
Piccolo: Building Fast, Distributed Programs with Partitioned Tables

Russell Power Jinyang Li

New York University
http://news.cs.nyu.edu/piccolo

Abstract
Piccolo is a new data-centric programming model for
writing parallel in-memory applications in data centers.
Unlike existing data-flow models, Piccolo allows compu-
tation running on different machines to share distributed,
mutable state via a key-value table interface. Piccolo en-
ables efficient application implementations. In particu-
lar, applications can specify locality policies to exploit
the locality of shared state access and Piccolo’s run-time
automatically resolves write-write conflicts using user-
defined accumulation functions.

Using Piccolo, we have implemented applications for
several problem domains, including the PageRank algo-
rithm, k-means clustering and a distributed crawler. Ex-
periments using 100 Amazon EC2 instances and a 12
machine cluster show Piccolo to be faster than existing
data flow models for many problems, while providing
similar fault-tolerance guarantees and a convenient pro-
gramming interface.

1 Introduction
With the increased availability of data centers and cloud
platforms, programmers from different problem domains
face the task of writing parallel applications that run
across many nodes. These application range from ma-
chine learning problems (k-means clustering, neural net-
works training), graph algorithms (PageRank), scientific
computation etc. Many of these applications extensively
access and mutate shared intermediate state stored in
memory.

It is difficult to parallelize in-memory computation
across many machines. As the entire computation is di-
vided among multiple threads running on different ma-
chines, one needs to coordinate these threads and share
intermediate results among them. For example, to com-
pute the PageRank score of web page p, a thread needs
to access the PageRank scores of p’s “neighboring” web
pages, which may reside in the memory of threads run-
ning on different machines. Traditionally, parallel in-

memory applications have been built using message-
passing primitives such as MPI [21]. For many users,
the communication-centric model provided by message-
passing is too low-level an abstraction - they fundamen-
tally care about data and processing data, as opposed to
the location of data and how to get to it.

Data-centric programming models [19, 27, 1], in
which users are presented with a simplified interface
to access data but no explicit communication mecha-
nism, have proven a convenient and popular mecha-
nism for expressing many computations. MapReduce
and Dryad [27] provide a data-flow programming model
that does not expose any globally shared state. While the
data-flow model is ideally suited for bulk-processing of
on-disk data, it is not a natural fit for in-memory compu-
tation: applications have no online access to intermediate
state and often have to emulate shared memory access by
joining multiple data streams. Distributed shared mem-
ory [29, 32, 7, 17] and tuple spaces [13] allow sharing of
distributed in-memory state. However, their simple mem-
ory (or tuple) model makes it difficult for programmers
to optimize for good application performance in a dis-
tributed environment.

This paper presents Piccolo, a data-centric program-
ming model for writing parallel in-memory applications
across many machines. In Piccolo, programmers orga-
nize the computation around a series of application ker-
nel functions, where each kernel is launched as multi-
ple instances concurrently executing on many compute
nodes. Kernel instances share distributed, mutable state
using a set of in-memory tables whose entries reside in
the memory of different compute nodes. Kernel instances
share state exclusively via the key-value table interface
with get and put primitives. The underlying Piccolo run-
time sends messages to read and modify table entries
stored in the memory of remote nodes.

By exposing shared global state, the programming
model of Piccolo offers several attractive features. First,
it allows for natural and efficient implementations for ap-

1

plications that require sharing of intermediate state such
as k-means computation, n-body simulation, PageRank
calculation etc. Second, Piccolo enables online applica-
tions that require immediate access to modified shared
state. For example, a distributed crawler can learn of
newly discovered pages quickly as a result of state up-
dates done by ongoing web crawls.

Piccolo borrows ideas from existing data-centric sys-
tems to enable efficient application implementations.
Piccolo enforces atomic operations on individual key-
value pairs and uses user-defined accumulation func-
tions to automatically combine concurrent updates on
the same key (similar to reduce functions in MapRe-
duce [19]). The combination of these two techniques
eliminates the need for fine-grained application-level
synchronization for most applications. Piccolo allows
applications to exploit locality of access to shared state.
Users control how table entries are partitioned across ma-
chines by defining a partitioning function [19]. Based
on users’ locality policies, the underlying run-time can
schedule a kernel instance where its needed table parti-
tions are stored, thereby reducing expensive remote table
access.

We have built a run-time system consisting of one
master (for coordination) and several worker processes
(for storing in-memory table partitions and executing
kernels). The run-time uses a simple work stealing
heuristic to dynamically balance the load of kernel exe-
cution among workers. Piccolo provides a global check-
point/restore mechanism to recover from machine fail-
ures. The run-time uses the Chandy-Lamport snapshot
algorithm [15] to periodically generate a consistent snap-
shots of the execution state without pausing active com-
putations. Upon machine failure, Piccolo recovers by re-
starting the computation from its latest snapshot state.

Experiments have shown that Piccolo is fast and pro-
vides excellent scaling for many applications. The per-
formance of PageRank and k-means on Piccolo is 11×
and 4× faster than that of Hadoop. Computing a PageR-
ank iteration for a 1 billion-page web graph takes only
70 seconds on 100 EC2 instances. Our distributed web
crawler can easily saturate a 100 Mbps internet uplink
when running on 12 machines.

The rest of the paper is organized as follows. Sec-
tion 2 provides a description of the Piccolo program-
ming model, followed by the design of Piccolo’s run-
time (Section 3). We describe the set of applications we
constructed using Piccolo in Section 4. Section 5 dis-
cusses our prototype implementation. We show Piccolo’s
performance evaluation in Section 6 and present related
work in Section 7.

2 Programming Model
Piccolo’s programming environment is exposed as a li-
brary to existing languages (our current implementation
supports C++ and Python) and requires no change to un-
derlying OS or compiler. This section describes the pro-
gramming model in terms of how to structure application
programs (§2.1), share intermediate state via key/value
tables (§2.2), optimize for locality of access (§2.3), and
recover from failures(§2.4). We conclude this section by
showing how to implement the PageRank algorithm on
top of Piccolo (§2.5).

2.1 Program structure
Application programs written for Piccolo consist of con-
trol functions which are executed on a single machine,
and kernel functions which are executed concurrently
on many machines. Control functions create shared ta-
bles, launch multiple instances of a kernel function, and
perform global synchronization. Kernel functions consist
of sequential code which read from and write to tables
to share state among concurrently executing kernel in-
stances. By default, control functions execute in a sin-
gle thread and a single thread is created for executing
each kernel instance. However, the programmer is free to
create additional application threads in control or kernel
functions as needed.

Kernel invocation: The programmer uses the Run
function to launch a specified number (m) of kernel in-
stances executing the desired kernel function on dif-
ferent machines. Each kernel instance has an identifier
0 · · ·m−1 which can be retrieved using the my instance
function.

Kernel synchronization: The programmer invokes a
global barrier from within a control function to wait for
the completion of all previously launched kernels. Cur-
rently, Piccolo does not support pair-wise synchroniza-
tion among concurrent kernel instances. We found that
global barriers are sufficient because Piccolo’s shared ta-
ble interface makes most fine-grained locking operations
unnecessary. This overall application structure, where
control functions launch kernels across one or more
global barriers, is reminiscent of the CUDA model [36]
which also explicitly eschews support for pair-wise
thread synchronization.

2.2 Table interface and semantics
Concurrent kernel instances share intermediate state
across machine through key-value based in-memory ta-
bles. Table entries are spread across all nodes and each
key-value pair resides in the memory of a single node.
Each table is associated with explicit key and value types
which can be arbitrary user-declared serializable types.
As Figure 1 shows, the key-value interface provides a
uniform access model whether the underlying table en-

2

Table <Key, Value >:
clear()
contains(Key)
get(Key)
put(Key, Value)

updates the existing entry via
user-defined accumulation.
update(Key, Value)

Commit any buffered updates/puts
flush()

Return an iterator on a table partition
get_iterator(Partition)

Figure 1: Shared Table Interface

try is stored locally or on another machine. The table
APIs include standard operations such as get, put as
well as Piccolo-specific functions like update, flush,
get iterator. Only control functions can create tables;
both control and kernel functions can invoke any table
operation.

