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Abstract

Software misconfigurations are time-consuming and
enormously frustrating to troubleshoot. In this paper, we
show that dynamic information flow analysis helps solve
these problems by pinpointing the root cause of config-
uration errors. We have built a tool called ConfAid that
instruments application binaries to monitor the causal
dependencies introduced through control and data flow
as the program executes — ConfAid uses these depen-
dencies to link the erroneous behavior to specific to-
kens in configuration files. Our results using ConfAid to
solve misconfigurations in OpenSSH, Apache, and Post-
fix show that ConfAid identifies the source of the miscon-
figuration as the first or second most likely root cause for
18 out of 18 real-world configuration errors and for 55
out of 60 randomly generated errors. ConfAid runs in
only a few minutes, making it an attractive alternative to
manual debugging.

1 Introduction

Complex software systems are difficult to configure and
manage. When problems inevitably arise, operators
spend considerable time troubleshooting those problems
by identifying root causes and correcting them. The cost
of troubleshooting is substantial. Technical support con-
tributes 17% of the total cost of ownership of today’s
desktop computers [24], and troubleshooting misconfig-
urations is a large part of technical support. For informa-
tion systems, administrative expenses, made up almost
entirely of people costs, represent 60–80% of the total
cost of ownership [16]. Even for casual computer users,
troubleshooting is often enormously frustrating.

In this paper, we show that system support for dynamic
information flow analysis can substantially simplify and
reduce the human effort needed to troubleshoot software
systems. We focus specifically on configuration errors,
in which the application code is correct, but the software

has been installed, configured, or updated incorrectly so
that it does not behave as desired. For instance, a mistake
in a configuration file may lead software to crash, assert,
or simply produce erroneous output.

Why address misconfigurations specifically? Empiri-
cal evidence exists that misconfigurations are often the
dominant cause of problems in deployed systems. For
example, Gray [20] attributed 42% of system outages to
administration, while software, hardware, and environ-
ment failures account for 25%, 18%, and 14% of failures,
respectively. Murphy and Gent [31] note that the per-
centage of failures attributable to system management is
increasing over time, and that management failures have
come to dominate the combination of software and hard-
ware failures. Other studies have shown that configura-
tion errors are the largest category of operator mistakes.
Oppenheimer et al. [35] studied three commercial Inter-
net services and found that more than 50% of the opera-
tor mistakes that led to service unavailability were mis-
configurations. Nagaraja et al. [33] found that software
misconfiguration was the most common type of operator
mistake, accounting for more than half of all mistakes.
Other studies have shown similar results [7, 8, 23]. Fur-
ther, while fault tolerance techniques such as modular
redundancy [30] or Byzantine fault tolerance [10] can
mask software and hardware faults, they do not prevent
human error such as an operator who misconfigures all
replicas [20, 23].

Consider how users and administrators typically de-
bug configuration problems. Misconfigurations are often
exhibited by an application unexpectedly terminating or
producing erroneous output. While an ideal application
would always output a helpful error message when such
events occur, it is unfortunately the case that such mes-
sages are often cryptic, misleading, or even non-existent.
Thus, the person using the application must ask col-
leagues and search manuals, FAQs, and online forums to
find potential solutions to the problem. Troubleshooting
is a tedious, time-consuming process that can substan-
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tially increase the time to recover (TTR) from a failure.
To remedy this problem, we have developed a tool,

called ConfAid, that uses dynamic information flow
analysis to identify the likely root cause of a configu-
ration problem. When a user or administrator wishes to
troubleshoot a problem such as a crash or incorrect out-
put, she reproduces the problem while ConfAid modi-
fies the executed application binaries to track the causal
dependencies between configuration inputs and program
behavior. ConfAid produces an ordered list of the con-
figuration tokens most likely to have caused the exhibited
problem. While dynamic analysis takes a few minutes
for a complex application such as Apache, automated
troubleshooting is still considerably faster and less labor-
intensive than manual debugging or searching through
FAQs and online forums.

