and kernel-space with hyper-threaded proces-
sors in mind. We had hoped that communicating directly
through the shared L1 cache would be much more effi-
cient than mode switching. However, the measurements
presented in Section 2 made it clear that mixing user and
kernel-mode execution on the same core would not be effi-
cient for server class workloads. In future work we intend
to study how to exploit exception-less system calls as a
communication mechanism in hyper-threaded processors.

We presented our implementation of FlexSC, a Linux
kernel extension, and FlexSC-Threads, a M -on-N thread-
ing package that is binary compatible with NPTL and
that transparently transforms synchronous system calls
into exception-less ones. With this implementation,
we demonstrated how FlexSC improves throughput of
Apache by up to 116% and MySQL by up to 40% while
requiring no modifications to the applications. We be-
lieve these two workloads are representative of other
highly threaded server workloads that would benefit from
FlexSC. For example, experiments with the BIND DNS
server demonstrated throughput improvements of between
30% and 105% depending on the concurrency of requests.



In the current implementation of FlexSC, syscall
threads process system call requests in no specific or-
der, opportunistically issuing calls as they are posted on
syscall pages. The asynchronous execution model, how-
ever, would allow for different selection algorithms. For
example, syscall threads could sort the requests to con-
secutively execute requests of the same type, potentially
yielding greater locality of execution. Also, system calls
that perform I/O could be prioritized so as to issue them
as early as possible. Finally, if a large number of cores are
available, cores could be dedicated to specific system call
types to promote further locality gains.

8 Acknowledgements

This work was supported in part by Discovery Grant fund-
ing from the Natural Sciences and Engineering Research
Council (NSERC) of Canada. We would like to thank
the feedback from the OSDI reviewers, and to Emmett
Witchel for shepherding our paper. Special thanks to
Ioana Burcea for encouraging the work in its early stages,
and the Computer Systems Lab members (University of
Toronto), as well as Benjamin Gamsa, for insightful com-
ments on the work and drafts of this paper.

References
[1] AGARWAL, A., HENNESSY, J., AND HOROWITZ, M. Cache per-

formance of operating system and multiprogramming workloads.
ACM Trans. Comput. Syst. 6, 4 (1988), 393–431.

[2] ANDERSON, T. E., BERSHAD, B. N., LAZOWSKA, E. D., AND
LEVY, H. M. Scheduler Activations: Effective Kernel Support for
the User-Level Management of Parallelism. ACM Trans. Comput.
Syst. 10, 1 (1992), 53–79.

[3] ARON, M., AND DRUSCHEL, P. Soft timers: efficient microsec-
ond software timer support for network processing. ACM Trans.
Comput. Syst. (TOCS) 18, 3 (2000), 197–228.

[4] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HAR-
RIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND WARFIELD,
A. Xen and the art of virtualization. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles (SOSP) (2003),
pp. 164–177.

[5] BROWN, Z. Asynchronous system calls. In Proceedings of the
Ottawa Linux Symposium (OLS) (2007), pp. 81–85.

[6] CHAKRABORTY, K., WELLS, P. M., AND SOHI, G. S. Com-
putation Spreading: Employing Hardware Migration to Specialize
CMP Cores On-the-fly. In Proceedings of the 12th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (2006), pp. 283–292.

[7] CHEN, J. B., AND BERSHAD, B. N. The impact of operating
system structure on memory system performance. In Proceed-
ings of the 14th ACM Symposium on Operating Systems Principles
(SOSP) (1993), pp. 120–133.

[8] DREPPER, U., AND MOLNAR, I. The Native POSIX
Thread Library for Linux. Tech. rep., RedHat Inc, 2003.
http://people.redhat.com/drepper/nptl-design.pdf.

[9] DRUSCHEL, P., AND BANGA, G. Lazy receiver processing (LRP):
a network subsystem architecture for server systems. In Proceed-
ings of the 2nd USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (1996), pp. 261–275.

[10] ELMELEEGY, K., CHANDA, A., COX, A. L., AND
ZWAENEPOEL, W. Lazy asynchronous I/O for event-driven
servers. In Proceedings of the annual conference on USENIX
Annual Technical Conference (ATEC) (2004), pp. 21–21.

[11] LARUS, J., AND PARKES, M. Using Cohort-Scheduling to En-
hance Server Performance. In Proceedings of the annual con-
ference on USENIX Annual Technical Conference (ATEC) (2002),
pp. 103–114.