User-defined accumulation: Multiple kernel in-
stances can issue concurrent updates to the same key.
To resolve such write-write conflict, the programmer can
associate a user-defined accumulation function with each
table. Piccolo executes the accumulator during run-time
to combine concurrent updates on the same key. If the
programmer expects results to be independent from the
ordering of updates, the accumulator must be a commu-
tative and associative function [52].

Piccolo provides a set of standard accumulators such
as summation, multiplication and min/max. To de-
fine an accumulator, the user specifies four functions:
Initialize to initialize an accumulator for a newly cre-
ated key, Accumulate to incorporate the effect of a sin-
gle update operation, Merge to combine the contents of
multiple accumulators on the same key, and View to re-
turn the current accumulator state reflecting all updates
accumulated so far. Accumulator functions have no ac-
cess to global state except for the corresponding table
entry being updated.

User-controlled Table Partitioning: Piccolo uses a
user-specified partition function [19] to divide the key-
space into partitions. Table partitioning is a key primitive
for expressing user programs’ locality preferences. The
programmer specifies the number of partitions (p) when
creating a table. The p partitions of a table are named
with integers 0...p−1. Kernel functions can scan all en-
tries in a given table partition using the get iterator
function (see Figure 1).

Piccolo does not reveal to the programmer which node
stores a table partition, but guarantees that all table en-
tries in a given partition are stored on the same machine.
Although the run-time aims to have a load-balanced as-

signment of table partitions to machines, it is the pro-
grammer’s responsibility to ensure that the largest table
partition fits in the available memory of a single machine.
This can usually be achieved by specifying a the number
of partitions to be much larger than the number of ma-
chines.

Table Semantics: All table operations involving a sin-
gle key-value pair are atomic from the application’s per-
spective. Write operations (e.g. update, put) destined
for another machine can be buffered to avoid blocking
kernel execution. In the face of buffered remote writes,
Piccolo provides the following guarantees:

• All operations issued by a single kernel instance on
the same key are applied in their issuing order. Op-
erations issued by different kernel instances on the
same key are applied in some total order [31].

• Upon a successful flush, all buffered writes done
by the caller’s kernel instance will have been com-
mitted to their respective remote locations, and will
be reflected in the response to subsequent gets by
any kernel instance.

• Upon the completion of a global barrier, all ker-
nel instances will have been completed and all their
writes will have been applied.

2.3 Expressing locality preferences
While writes to remote table entries can be buffered at
the local node, the communication latency involved in
fetching remote table entries cannot be effectively hid-
den. Therefore, the key to achieving good application
performance is to minimize remote gets by exploiting
locality of access. By organizing the computation as ker-
nels and shared state as partitioned tables, Piccolo pro-
vides a simple way for programmers to express local-
ity policies. Such policies enable the underlying Piccolo
run-time to execute a kernel instance on a machine that
stores most of its needed data, thus minimizing remote
reads.

Piccolo supports two kinds of locality policies: (1) co-
locate a kernel execution with some table partition, and
(2) co-locate partitions of different tables. When launch-
ing some kernel, the programmer can specify a table ar-
gument in the Run function to express their preference
for co-locating the kernel execution with that table. The
programmer usually launches the same number of ker-
nel instances as the number of partitions in the spec-
ified table. The run-time schedules the i-th kernel in-
stance to execute on the machine that stores the i-th par-
tition of the specified table. To optimize for kernels that
read from more than one table, the programmer uses the
GroupTables(T1,T2,..) function to co-locate multiple
tables. The run-time assigns the i-th partition of T1,T2,...

3

to be stored on the same machine. As a result, by co-
locating kernel execution with one of the tables, the pro-
grammer can avoid remote reads for kernels that read
from the same partition of multiple tables.

2.4 User-assisted checkpoint and restore
Piccolo handles machine failures via a global check-
point/restore mechanism. The mechanism currently im-
plemented is not fully automatic - Piccolo saves a con-
sistent global snapshot of all shared table state, but relies
on users to save additional information to recover the po-
sition of their kernel and control function execution. We
believe this design makes a reasonable trade-off. In prac-
tice, the programming efforts required for checkpoint-
ing user information are relatively small. On the other
hand, our design avoids the overhead and complexities
involved in automatically checkpointing C/C++ executa-
bles.

Based on our experience of writing applications, we
arrived at two checkpointing APIs: one synchronous
(CpBarrier) and one asynchronous (CpPeriodic). Both
functions are invoked from some control function. Syn-
chronous checkpoints are well-suited for iterative appli-
cations (e.g. PageRank) which launch kernels in multiple
rounds separated by global barriers and desire to save
intermediate state every few rounds. On the other hand,
applications with long running kernels (e.g. a distributed
crawler) need to use asynchronous checkpoints to save
their state periodically.
CpBarrier takes as arguments a list of tables and a

dictionary of user data to be saved as part of the check-
point. Typical user data contain the value of some iterator
in the control thread. For example in PageRank, the pro-
grammer would like to record the number of PageRank
iterations computed so far as part of the global check-
point. CpBarrier performs a global barrier and ensures
that the checkpointed state is equivalent to the state of
execution at the barrier.
CpPeriodic takes as arguments a list of tables, a time

interval for periodic checkpointing, and a kernel call-
back function CheckpointCallback. This callback is
invoked for all active kernels on a node immediately after
that node has checkpointed the state for its assigned ta-
ble partitions. The callback function provides a way for
the programmer to save the necessary data required to
restore running kernel instances. Oftentimes this is the
position of an iterator over the partition that is being
processed by a kernel instance. When restoring, Piccolo
reloads the table state on all nodes, and invokes kernel in-
stances with the dictionary saved during the checkpoint.

2.5 Putting it together: PageRank
As a concrete example, we show how to implement
PageRank using Piccolo. The PageRank algorithm [11]

tuple PageID(site , page)
const PropagationFactor = 0.85

def PRKernel(Table(PageID ,double) curr ,
Table(PageID ,double) next ,
Table(PageID ,[PageID]) graph_partition):

for page , outlinks in
graph.get_iterator(my_instance ()):

rank = curr[page]
update = PropagationFactor * rank / len(outlinks)
for target in outlinks:

next.update(target , update)

def PageRank(Config conf):
graph = Table(PageID ,[PageID]).init("/dfs/graph")
curr = Table(PageID , double).init(

graph.numPartitions(),
SumAccumulator , SitePartitioner)

next = Table(PageID , double).init(
graph.numPartitions(),
SumAccumulator , SitePartitioner)

GroupTables(curr , next , graph)

if conf.restore():
last_iter = curr.restore_from_checkpoint()

else: last_iter = 0

run 50 iterations
for i in range(last_iter , 50):

Run(PRKernel ,
instances=curr_pr.numPartitions(),
locality=LOC_REQUIRED(curr),
args=(curr , next , graph))

checkpoint every 5 iterations, storing the
current iteration alongside checkpoint data
if i % 5 == 0:

CpBarrier(tables=curr ,
{iteration=i})

else: Barrier()

the values accumulated into ’next’ become the
source values for the next iteration
swap(curr ,next)

Figure 2: PageRank Implementation

takes as input a sparse web graph and computes a rank
value for each page. The computation proceeds in mul-
tiple iterations: page i’s rank value in the k-th itera-
tion (p(k)i) is the sum of the normalized ranks of its in-
coming neighbors in the previous iteration, i.e. p(k)i =

∑∀ j∈Ini

p(k−1)
j

|Out j | , where Out j denotes page j’s outgoing
neighbors.