ConfAid dynamically tracks causality (i.e., informa-
tion flow) at a fine granularity, namely at the level of
instructions and bytes. While there is a large body of
work in the distributed systems community that tracks
causality to understand and troubleshoot program behav-
ior [2, 5, 6, 11, 12, 13], these prior systems essentially
treat application binaries as black boxes, understanding
causal relationships between processes by tracking net-
work messages and IPCs. Some gain more information
by inserting probes into applications to glean hints about
their activity. ConfAid, however, “opens up the black-
box” by examining the flow of causalitywithin processes
as they execute. Further, since ConfAid tracks causality
using binary instrumentation [29], it does not require ap-
plication source code to find misconfigurations.

ConfAid restricts the scope of information flow anal-
ysis to only track values that depend on data read from
configuration files. ConfAid tracks dependencies intro-
duced by both data and control flow. If it determines that
altering a configuration parameter may change the ap-
plication’s control flow such that it avoids the problem
(and does not exhibit a different problem), it reports that
parameter as a possible root cause. It propagates depen-
dencies among multiple processes in a distributed system
by annotating IPCs and network communication.

Our results show that ConfAid identifies the correct
root causes of most configuration errors. We injected
18 real-world misconfigurations into OpenSSH, Apache,
and the Postfix email server. ConfAid identifies the cor-
rect root cause as the most likely source of the miscon-
figuration in 13 cases; for the remaining 5 bugs, it lists
the correct root cause as the second most likely option.
ConfAid analysis takes less than 3 minutes, making the
tool an attractive alternative to manual troubleshooting.

2 Design principles

We next briefly describe ConfAid’s design principles.

2.1 Use white-box analysis

The genesis of ConfAid arose from AutoBash [37], our
prior work in configuration troubleshooting. AutoBash
tracks causality at process and file granularity in order
to diagnose configuration errors. It treats each process
as ablack box, such that all outputs of the process are
considered to be dependent on all prior inputs. We found
AutoBash to be very successful in identifying the root
cause of problems, but the success was limited in that
AutoBash would often identify a complex configuration
file, such as Apache’shttpd.conf, as the source of an
error. When such files contain hundreds of options, the
root cause identification of the entire file is often too neb-
ulous to be of great use.

Our take-away lessons from AutoBash were: (1)
causality tracking is an effective tool for identifying root
causes, and (2) causality should be tracked at a finer
granularity than an entire process to troubleshoot appli-
cations with complex configuration files. These observa-
tions led us to use awhite boxapproach in ConfAid that
tracks causality within each process at byte granularity.

The granularity of the root causes reported to the user
is also much finer. Instead of reporting the entire con-
figuration file as a root cause, ConfAid points its users
to specific tokens in the configuration file that it believes
to be in error. This approach narrows down root causes
considerably for programs like Apache.

2.2 Operate on application binaries

We next considered whether ConfAid should require ap-
plication source code for operation. While using source
code would make analysis easier, source code is unavail-
able for many important applications, which would limit
the applicability of our tool. Also, we felt it likely that
we would have to choose a subset of programming lan-
guages to support, which would also limit the number of
applications we could analyze.

For these reasons, we decided to design ConfAid to
not require source code; ConfAid instead operates on
program binaries. ConfAid uses Pin [29] to dynamically
insert instrumentation into binaries as applications run.
It also uses IDA Pro [22] to statically generate control
flow graphs from binaries.

2.3 Embrace imprecise analysis

Our final design decision was to embrace an imprecise
analysis of causality that relies on heuristics rather than
using a sound or complete analysis of information flow.
Using an early prototype of ConfAid, we found that for
any reasonably complex configuration problem, a strict
definition of causal dependencies led to our tool out-
putting almost all configuration values as the root cause
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of the problem. Many registers and bytes in the address
space would come to depend on almost all configuration
values. Our prototype would identify the root cause as
only one of many possible causes.

Thus, our current version of ConfAid uses several
heuristics to limit the spread of causal dependencies. For
instance, ConfAid does not consider all dependencies
to be equal. It considers data flow dependencies to be
more likely to lead to the root cause than control flow
dependencies. It also considers control flow dependen-
cies introduced closer to the error exhibition to be more
likely to lead to the root cause than more distant ones. In
some cases, ConfAid’s heuristics can lead to false nega-
tives and false positives. However, our results show that
in most cases, they are quite effective in narrowing the
search for the root cause and reducing execution time.