[12] LI, T., JOHN, L. K., SIVASUBRAMANIAM, A., VIJAYKRISH-
NAN, N., AND RUBIO, J. Understanding and Improving Operating
System Effects in Control Flow Prediction. In Proceedings of the
10th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS) (2002),
pp. 68–80.

[13] MOGUL, J. C., AND BORG, A. The Effect of Context Switches
on Cache Performance. In Proceedings of the 4th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (1991), pp. 75–84.

[14] MOGUL, J. C., MUDIGONDA, J., BINKERT, N., RAN-
GANATHAN, P., AND TALWAR, V. Using asymmetric single-ISA
CMPs to save energy on operating systems. IEEE Micro 28, 3
(2008), 26–41.

[15] NELLANS, D., BALASUBRAMONIAN, R., AND BRUNVAND,
E. OS execution on multi-cores: is out-sourcing worthwhile?
SIGOPS Oper. Syst. Rev. 43, 2 (2009), 104–105.

[16] NELLANS, D., SUDAN, K., BRUNVAND, E., AND BALASUBRA-
MONIAN, R. Improving Server Performance on Multi-Cores via
Selective Off-loading of OS Functionality. In Sixth Annual Work-
shorp on the Interaction between Operating Systems and Com-
puter Architecture (WIOSCA) (2010), pp. 13–20.

[17] PARIAG, D., BRECHT, T., HARJI, A., BUHR, P., SHUKLA, A.,
AND CHERITON, D. R. Comparing the performance of Web
server architectures. In Proceedings of the 2nd European Con-
ference on Computer Systems (Eurosys) (2007), pp. 231–243.

[18] RAJAGOPALAN, M., DEBRAY, S. K., HILTUNEN, M. A., AND
SCHLICHTING, R. D. Cassyopia: compiler assisted system opti-
mization. In Proceedings of the 9th conference on Hot Topics in
Operating Systems (HotOS) (2003), pp. 18–18.

[19] REDSTONE, J. A., EGGERS, S. J., AND LEVY, H. M. An analysis
of operating system behavior on a simultaneous multithreaded ar-
chitecture. In Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (2000), pp. 245–256.

[20] VMWARE. VMWare Virtual Machine Interface Specification.
http://www.vmware.com/pdf/vmi specs.pdf.

[21] VON BEHREN, R., CONDIT, J., AND BREWER, E. Why Events
Are A Bad Idea (for high-concurrency servers). In Proceedings of
the 9th conference on Hot Topics in Operating Systems (HotOS)
(2003).

[22] VON BEHREN, R., CONDIT, J., ZHOU, F., NECULA, G. C., AND
BREWER, E. Capriccio: scalable threads for internet services. In
Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP) (2003), pp. 268–281.

[23] WELSH, M., CULLER, D., AND BREWER, E. SEDA: An Ar-
chitecture for Well-Conditioned, Scalable Internet Services. In
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP) (2001), pp. 230–243.

[24] WENTZLAFF, D., AND AGARWAL, A. Factored Operating Sys-
tems (fos): The Case for a Scalable Operating System for Multi-
cores. SIGOPS Oper. Syst. Rev. 43, 2 (2009), 76–85.

[25] WICKIZER, S. B., CHEN, H., CHEN, R., MAO, Y., KAASHOEK,
F., MORRIS, R., PESTEREV, A., STEIN, L., WU, M., DAI, Y.,
ZHANG, Y., AND ZHANG, Z. Corey: An operating system for
many cores. In Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI) (2008).


	Introduction
	The (Real) Costs of System Calls
	Mode Switch Cost
	System Call Footprint
	System Call Impact on User IPC
	Mode Switching Cost on Kernel IPC

	Exception-Less System Calls
	Exception-Less Syscall Interface
	Syscall Pages
	Decoupling Execution from Invocation
	Implementation – FlexSC
	Syscall Threads
	FlexSC Syscall Thread Scheduler

	System Calls Galore – FlexSC-Threads
	Event-driven Servers, a Case for Hybrid Execution
	FlexSC-Threads

	Experimental Evaluation
	Overhead
	Apache
	MySQL
	Sensitivity Analysis

	Related Work
	System Call Batching
	Locality of Execution and Multicores
	Non-blocking Execution

	Concluding Remarks
	Acknowledgements