The complete PageRank implementation in Piccolo is
shown in Figure 2. The input web graph is represented
as a set of outgoing links, page → target, for each page.
The graph is loaded into the shared in-memory table
(graph) from a distributed file system. For link graphs
too large to fit in memory, Piccolo also supports a read-
only DiskTable interface for streaming data from disk.

The intermediate rank values are kept in two tables:
curr for the ranks to be read in the current iteration,
next for the ranks to be written. The control function

4

Figure 3: The interactions between master and workers in exe-
cuting a Piccolo program.

(PageRank) iteratively launches p PRKernel kernel in-
stances where p is the number of table partitions in
graph (which is identical to that of curr and next). The
kernel instance i scans all pages in the i-th partition of
graph. For each page → target link, the kernel instance
reads the rank value of page in curr, and generates up-
dates for next to increment target’s rank value for the
next iteration.

Since the program generates concurrent updates to
the same key in next, it associates the Sum accumula-
tor with next, which correctly combines updates as de-
sired by the PageRank computation. The overall compu-
tation proceeds in rounds using a global barrier between
PRKernel invocations.

To optimize for locality, the program groups tables
graph, curr, next together and expresses preference for
co-locating PRKernel executions with the curr table. As
a result, none of the kernel instances need to perform any
remote reads. In addition, the program uses the partition
function, SitePartitioner, to assign the URLs in the
same domain to the same partition. As pages in the same
domain tend to link to one another frequently, such par-
titioning significantly reduces the number of remote up-
dates.

Checkpointing/restoration is straightforward: the con-
trol thread performs a synchronous checkpoint to save
the next table every five iterations and loads the latest
checkpointed table to recover from failure.

3 System Design
This section describes the run-time design for executing
Piccolo programs on a large collection of machines con-
nected via high-speed Ethernet.

3.1 Overview
Piccolo’s execution environment consists of one mas-
ter process and many worker processes, each executing

on a potentially different machine. Figure 3 illustrates
the overall interactions among workers and the master
when executing a Piccolo program. As Figure 3 shows,
the master executes the user control thread by itself and
schedules kernel instances to execute on workers. Addi-
tionally, the master decides how table partitions are as-
signed to workers. Each worker is responsible for storing
assigned table partitions in its memory and handling ta-
ble operations associated with those partitions. Having a
single master does not introduce a performance bottle-
neck: the master informs all workers of the current par-
tition assignment so that workers need not consult the
master to perform performance-critical table operations.

The master begins the execution of a Piccolo pro-
gram by invoking the entry function in the control thread.
Upon each table creation API call, the master decides on
a partition assignment. The master informs all workers
of the partition assignment and each worker initializes
its set of partitions, which are all empty at startup. Upon
each RunAPI call to execute m kernel instances, the mas-
ter prepares m tasks, one for each kernel instance. The
master schedules these tasks for execution on workers
based on user’s locality preferences. Each worker runs a
single kernel instance at a time and notifies the master
upon task completion. The master instructs each com-
pleted worker to proceed with an additional task if it is
available. Upon encountering a global barrier, the mas-
ter blocks the control thread until all active tasks are fin-
ished.

During kernel execution, a worker buffers update op-
erations destined for remote workers, combines them us-
ing user-defined accumulators and flushes them to re-
mote workers after a short timeout. To handle a get or
put operation, the worker flushes accumulated updates
on the same key before sending the operation to the
remote worker. Each owner applies operations (includ-
ing accumulated updates) in their received order. Piccolo
does not perform caching but supports a limited form
of pre-fetching: after each get iterator API call, the
worker pre-fetches a portion of table entries beyond the
current iterator value.

Two main challenges arise in the above basic design.
First, how to assign tasks in a load-balanced fashion so as
to reduce the overall wait time on global barriers? This is
particularly important for iterative applications that incur
a global barrier at each iteration of the computation. The
second challenge is to perform efficient checkpointing
and restoration of table state. In the rest of this Section,
we detail how Piccolo addresses both challenges.

3.2 Load-balanced Task Scheduling
Basic scheduling without load-balancing works as fol-
lows. At table creation time, the master assigns table par-
titions to all workers using a simple round-robin assign-

5

ment for empty memory tables. For tables loaded from
a distributed file, the master chooses an assignment that
minimizes inter-rack transfer while keeping the number
of partitions roughly balanced among workers. The mas-
ter schedules m tasks according to the specified local-
ity preference, namely, it assigns task i to execute on a
worker storing partition i.

This initial schedule may not be ideal. Due to hetero-
geneous hardware configurations or variable-sized com-
putation inputs, workers can take varying amounts of
time to finish assigned tasks, resulting in load imbalance
and non-optimal use of machines. Therefore, the run-
time needs to load-balance kernel executions beyond the
initial schedule.

Piccolo’s scheduling freedom is limited by two con-
straints: First, no running tasks should be killed. As a
running kernel instance modifies shared table state, re-
executing a terminated kernel instance requires perform-
ing an expensive restore operation from a saved check-
point. Therefore, once a kernel instance is started, it is
better to let the task complete than terminating it halfway
for re-scheduling. By contrast, MapReduce systems do
not have this constraint [28] as reducers do not start ag-
gregation until all mappers are finished. The second con-
straint comes from the need to honor user locality pref-
erences. Specifically, if a kernel instance is to be moved
from one worker to another, its co-located table partitions
must also be transferred across those workers.

Load-balance via work stealing: Piccolo performs
a simple form of load-balancing: the master observes
the progress of different workers and instructs a worker
(widle) that has finished all its assigned tasks to steal a
not-yet-started task i from the worker (wbusy) with the
most remaining tasks. We adopt the greedy heuristic of
scheduling larger tasks first. To implement this heuristic,
the master estimates the input size of each task by the
number of keys in its corresponding table partition. The
master collects partition size information from all work-
ers at table loading time as well as at each global barrier.
The master instructs each worker to execute its assigned
tasks in decreasing order of estimated task sizes. Addi-
tionally, the idle worker widle always steals the biggest
task among wbusy’s remaining tasks.

Table partition migration: Because of user local-
ity preference, worker widle needs to transfer the corre-
sponding table partition i from wbusy before it executes
stolen task i. Since table migration occurs while other
active tasks are sending operations to partition i, Piccolo
must take care not to lose, re-order or duplicate opera-
tions from any worker on a given key in order to pre-
serve table semantics. Piccolo uses a multi-phase migra-
tion process that does not require suspending any active
tasks.

The master coordinates the process of migrating parti-

tion i from wa to wb, which proceeds in two phases. In the
first phase, the master sends message M1 to all workers
indicating the new ownership of i. Upon receiving M1,
all workers flush their buffered operations for i to wa and
begin to send subsequent requests for i to wb. Upon the
receipt of M1, wa “pauses” updates to i, and begins to
forward requests received from other workers for i to wb.
wa then transfers the paused state for i to wb. During this
phase, worker wb buffers all requests for i received from
wa or other workers but does not yet handle them.

After the master has received acknowledgments from
all workers that the first phase is complete, it sends M2 to
wa and wb to complete migration. Upon receiving M2, wa
flushes any pending operations destined for i to wb and
discards the paused state for partition i. wb first handles
buffered operations received from wa in order and then
resumes normal operation on partition i.

As can be seen, the migration process does not block
any update operations and thus incurs little latency over-
head for most kernels. The normal checkpoint/recovery
mechanism is used to cope with faults that might occur
during migration.

3.3 Fault Tolerance
Piccolo relies on user-assisted checkpoint and restore to
cope with both master and worker failures during pro-
gram execution. The Piccolo run-time saves a checkpoint
of program state (including tables and other user-data) on
a distributed file system and restores from the latest com-
pleted checkpoint to recover from a failure.