3 Design and implementation

3.1 Overview: How ConfAid runs

ConfAid is designed to be used by system administra-
tors and end users when they encounter a suspected mis-
configuration that they do not know how to fix. Conf-
Aid is run offline, once erroneous behavior has been ob-
served. A ConfAid user reproduces the problem by exe-
cuting the application while ConfAid attaches to the ex-
ecuting application processes and monitors information
flow within them. For non-deterministic bugs, ConfAid
could potentially leverage one of several deterministic re-
play systems that can capture a buggy non-deterministic
execution and faithfully reproduce it for later analy-
sis [3, 18, 27, 36].

To use ConfAid, a user specifies: (1) which binaries
ConfAid should monitor, (2) the sources of configura-
tion data, and, as needed, (3) the erroneous external out-
put of the application. For simple applications, Conf-
Aid may monitor only a single process. For more com-
plicated applications, ConfAid dynamically attaches to
multiple specified processes and monitors inter-process
dependencies as described in Section 3.5. While Conf-
Aid could potentially monitorany process that receives
input via IPC or a network message from a process al-
ready monitored by ConfAid, we decided to only mon-
itor executables specified by the user in order to limit
the scope of analysis. Our prior experience with Auto-
Bash showed that many extraneous processes communi-
cate with processes being debugged via channels such
as files, pipes, and signals, yet these processes are not
needed to determine the root cause.

Similarly, we could potentially treatanysource of in-
put to a program as a source of configuration data. How-
ever, such an approach would dramatically slow the anal-
ysis since most locations in the process address space

would come to depend on one or more inputs. In con-
trast, ConfAid only monitors input from designated con-
figuration sources. This makes ConfAid analysis more
tractable than generic taint tracking or program slic-
ing because the number of locations with dependencies
is small. Typically, the sources to monitor are self-
evident; e.g.,httpd.conf is the configuration source
for Apache. Potentially, we could automate this process
by treating all inputs from specific locations (e.g., the
etc directory) or files with semantic keywords (such as
“*.conf”) as configuration inputs.

Finally, a ConfAid user may designate specific error
conditions. ConfAid automatically treats assertion fail-
ures and exits with non-zero return codes as an erroneous
terminations. However, some misconfigurations lead not
to program termination, but instead to the process pro-
ducing erroneous output. We therefore allow the user to
specify a particular string expression as erroneous. Conf-
Aid monitors the system calls that write to network, ter-
minal, and other external output channels. When it finds
a matching output, it considers the output an error.

ConfAid outputs an ordered list of probable root
causes. Each entry in the list is a token from a config-
uration source; our results show that ConfAid typically
outputs the actual root cause as the first or second entry
in the list. This allows the ConfAid user to focus on one
or two specific configuration tokens when deciding how
to fix the problem. By finding the needle in the haystack,
ConfAid dramatically improves TTR.

3.2 Basic information flow analysis

In this section, we describe the basic information flow
analysis used by ConfAid. For simplicity of explana-
tion, we defer discussing optimizations and heuristics
until Sections 3.3 and 3.4. We also assume that ConfAid
is tracking only a single process; Section 3.5 describes
how we extend ConfAid analysis to multiple cooperat-
ing processes on one or more computers.

ConfAid dynamically monitors the information flow
from configuration sources through process memory and
registers to the point in the program execution when erro-
neous behavior is observed. It does so by using Pin [29]
to add custom logic, referred to asinstrumentation, to the
process binary. As described below, ConfAid instrumen-
tation is executed before or after most x86 instructions
executed by a monitored application.