Checkpoint: Piccolo needs to save a consistent global
checkpoint with low overhead. To ensure consistency,
Piccolo must determine a global snapshot of the program
state. To reduce overhead, the run-time must carry out
checkpointing in the face of actively running kernel in-
stances or the control thread.

We use the Chandy-Lamport (CL) distributed snap-
shot algorithm [15] to perform checkpointing. To save a
CL snapshot, each process records its own state and two
processes incident on a communication channel cooper-
ate to save the channel state. In Piccolo, channel state
can be efficiently captured using only table modification
messages as kernels communicate with each other exclu-
sively via tables.

To begin a checkpoint, the master chooses a new
checkpoint epoch number (E) and sends the start check-
point message StartE to all workers. Upon receiving the
start message, worker w immediately takes a snapshot
of the current state of its responsible table partitions and
buffers future table operations (in addition to applying
them). Once the table partitions in the snapshot are writ-
ten to stable storage, w sends the marker message ME,w
to all other workers. Worker w then enters a logging
state in which it logs all buffered operations to a replay

6

file. Once w has received markers from all other workers
(ME,w′ ,∀w′ 6=w), it writes the replay log to stable storage
and sends FinE,w to the master. The master considers the
checkpointing done once it has received FinE,w from all
workers.

For asynchronous checkpoints, the master initiates
checkpoints periodically based on a timer. To record
user-data consistently with recorded table state, each
worker atomically takes a snapshot of table state and in-
vokes the checkpoint callback function to save any ad-
ditional user state for its currently running kernel in-
stance. Synchronous checkpoints provide the semantics
that checkpointed state is equivalent to those immedi-
ately after the global barrier. Therefore, for synchronous
checkpointing, each worker waits until it has completed
all its assigned tasks before sending the checkpoint
marker ME,w to all other workers. Furthermore, the mas-
ter saves user-data in the control thread only after it has
received FinE,w from all workers. There is a trade-off in
deciding when to start a synchronous checkpoint. If the
master starts the checkpoint too early, e.g. while workers
still have many remaining tasks, replay files become un-
necessarily large. On the other hand, if the master delays
checkpointing until all workers have finished, it misses
opportunities to overlap kernel computation with check-
pointing. Piccolo uses a heuristic to balance this trade-
off: the master begins a synchronous checkpoint as soon
as one of the workers has finished all its assigned tasks.

To simplify the design, the master does not initiate
checkpointing while there is active table migration and
vice-versa.

Restore: Upon detecting any worker failure, the mas-
ter resets the state of all workers and restores compu-
tation from the last completed global checkpoint. Pic-
colo does not checkpoint the internal state of the mas-
ter - if the master is restarted, restoration occurs as nor-
mal, however, the replacement master is free to choose
a different partition assignment and task schedule during
restoration.

4 More Applications
In addition to PageRank, we have implemented four
other applications: a distributed web crawler, k-means,
n-body, matrix multiplication. This section summarizes
how Piccolo’s programming model enables efficient im-
plementation for these applications.

4.1 Distributed Web Crawler
Apart from iterative computations such as PageRank,
Piccolo can be used by applications to distribute and co-
ordinate fine-grained tasks among many machines. To
demonstrate this usage, we implemented a distributed
web crawler. The basic crawler operation is simple: be-
ginning from a few initial URLs, the crawler repeatedly

#local variables kept by each kernel instance
fetch_pool = Queue()
crawl_output = OutputLog(’./crawl.data’)

def FetcherThread():
while 1:

url = fetch_pool.get()
txt = download_url(url)
crawl_output.add(url, txt)

for l in get_links(txt):
url_table.update(l, ShouldFetch)

url_table.update(url, Done)

def CrawlKernel(Table(URL,CrawlState) url_table):
for i in range(20)

t = FetcherThread()
t.start()

while 1:
for url, status in url_table.my_partition :

if status == ShouldFetch
#omit checking domain in robots table
#omit checking domain in politeness table
url_table.update(url, Fetching)
fetch_pool.add(url)

Figure 4: Snippet of the crawler implementation.

downloads a page and parses it to discover new URLs
to fetch. A practical crawler must also satisfy other im-
portant constraints: (1) honor the robots.txt file of each
web site, (2) refrain from overwhelming a site by cap-
ping fetches to a site at a fixed rate, and (3) avoid repeated
fetches of the same URL.

Our implementation uses three co-located tables:

• The url table stores the crawling state ToFetch,
Fetching, Blacklisted, Done for each URL. For each
URL p in ToFetch state, the crawler fetches the cor-
responding web page and sets p’s state to Fetching.
After the crawler has finished parsing p and extract-
ing its outgoing links, it sets p’s state to Done.

• The politeness table tracks the last time a page was
downloaded for each site.

• The robots table stores the processed robots file for
each site.

The crawler spawns m kernel instances, one for each
machine. Our implementation is done in Python in order
to utilize Python’s web-related libraries. Figure 4 shows
the simplified crawler kernel (omitting details for pro-
cessing robots.txt and capping per-site download rate).
Each kernel scans its local url table partitions to find
ToFetch URLs and processes them using a pool of helper
threads. As all three tables are partitioned according to
the SitePartitioner function and co-located with each
other, a kernel instance can efficiently check for the
politeness information and robots entries before down-
loading a URL. Our implementation uses the max ac-
cumulator to resolve write-write conflicts on the same

7

URL in url table according to Done > Blacklisted >
Fetching > ToFetch. This allows the simple and ele-
gant operation shown in Figure 4, where kernels re-
discovering an already-fetched URL p can request up-
dating p’s state to ToFetch and still arrive at the correct
state for p.

Consistent global checkpointing is important for the
crawler’s recovery. Without global checkpointing, the re-
covered crawler may find a page p to be Done but does
not see any of p’s extracted links in the url table, pos-
sibly causing those URLs to never be crawled. Our im-
plementation performs asynchronous checkpointing ev-
ery 10 minutes so that the crawler loses no more than 10
minutes worth of progress due to node failure. Restoring
from the last checkpoint can result in some pages being
crawled more than once (those lost since the last check-
point), but the checkpoint mechanism guarantees that no
pages will “fall through the cracks.”

4.2 Parallel computation
k-means. The k-means algorithm is an iterative com-
putation for grouping n data points into k clusters in a
multi-dimensional space. Our implementation stores the
assigned centers for data points and the positions of cen-
ters in shared tables. Each kernel instance processes a
subset of data points to compute new center assignments
for those data points and update center positions for the
next iteration using the summation accumulator.

n-body. This application simulates the dynamics of a
set of particles over many discrete time-steps. We im-
plemented an n-body simulation intended for short dis-
tances [43], where particles further than a threshold dis-
tance (r) apart are assumed to have no effect on each
other. During each time-step, a kernel instance processes
a subset of particles: it updates a particle’s velocity and
position based on its current velocity and the positions of
other particles within r distance away. Our implementa-
tion uses a partition function to divide space into cubes
so that a kernel instance mostly performs local reads in
order to retrieve those particles within r distance away.

Matrix multiplication. Computing C = AB where A
and B are two large matrices is a common primitive in
numerical linear algebra. The input and output matri-
ces are divided into m×m blocks stored in three tables.
Our implementation co-locates tables A,B,C. Each ker-
nel instance processes a partition of table C by computing
Ci, j = ∑m

k=1 Ai,k ·Bk, j.

5 Implementation
Piccolo has been implemented in C++. We provide both
C++ and Python APIs so that users can write kernel
and control functions in either C++ or Python. We use
SWIG [6] for constructing a Python interface to Pic-
colo. Our implementation re-uses a number of existing

libraries, such as OpenMPI for communication, Google’s
protocol buffers for object serialization, and LZO for
compressing on-disk tables.

All the parallel computations (PageRank, k-means, n-
body and matrix multiplication) are implemented using
the C++ Piccolo API. The distributed crawler is imple-
mented using the Python API.

6 Evaluation
We tested the performance of Piccolo on the applica-
tions described in Section 4. Some applications, such as
PageRank and k-means, can also be implemented using
the existing data-flow model and we compared the per-
formance of Piccolo with that of Hadoop for these appli-
cations.

The highlights of our results are:

• Piccolo is fast. PageRank and k-means are 11× and
4× faster than those on Hadoop. When compared
against the results published for DryadLinq [53], in
which a PageRank iteration on a 900M page graph
were performed in 69 seconds, Piccolo finishes an
iteration for a 1B page graph in 70 seconds on EC2,
while using 1/5 the number of CPU cores.

• Piccolo scales well. For all applications evaluated,
increasing the number of workers shows a nearly
linear reduction in the computation time. Our 100-
instance EC2 experiment on PageRank also demon-
strates good scaling.

• Piccolo can help a non-conventional application like
the crawler to achieve good parallel performance.
Our crawler, despite being implemented in Python,
manages to saturate the Internet bandwidth of our
cluster.

6.1 Test Setup
Most experiments were performed using our local clus-
ter of 12 machines: 6 of the machines have 1 quad-
core Intel Xeon X3360 (2.83GHz) processor with 4GB
memory, the other 6 machines have 2 quad-core Xeon
E5520 (2.27GHz) processors with 8GB memory. All
machines are connected via a commodity gigabit ether-
net switch. Our EC2 experiments involve 100 “large in-
stances” each with 7.5GB memory and 2 “virtual cores”
where each virtual core is equivalent to a 2007-era single
core 2.5GHz Intel Xeon processor. In all experiments,
we created one worker process per core and pinned each
worker to use that core.

For scaling experiments, we vary the input size of dif-
ferent applications. Table 5 shows the default and max-
imum input size used for each application. We generate
the web link graph for PageRank based on the statistics
of a web graph of 100M pages in UK[9]. Specifically, we

8

Application Default input size Maximum input size

PageRank 100M pages 1B pages
k-means 25M points, 100 clusters 1B points, 100 clusters
n-body 100K points 10M points
Matrix Multiply edge size = 2500 edge size = 6000

Figure 5: Application input sizes

8 16 32 64

Workers

0

2

4

6

8

S
pe

ed
up

K-Means
N-Body
Matrix Multiply
PageRank
Ideal

Figure 6: Scaling performance (fixed default input size)

extract the distributions for the number of pages in each
site and the ratio of intra/inter-site links. We generate a
web graph of any size by sampling from the site size dis-
tribution until the desired number of pages is reached;
outgoing links are then generated for each page in a site
based on the distribution of the ratio of intra/inter-site
links. For other applications, we use randomly generated
inputs.

6.2 Scaling Performance
Figure 6 shows application speedup as the number of
workers (N) increases from 8 to 64 for the default input
size. All applications are CPU-bound and exhibit good
speedup with increasing N. Ideally, all applications (ex-
cept for PageRank) have perfectly balanced table par-
titions and should achieve linear speedup. However, to
have reasonable running time at N=8, we choose a rela-
tively small default input size. Thus, as N increases to
64, Piccolo’s overhead is no longer negligible relative
to applications’ own computation (e.g. k-means finishes
each iteration in 1.4 seconds at N=64), resulting in 20%
less than ideal speedup. PageRank’s table partitions are
not balanced and work stealing becomes important for its
scaling (see § 6.5).

We also evaluate how applications scale with increas-
ing input size by adjusting input size to keep the amount
of computation per worker fixed with increasing N. We
scale the input size linearly with N for PageRank and k-
means. For matrix multiplication, the edge size increases
as O(N1/3). We do not show results for n-body because it
is difficult to scale input size to ensure a fixed amount of
computation per worker. For these experiments, the ideal
scaling has constant running time as input size increases

8 16 32 64

Workers

0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
R

un
tim

e

K-Means
Matrix Multiply
PageRank
Ideal

Figure 7: Scaling input size.

12 24 48 100 200

Workers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
R

un
tim

e
K-Means
Pagerank
Ideal

Figure 8: Scaling input size on EC2.

with N. As Figure 7 shows, the achieved scaling for all
applications is within 20% of the ideal number.

6.3 EC2
We investigated how Piccolo scales with a larger number
of machines using 100 EC2 instances. Figure 8 shows
the scaling of PageRank and k-means on EC2 as we in-
crease their input size with N. We were somewhat sur-
prised to see that the resulting scaling on EC2 is bet-
ter than achieved on our small local testbed. Our local
testbed’s CPU performance exhibited quite some vari-
ability, impacting scaling. After further investigation, we
believe the source for such variability is likely due to dy-
namic CPU frequency scaling.

At N=200, PageRank finishes in 70 seconds for a 1B
page link graph. On a similar sized graph (900M pages),
our local testbed achieves comparable performance (80
seconds) with many fewer workers (N=64), due to the
higher performing cores on our local testbed.

6.4 Comparison with Other Frameworks
Comparison with Hadoop: We implemented PageRank
and k-means in Hadoop to compare their performance
against that of Piccolo. The rest of our applications, in-
cluding the distributed web crawler, n-body and matrix

9

multiplication, do not have any straightforward imple-
mentation with Hadoop’s data-flow model.

For the Hadoop implementation of PageRank, as with
Piccolo, we partition the input link graph by site. Dur-
ing execution, each map task has locality with the parti-
tion of graph it is operating on. Mappers join the graph
and PageRank score inputs, and use a combiner to aggre-
gate partial results. Our Hadoop k-means implementation
is highly optimized. Each mapper fetches all 100 cen-
troids from the previous iteration via Hadoop File Sys-
tem (HDFS), computes the cluster assignment of each
point in its input stream, and uses a local hash map to ag-
gregate the updates for each cluster. As a result, a reducer
only needs to aggregate one update from each mapper to
generate the new centroid.

We made extensive efforts to optimize the perfor-
mance of PageRank and k-means on Hadoop including
changes to Hadoop itself. Our optimizations include us-
ing raw memory comparisons, using primitive types to
avoid Java’s boxing and unboxing overhead, disabling
checksumming, improving Hadoop’s join implementa-
tion etc. Figure 9 shows the running time of Piccolo
and Hadoop using the default input size. Piccolo signif-
icantly outperforms Hadoop on both benchmarks (11×
for PageRank and 4× for k-means with N=64). The
performance difference between Hadoop and Piccolo is
smaller for k-means because of our optimized k-means
implementation; the structure of PageRank does not ad-
mit a similar optimization.

Although we expected to see some performance dif-
ference because Hadoop is implemented in Java while
Piccolo in C++, the order of magnitude difference came
as a surprise. We profiled the PageRank implementation
on Hadoop to find the contributing factors. The leading
causes for the slowdown are: (1) sorting keys in the map
phase (2) serializing and de-serializing data streams and
(3) reading and writing to HDFS. Key sorting alone ac-
counted for nearly 50% of the runtime in the PageR-
ank benchmark, and serialization another 15%. In con-
trast, with Piccolo, the need for (1) is eliminated and
the overhead associated with (2) and (3) is greatly re-
duced. PageRank rank values are stored in memory and
are available across iterations without being serialized to
a distributed file system. In addition, as most outgoing
links point to other pages at the same site, a kernel in-
stance ends up performing most updates directly to lo-
cally stored table data, thereby avoiding serialization for
those updates entirely.

Comparison with MPI: We compared the the perfor-
mance of matrix multiplication using Piccolo to a third-
party MPI-based implementation [2]. The MPI version
uses Cannon’s algorithm for blocked matrix multiplica-
tion and uses MPI specific communication primitives to
handle data broadcast and the simultaneous sending and

8 16 32 64

Workers

1

10

100

1000

P
ag

eR
an

k
(s

ec
s)

Piccolo
Hadoop

1

10

100

1000

k-
m

ea
ns

 (
se

cs
)

Figure 9: Per-iteration running time of PageRank and k-means
in Hadoop and Piccolo (fixed default input size).