ConfAid uses taint tracking [34] to analyze informa-
tion flow. It inserts instrumentation into the binary that
monitors each system call such asread or pread that
could potentially read data from a configuration source.
If the source of the data returned by a system call was
specified as a configuration file, ConfAid annotates the
registers and memory addresses modified by the system
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if (c == 0) { /* c set to 0 in config file */

x = a; /* taken path */

} else {

y = b; /* alternate path */

}

z = d;

if (z) assert(); /* The erroneous behavior */

Figure 1: Example to illustrate causality tracking

call with a marker that indicates a dependency on a spe-
cific configuration token. Borrowing terminology from
the taint tracking literature, we refer to this marking as
the taint of the memory location. If an address or regis-
ter is tainted by a token, ConfAid believes that the value
at that location might be different if the value of the token
in the original configuration source were to change.

We use the notation,Tx to denote the taint set of vari-
ablex. Tx is a set of configuration tokens; for instance, if
Tx = { FOO, BAR }, ConfAid believes that the value of
variablex could change if the user were to modify either
theFOO or BAR tokens in the configuration file. In the ba-
sic information flow analysis, taints are binary (a location
is either tainted by a token or it is not); in Section 3.4, we
attach a weight to each taint.

Taint is propagated via data flow and control flow de-
pendencies. When a monitored process executes an in-
struction that modifies a memory address, register, or
CPU flag, the taint set of each modified location is set
to the union of the taint sets of the values read by the
instruction. For example, given the instructionx = y+z
where the taint sets of y and z areTy andTz respectively,
the taint set of x,Tx, becomesTy ∪ Tz. Intuitively, the
value of x might change if a configuration token were to
cause y or z to change prior to the execution of this in-
struction. For example, ifTy = { FOO, BAR } andTz =
{ FOO, BAZ }, thenTx = { FOO, BAR, BAZ }.

In traditional taint tracking for security purposes, con-
trol flow dependencies are often ignored to improve per-
formance because they are harder for an attacker to ex-
ploit. With ConfAid, however, we have found that track-
ing control flow dependencies is essential since they
propagate the majority of configuration-derived taint.

A naive approach to tracking control flow is to union
the taint set of a branch conditional with a running con-
trol flow dependency for the program. For example, on
executing the statementif (b), ConfAid could set the
control flow taint set,Tc f , to Tc f ∪Tb. However, without
mechanisms toremovetaint fromTc f , control flow taint
grows without limit. This causes too many false pos-
itives, i.e., ConfAid would identify most configuration
tokens as possible root causes.

A more precise approach takes into account the ba-
sic block structure of a program. Consider the example
in Figure 1. Assumea, b, c, andd were read from a
configuration file and have taint setsTa, Tb, Tc, andTd,
respectively (i.e.,Ta is a set containing only configura-
tion token a). The value ofc does not affect whether the
last two statements are executed, since they execute in all
possible paths (and therefore for all values ofc). Thus,
Tc should be removed fromTc f before executingz= d.
When the program asserts,Tc f should only includeTd in
the example, to correctly indicate that changing the value
of d might fix the problem.

ConfAid also tracks implicit control flow dependen-
cies. In Figure 1, the values ofx andy depend onc when
the program asserts, since the occurrence of their assign-
ments toa andb depend on whether or not the branch is
taken. Note thaty is still dependent onc even though the
else path is not taken by the execution since the value of
y might change if a configuration token is modified such
that the condition evaluates differently.

When the program executes a branch with a tainted
condition, ConfAid first determines the merge point (the
point where the branch paths converge) by consulting the
control flow graph. Prior to dynamic analysis, ConfAid
obtains the graph by using IDA Pro to statically analyze
the executable and any libraries it uses (e.g.,libc and
libssl).

For each tainted branch, ConfAid next explores each
alternate paththat leads to the merge point. We define an
alternate path to be any path not taken by the actual pro-
gram execution that starts at a conditional branch instruc-
tion for which the branch condition is tainted by one or
more configuration values. ConfAid uses alternate path
exploration to learn which variables would have been as-
signed had the condition evaluated differently due to a
modified configuration value. The taint set of any vari-
able assigned on an alternate path is set to the union of
its previous taint set, the taint set of the conditional, and
the taint set of the variables read by the assigning instruc-
tion. In the example,Ty = Ty∪Tc∪{Tc∧Tb}. In other
words, a configuration token affecting the previous value
of y could change, orc could change, causing the pre-
vious value ofy to be overwritten. Finally, it might be
necessary for bothc andb to change (as denoted by the
term{Tc∧Tb}) sincec allows the alternate assignment,
andb may need to reflect a correct configuration value.

To evaluate an alternate path, ConfAid executes the
program by switching the condition outcome, similar
to the predicate switching approach used by Zhang et
al. [48] to explore implicit dependencies. ConfAid uses
copy-on-write logging to checkpoint and roll back ap-
plication state. When a memory address is first altered
along an alternate path, ConfAid saves the previous value
in an undo log. At the end of the execution, applica-
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tion state is replaced with the previous values from the
log. ConfAid uses Pin mechanisms to checkpoint and
rollback the state of the processor, which includes the
registers and CPU flags. Since some alternate paths are
quite long, ConfAid uses abounded horizon heuristic
described in Section 3.3.1 to limit the number of in-
structions it explores along each alternate path. Many
branches need not be explored since their conditions are
not tainted by any configuration token.

After exploring the alternate paths, ConfAid performs
a similar analysis for the path actually taken by the pro-
gram. This is the actual execution, so no undo log is
needed. In the example, analyzing the taken path would
deriveTx = Ta∪Tc∪{Tc∧Tx}.

ConfAid also uses alternate path exploration to learn
which paths avoid erroneous application behavior. Conf-
Aid considers an alternate path to avoid the erroneous
behavior if the path leads to a successful termination of
the program or if the merge point of the branch occurs
after the occurrence of the erroneous behavior in the pro-
gram (as determined by the static control flow graph).
ConfAid unions the taint sets of all conditions that led to
such alternate paths to derive its final result. This result is
the set of all configuration tokens which, if altered, could
cause the program to avoid the erroneous behavior.

Figure 2 shows four examples that illustrate how Conf-
Aid detects alternate paths that avoid the erroneous be-
havior. In case (a), the error occurs after the merge point
of the conditional branch. ConfAid determines that the
branch does not contribute to the error, because both
paths lead to the same erroneous behavior. In case (b),
the alternate path avoids the erroneous behavior because
the merge point occurs after the error, and the alternate
path itself does not exhibit any other error. In this case,
ConfAid considers tokens in the taint set of the branch
condition as possible root causes of the error, since if
the application had taken the alternate path, it could have
avoided the error. In case (c), the alternate path leads to
a different error (an assertion). Therefore, ConfAid does
not consider the taint of the branch as a possible root
cause because the alternate path would not lead to a suc-
cessful termination. In case (d), there are two alternate
paths, one of which leads to an assertion and one that
reaches the merge point. In this case, since there exists
an alternate path that avoids the erroneous behavior, con-
figuration tokens in the taint set of the branch condition
are possible root causes.

One limitation of evaluating an alternate path with
predicate switching is that switching a predicate out-
come, but not the underlying data values, may result in an
“unnatural” execution that leads to erroneous behaviors,
such as a crash due to a segmentation fault. In such cir-
cumstances, ConfAid aborts exploration of the alternate
path but conservatively retains the taint of the conditional
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Figure 2: Examples illustrating ConfAid path analysis

branch in the possible root causes. This conservative be-
havior may lead to false positives if the alternate path
would in fact lead to a real error later in the execution.
The early abort of the alternate path may also lead to
false negatives due to unexplored variable assignments.

3.2.1 Abstracting library functions and system calls

There are three cases where ConfAid does not dynami-
cally analyze information flow. The first case is when the
application makes a system call. Since ConfAid does not
track taint inside the operating system, the information
flow analysis stops at the system call entry. The sec-
ond case is commonly executed standard library func-
tions such asmalloc in libc and cryptographic func-
tions inlibssl. ConfAid uses a primitive static analy-
sis for these functions to improve analysis speed while
still producing the identical effect on process taint values
that would have been produced by a fully-instrumented
execution. Since we abstract only functions in stan-
dard libraries, such taint abstractions are application-
independent. The final case is a small number of heavily
optimizedlibc functions for which IDA Pro does not
produce a complete static analysis.