16 25 36 64

Workers

0

1

R
el

at
iv

e
T

im
e

Piccolo
MPI

Figure 10: Runtime of matrix multiply, scaled relative to MPI.

receiving of data. For Piccolo, we implemented the naı̈ve
blocked multiplication algorithm, using our distributed
tables to handle the communication of matrix state. As
Piccolo relies on MPI primitives for communication, we
do not expect to see performance advantage, but are
more interested in quantifying the amount of overhead
incurred.

Figure 10 shows that the running time of the Piccolo
implementation is no more than 10% of the MPI imple-
mentation. We were surprised to see that our Piccolo im-
plementation out-performed the MPI version in exper-
iments with more workers. Upon inspection, we found
that this was due to slight performance differences be-
tween machines in our cluster; as the MPI implementa-
tion has many more synchronization points than that of
Piccolo, it is forced to wait for slower nodes to catch up.

6.5 Work Stealing and Slow Machines
The PageRank benchmark provides a good basis for test-
ing the effect of work stealing because the web graph par-
titions have highly variable sizes: the largest partition for
the 900M-page graph is 5 times the size of the smallest.
Using the same benchmark, we also tested how perfor-
mance changed when one worker was operating slower
then the rest. To do so, we ran a CPU-intensive program
on one core that resulted in the worker bound to that core

10

0 1 2 3 4

Iteration number

0

20

40

60

80

100

120
R

un
tim

e
(s

ec
s)

Normal - No Stealing
Normal - Stealing
Slow Worker - No Stealing
Slow Worker - Stealing

Figure 11: Effect of Work Stealing and Slow Workers

having only 50% of the CPU time of the other workers.
The results of these tests are shown in Figure 11. Work

stealing improves running time by 10% when all ma-
chines are operating normally. The improvement is due
to the imbalance in the input partition sizes - when run
without work stealing, the computation waits longer for
the workers processing more data to catch up.

The effect of slow workers on the computation is more
dramatic. With work-stealing disabled, the runtime is
nearly double that of the normal computation, as each
iteration must wait for the slowest worker to complete
all assigned tasks. Enabling work stealing improves the
situation dramatically - the computation time is reduced
to less then 5% over that of the non-slow case.

6.6 Checkpointing
We evaluated the checkpointing overhead using the
PageRank, k-means and n-body problems. Compared to
the other problems, PageRank has a larger table that
needs to be checkpointed, making it a more demand-
ing test of checkpoint/restore performance. In our ex-
periment, each worker wrote its checkpointed table par-
titions to the local disk. Figure 12 shows the runtime
when checkpointing is enabled relative to when there
is no checkpointing. For the naı̈ve synchronous check-
pointing strategy, the master starts checkpointing only
after all workers have finished. For the optimized strat-
egy, the master initiates the checkpoint as soon as one of
the workers has finished. As the figure shows, overhead
of the optimized checkpointing strategy is quite negligi-
ble (∼2%) and the optimization of starting checkpointing
early results in significant reduction of overhead for the
larger PageRank checkpoint.

Limitations of global checkpoint and restore: The
global nature of Piccolo’s failure recovery mechanism
raises the question of scalability. As the of a cluster in-
creases, failure becomes more frequent; this causes more
frequent checkpointing and restoration which consume a
larger fraction of the overall computation time. While we
lacked the machine resources to directly test the perfor-
mance of Piccolo on thousands of machines, we estimate
scalability limit of Piccolo’s checkpointing mechanism

Naive Optimized

Checkpoint Strategy

0.8

1.0

1.2

R
el

at
iv

e
T

im
e

Pagerank
N-Body
K-Means

Figure 12: Checkpoint overhead. Per-iteration runtime is scaled
relative to without checkpointing.

0 2000 4000 6000 8000

Machines

0
0.2
0.4
0.6
0.8
1.0

P
ro

du
ct

iv
e

C
om

pu
ta

tio
n MTBF

3 years

1 year

3 weeks

Figure 13: Expected scaling for large clusters.

based on expected machine uptime.
We consider a hypothetical cluster of machines with

16GB of RAM and 4 disk drives. We measured the time
taken to checkpoint and restore such a machine in the
“worst case” - a computation whose table state uses all
available system memory. We estimate the fraction of
time a Piccolo computation would spend working pro-
ductively (not in a checkpoint or restore state), for vary-
ing numbers of machines and failure rates. In our model,
we assume that machine failures arrive at a constant in-
terval defined by the failure rate and the number of ma-
chines in a cluster. While this is a simplification of real-
life failure behavior, it is a worst-case scenario for the
restore mechanism, and as such provides a useful lower
bound. The expected efficiency based on our model is
shown in Figure 13. For well maintained data-centers
that we are familiar with, the average machine uptime is
typically around 1 year. For these data-centers, the global
checkpointing mechanism can efficiently scale up to a
few thousand machines.

6.7 Distributed Crawler
We evaluated our distributed crawler implementation us-
ing various numbers of workers. The URL table was ini-
tialized with a seed set of 1000 URLs. At the end of a 30
minutes run of the experiment, we measured the num-
ber of pages crawled and bytes downloaded. Figure 14
shows the crawler’s web page download throughput in

11

0 10 20 30 40 50 60 70

Workers

0
2
4
6
8

10
M

B
yt

es
/s

Figure 14: Crawler throughput

MBytes/sec as N increases from 1 to 64. The crawler
spends most CPU time in the Python code for pars-
ing HTML and URLs. Therefore, its throughput scales
approximately linearly with N. At N=32, the crawler
download throughput peaks at ∼10MB/s which is limited
by our 100-Mbps Internet uplink. There are highly op-
timized single-server crawler implementations that can
sustain higher download rates than 100Mbps [49]. How-
ever, our Piccolo-based crawler could potentially scale
to even higher download rates despite being built using
Python.

7 Related Work
Communication-oriented models: Communication-
based primitives such as MPI [21] and Parallel Virtual
Machine (PVM [46]) have been popular for construct-
ing distributed programs for many years. MPI and PVM
offer extensive messaging mechanisms including unicast
and broadcast as well as support for creating and manag-
ing remote processes in a distributed environment. There
has been continuous research on developing experimen-
tal features for MPI, such as optimization of collective
operations [3], fault-tolerance via machine virtualiza-
tion [34] and the use of hybrid checkpoint and logging
for recovery [10]. MPI has been used to build very high
performance applications - its support of explicit com-
munication allows considerable flexibility in writing ap-
plications to take advantage of a wide variety of network
topologies in supercomputing environments. This flexi-
bility has a cost in the form of complexity - users must
explicitly manage communication and synchronization
of state between workers, which can become difficult to
do while attempting to retain efficient and correct execu-
tion.

BSP (Bulk Synchronous Parallel) is a high-level
communication-oriented model [50]. In this model,
threads execute on different processors with local mem-
ory, communicate with each other using messages, and
perform global-barrier synchronization. BSP implemen-
tations are typically realized using MPI [25]. Recently,

the BSP model has been adopted in the Pregel framework
for parallelizing work on large graphs [33].
Distributed shared-memory: The complexity of pro-
gramming for communication-oriented models drove a
wave of research in the area of distributed shared mem-
ory (DSM) systems [30, 29, 32, 7]. Most DSM systems
aim to provide transparent memory access, which causes
programs written for DSMs to incur many fine-grained
synchronization events and remote memory reads. While
initially promising, DSM research has fallen off as the
ratio of network latency to local CPU performance has
widened, making naı̈ve remote accesses and synchro-
nization prohibitively expensive.

Parallel Global Address Space (PGAS) [17, 35, 51]
are a set of language extensions to realize a distributed
shared address space. These extensions try to ameliorate
the latency problems of DSM by allowing users to ex-
press affinities of portions of shared memory with a par-
ticular thread, thereby reducing the frequency of remote
memory references. They retain the low level (flat mem-
ory) interface common to DSM. As a result, applica-
tions written for PGAS systems still require fine-grained
synchronization when operating on non-primitive data-
types, or in order to aggregate several values (for in-
stance, computing the sum of a memory location with
multiple writers).

Tuple spaces, as seen in coordination languages such
as Linda [13] and more recently JavaSpaces [22], expose
to users a global tuple-space accessible from all partic-
ipating threads. Although tuple spaces provide atomic
primitives for reading and writing tuples, they are not in-
tended for high-frequency access. As such, there is no
support for locality optimization nor write-write conflict
resolution.
MapReduce and Dataflow models: In recent years,
MapReduce has emerged as a popular programming
model for parallel data processing [19]. There are many
recent efforts inspired by MapReduce ranging from gen-
eralizing MapReduce to support the join operation [27],
improving MapReduce’s pipelining performance [16],
building high-level languages on top of MapReduce (e.g.
DryadLINQ [53], Hive [48], Pig [37] and Sawzall [40]).
FlumeJava [14] provides a set of collection abstractions
and parallel execution primitives which are optimized
and compiled down to a sequence of MapReduce opera-
tions.

The programming models of MapReduce [19] and
Dryad [27] are instances of stream processing, or
data-flow models. Because of MapReduce’s popularity,
programmers start using it to build in-memory itera-
tive applications such as PageRank, even though the
data-flow model is not a natural fit for these appli-
cations. Spark [54] proposes to add distributed read-
only in-memory cache to improve the performance of

12

MapReduce-based iterative computations.
Single-machine shared memory models: Many pro-
gramming models are available for parallelizing exe-
cution on a single machine. In this setting, there ex-
ists a physically-shared memory among computing cores
supporting low-latency memory access and fast syn-
chronization between threads of computation, which are
not available in a distributed environment. Although
there are also popular streaming/data-flow models [44,
47, 12], most parallel models for a single machine
are based on shared-memory. For the GPU platform,
there are CUDA [36] and OpenCL [24]. For multi-
core CPUs, Cilk [8] and more recently, Intel’s Thread
Building Blocks [41] provide support for low-overhead
thread creation and dispatching of tasks at a fine level.
OpenMP [18] is a popular shared-memory model among
the scientific computing community: it allows users
to target sections of code for parallel execution and
provides synchronization and reduction primitives. Re-
cently, there have been efforts to support OpenMP pro-
grams across a cluster of machines [26, 5]. However,
based on software distributed shared memory, the result-
ing implementations suffer from the same limitations of
DSMs and PGAS systems.
Distributed data structures: The goal of distributed
data structures is to provide a flexible and scalable data
storage or caching interface. Examples of these include
DDS [23], Memcached [39], the recently proposed Ram-
Cloud [38], and many key-value stores based on dis-
tributed hash tables [4, 20, 45, 42]. These systems do
not seek to provide a computation model, but rather are
targeted towards loosely-coupled distributed applications
such as web serving.

8 Conclusion
Parallel in-memory application need to access and share
intermediate state that reside on different machines.
Piccolo provides a programming model that supports
the sharing of mutable, distributed in-memory state via
a key/value table interface. Piccolo helps applications
achieve high performance by optimizing for locality of
access to shared state and having the run-time auto-
matically resolve write-write conflicts using application-
specified accumulation functions.

Acknowledgments
Yasemin Avcular and Christopher Mitchell ran some of
the Hadoop experiments. We thank the many people who
have improved this work through discussion and reviews:
the members of NeWS group at NYU, Frank Dabek,
Rob Fergus, Michael Freedman, Robert Grimm, Wil-
son Hsieh, Frans Kaashoek, Jinyuan Li, Robert Morris,
Sam Roweis, Torsten Suel, Junfeng Yang, Nickolai Zel-
dovich.

References
[1] Apache hadoop. http://hadoop.apache.org.

[2] Example matrix multiplication implementation using mpi. http:
//www.cs.umanitoba.ca/˜comp4510/examples.html.

[3] ALMÁSI, G., HEIDELBERGER, P., ARCHER, C. J., MAR-
TORELL, X., ERWAY, C. C., MOREIRA, J. E., STEINMACHER-
BUROW, B., AND ZHENG, Y. Optimization of MPI collective
communication on BlueGene/L systems. In Proceedings of the
19th annual international conference on Supercomputing (New
York, NY, USA, 2005), ICS ’05, ACM, pp. 253–262.

[4] ANDERSEN, D. G., FRANKLIN, J., KAMINSKY, M., PHAN-
ISHAYEE, A., TAN, L., AND VASUDEVAN, V. FAWN: a fast
array of wimpy nodes. In SOSP (2009), J. N. Matthews and T. E.
Anderson, Eds., ACM, pp. 1–14.

[5] BASUMALLIK, A., MIN, S.-J., AND EIGENMANN, R. Program-
ming distributed memory sytems using OpenMP. Parallel and
Distributed Processing Symposium, International 0 (2007), 207.

[6] BEAZLEY, D. M. Automated scientific software scripting with
SWIG. Future Gener. Comput. Syst. 19 (July 2003), 599–609.

[7] BERSHAD, B. N., ZEKAUSKAS, M. J., AND SAWDON, W. The
Midway Distributed Shared Memory System. In Proceedings
of the 38th IEEE Computer Society International Conference
(1993).

[8] BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C., LEISER-
SON, C. E., RANDALL, K. H., AND ZHOU, Y. Cilk: an effi-
cient multithreaded runtime system. In PPOPP ’95: Proceedings
of the fifth ACM SIGPLAN symposium on Principles and prac-
tice of parallel programming (New York, NY, USA, 1995), ACM,
pp. 207–216.

[9] BOLDI, P., AND VIGNA, S. The WebGraph framework I: Com-
pression techniques. In Proc. of the Thirteenth International
World Wide Web Conference (WWW 2004) (Manhattan, USA,
2004), ACM Press, pp. 595–601.

[10] BOSILCA, G., BOUTEILLER, A., CAPPELLO, F., DJILALI, S.,
FEDAK, G., GERMAIN, C., HERAULT, T., LEMARINIER, P.,
LODYGENSKY, O., MAGNIETTE, F., NERI, V., AND SELIKHOV,
A. Mpich-v: toward a scalable fault tolerant mpi for volatile
nodes. In Proceedings of the 2002 ACM/IEEE conference on Su-
percomputing (Los Alamitos, CA, USA, 2002), Supercomputing
’02, IEEE Computer Society Press, pp. 1–18.

[11] BRIN, S., AND PAGE, L. The anatomy of a large-scale hypertex-
tual web search engine. Computer Networks and ISDN Systems
30, 1-7 (1998), 107 – 117. Proceedings of the Seventh Interna-
tional World Wide Web Conference.

[12] BUCK, I., FOLEY, T., HORN, D., SUGERMAN, J., FATA-
HALIAN, K., HOUSTON, M., AND HANRAHAN, P. Brook for
GPUs: stream computing on graphics hardware. In ACM SIG-
GRAPH 2004 Papers (2004), ACM, p. 786.

[13] CARRIERO, N., AND GELERNTER, D. Linda in context. Com-
mun. ACM 32, 4 (1989), 444–458.

[14] CHAMBERS, C., RANIWALA, A., PERRY, F., ADAMS, S.,
HENRY, R. R., BRADSHAW, R., AND WEIZENBAUM, N.
Flumejava: Easy, efficient data-parallel pipelines. In PLDI - ACM
SIGPLAN 2010 (2010).

[15] CHANDY, K. M., AND LAMPORT, L. Distributed snapshots: de-
termining global states of distributed systems. ACM Transactions
on Computer Systems (TOCS) 3 (1985), 63–75.

[16] CONDIE, T., CONWAY, N., ALVARO, P., AND HELLERSTEIN, J.
MapReduce online. In NSDI (2010).

[17] CONSORTIUM, U. UPC language specifications, v1.2. Tech. rep.,
Lawrence Berkeley National Lab, 2005.

13

[18] DAGUM, L., AND MENON, R. Open MP: An Industry-Standard
API for Shared-Memory Programming. IEEE Computational
Science and Engineering 5, 1 (1998), 46–55.

[19] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified data pro-
cessing on large clusters. In Symposium on Operating System
Design and Implementation (OSDI) (2004).

[20] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P., AND VOGELS, W. Dynamo: Amazon’s highly
available key-value store. In ACM Symposium on Operating Sys-
tems Principles (Oct. 2007), pp. 205–220.

[21] FORUM, M. MPI 2.0 standard, 1997.

[22] FREEMAN, E., ARNOLD, K., AND HUPFER, S. JavaSpaces
Principles, Patterns, and Practice. Addison-Wesley Longman
Ltd., Essex, UK, UK, 1999.

[23] GRIBBLE, S. D., BREWER, E. A., HELLERSTEIN, J. M., AND
CULLER, D. Scalable, distributed data structures for internet ser-
vice construction. In OSDI’00: Proceedings of the 4th conference
on Symposium on Operating System Design & Implementation
(Berkeley, CA, USA, 2000), USENIX Association, pp. 22–22.

[24] GROUP, K. O. W. The OpenCL specification. Tech. rep., 2009.

[25] HILL, J., MCCOLL, W., STEFANESCU, D., GOUDREAU, M.,
LANG, K., RAO, S., SUEL, T., TSANTILAS, T., AND BISSEL-
ING, H. Bsplib: The bsp programming library. Parallel Comput-
ing 24 (1998).

[26] HOEFLINGER, J. P. Extending OpenMP to clusters. Tech. rep.,
Intel, 2009.

[27] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FETTERLY,
D. Dryad: Distributed data-parallel programs from sequential
building blocks. In European Conference on Computer Systems
(EuroSys) (2007).

[28] ISARD, M., PRABHAKARAN, V., CURREY, J., WIEDER, U.,
TALWAR, K., AND GOLDBERG, A. Quincy: Fair scheduling for
distributed computing clusters. In SOSP (2010).

[29] JOHNSON, K. L., KAASHOEK, M. F., AND WALLACH, D. A.
CRL: High-performance all-software distributed shared memory.
In SOSP (1995).

[30] KELEHER, P., COX, A. L., AND ZWAENEPOEL, W. Lazy release
consistency for software distributed shared memory. In In Pro-
ceedings of the 19th Annual International Symposium on Com-
puter Architecture (1992).

[31] LAMPORT, L. How to make a multiprocessor that correctly exe-
cutes multiprocess programs. IEEE Transactions on Computers
28, 9 (1979).

[32] LI, K., AND HUDAK, P. Memory coherence in shared vir-
tual memory systems. ACM Transactions on Computer Systems
(TOCS) 7 (1989), 321–359.

[33] MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT,
J. C., HORN, I., LEISER, N., AND CZAJKOWSKI, G. Pregel:
a system for large-scale graph processing. In SIGMOD ’10: Pro-
ceedings of the 2010 international conference on Management of
data (New York, NY, USA, 2010), ACM, pp. 135–146.

[34] NAGARAJAN, A. B., MUELLER, F., ENGELMANN, C., AND
SCOTT, S. L. Proactive fault tolerance for hpc with xen virtu-
alization. In Proceedings of the 21st annual international confer-
ence on Supercomputing (New York, NY, USA, 2007), ICS ’07,
ACM, pp. 23–32.

[35] NUMRICH, R. W., AND REID, J. Co-array Fortran for parallel
programming. SIGPLAN Fortran Forum 17 (August 1998), 1–31.

[36] NVIDIA. CUDA programming guide (ver 3.0).

[37] OLSON, C., REED, B., SRIVASTAVA, U., KUMAR, R., AND
TOMKINS, A. Pig Latin: A not-so-foreign language for data pro-
cessing. In ACM SIGMOD (2008).

[38] OUSTERHOUT, J., AGRAWAL, P., ERICKSON, D., KOZYRAKIS,
C., LEVERICH, J., MAZIERES, D., MITRA, S., NARAYANAN,
A., PARULKAR, G., ROSENBLUM, M., RUMBERL, S., STRAT-
MANN, E., AND STUTSMAN, R. The case for RAMclouds: Scal-
able high-performance storage entirely in DRAM. In Operating
system review (Dec. 2009).

[39] PHILLIPS, L., AND FITZPATRICK, B. Livejournal’s backend and
memcached: Past, present, and future. In LISA (2004), USENIX.

[40] PIKE, R., DORWARD, S., GRIESEMER, R., AND QUINLAN, S.
Interpreting the data: Parallel analysis with Sawzall. In Scientific
Programming (2005).

[41] REINDERS, J. Intel threading building blocks: outfitting C++ for
multi-core processor parallelism. O’Reilly Media, Inc., 2007.

[42] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-to-peer
systems. In 18th IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Nov. 2001).

[43] SINGH, J. P., WEBER, W.-D., AND GUPTA, A. SPLASH: Stan-
ford parallel applications for shared-memory. Tech. rep., Stanford
University, 1991.

[44] STEPHENS, R. A survey of stream processing, 1995.

[45] STOICA, I., MORRIS, R., LIBEN-NOWELL, D., KARGER,
D. R., KAASHOEK, M. F., DABEK, F., AND BALAKRISHNAN,
H. Chord: A scalable peer-to-peer lookup protocol for Internet
applications. IEEE/ACM Transactions on Networking (2002),
149–160.

[46] SUNDERAM, V. PVM: A framework for parallel distributed com-
puting. Concurrency: Practice and Experience (1990), 315–339.

[47] THIES, W., KARCZMAREK, M., AND AMARASINGHE, S.
StreamIt: A language for streaming applications. In Compiler
Construction (2002), Springer, pp. 49–84.

[48] THUSOO, A., SARMA, J. S., JAIN, N., SHAO, Z., CHAKKA, P.,
ANTHONY, S., LIU, H., WYCKOFF, P., AND MURTHY, R. Hive:
a warehousing solution over a map-reduce framework. Proc.
VLDB Endow. 2 (August 2009), 1626–1629.

[49] TSANG LEE, H., LEONARD, D., WANG, X., AND LOGUINOV,
D. Irlbot: Scaling to 6 billion pages and beyond. In WWW Con-
ference (2008).

[50] VALIANT, L. A bridging model for parallel computation. Com-
munications of the ACM 33 (1990).

[51] YELICK, K., SEMENZATO, L., PIKE, G., MIYAMOTO, C., LI-
BLIT, B., KRISHNAMURTHY, A., GRAHAM, P. H. S., GAY, D.,
COLELLA, P., AND AIKEN, A. Titanium: A high-performance
Java dialect. Concurrency: Practice and Experience 10, 11
(1998).

[52] YU, Y., GUNDA, P. K., AND ISARD, M. Distributed aggrega-
tion for data-parallel computing: Interfaces and implementations.
In ACM Symposium on Operating Systems Principles (SOSP)
(2009).

[53] YU, Y., ISARD, M., FETTERLY, D., BUDIU, M., ERLINGSSON,
U., GUNDA, P. K., AND CURREY, J. DryadLINQ: A system for
general-purpose distributed data-parallel computing using a high-
level language. In Symposium on Operating System Design and
Implementation (OSDI) (2008).

[54] ZAHARIA, M., CHOWDHURY, N. M. M., FRANKLIN, M.,
SHENKER, S., AND STOICA, I. Spark: Cluster Computing with
Working Sets. Tech. Rep. UCB/EECS-2010-53, EECS Depart-
ment, University of California, Berkeley, May 2010.

14