To handle these cases, ConfAid usestaint abstraction
of the function (or system call). A taint abstraction spec-
ifies how taint is propagated from the inputs of the func-
tions to its outputs (e.g., return values and modified lo-
cation in the address space). When a process calls one
of these functions, ConfAid first executes the function
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without any instrumentation and then uses the taint ab-
straction to modify the taints of the process memory and
registers.

3.3 Heuristics for performance

ConfAid uses two heuristics to simplify control flow
analysis. These heuristics eliminate exploration of some
alternate paths to concentrate on the paths that are most
likely to be useful in identifying the root cause. The
heuristics reduce analysis time but also introduce false
positives and negatives.

3.3.1 The bounded horizon heuristic

The first heuristic is thebounded horizonheuristic.
ConfAid only executes each alternate path for a fixed
number of instructions. By default, ConfAid uses a limit
of 80 instructions. All addresses and registers modified
within the limit are used to calculate information flow de-
pendencies after the merge point. Locations modified af-
ter the limit do not affect dependencies introduced at the
merge point. If an alternate path contains further tainted
conditional branches, ConfAid executes each path un-
til the limit is reached. For example, if the limit is 80
instructions and a tainted conditional branch occurs af-
ter executing 50 instructions, both paths from the new
branch are executed for an additional 30 instructions.

3.3.2 The single mistake heuristic

The second heuristic simplifies control flow analysis by
assuming that the configuration file contains only a lim-
ited number of erroneous tokens. By default, ConfAid
assumes that the configuration file contains a single error
— we refer to this as thesingle mistakeheuristic.

To illustrate how this simplifies path exploration, con-
sider again the example in Figure 1. Recall that at the
time the assert statement is executed,Tx = Ta ∪ Tc ∪
{Tc ∧ Tx}. The single mistake heuristic eliminates the
last term since that term requires the values of two to-
kens to change simultaneously. Similarly, ConfAid de-
rivesTy = Ty∪Tc during alternate path exploration. Note
thatTy no longer depends uponTb. This seems counter-
intuitive, but for the assignmenty = b to occur in the
program, a token inTc must change to cause the alternate
path to be taken. With the single mistake heuristic, a to-
ken inTb but not inTc cannot be the root cause, since one
token inTc already must change.

More importantly, restricting the number of configu-
ration values that can change reduces the alternate paths
that are explored, as shown in Figure 3. The nested con-
dition,c2, can change only if a single configuration value
affects bothc1 andc2. If Tc1∩Tc2 = /0, then the alternate
path ofc2 need not be explored at all.

if (c1 == 0) { /* c1 set to 0 in config file */

...

} else {

if (c2 == 0) { /* c2 set to 0 also */

x = a;

} else {

y = b;

}

}

Figure 3: Example to illustrate alternate path pruning

To implement this heuristic, we introduce a new vari-
able,Talt , that is the set of configuration options that, if
changed, would cause the execution of the program to
reach the current instruction. Initially,Talt is the set of
all configuration tokens. At each condition,c, Talt does
not change along the taken path, but we setTalt = Talt ∩Tc

along the alternate path. In Figure 3,Talt = Tc1∩Tc2 af-
ter the second condition. WhenTalt is /0, the alternate
path is explored no further. When a variable is assigned
along an alternate path, its taint value is set to the union
of its previous taint set andTalt . Thus,Tx = Tx∪Tc1 and
Ty = Ty∪ (Tc1∩Tc2).

The single mistake heuristic may lead to false nega-
tives. In Figure 3, ifc1 andc2 are tainted by a disjoint
set of tokens, ConfAid will not explore the path on which
y is assigned tob, so it may miss the root cause if the
program later asserts based on the value ofy. Potentially,
if ConfAid cannot find a root cause, we can relax the
single-mistake assumption by allowing ConfAid to as-
sume that two or more tokens are erroneous. In our ex-
periments to date, this heuristic has yet to trigger a false
negative.

3.4 Heuristics for reducing false positives

We originally designed ConfAid to use only the basic
taint tracking algorithm described in Section 3.2 with the
bounded horizon and single mistake heuristics. However,
our initial experiments with this design met with only
limited success. Typically, ConfAid would include the
root cause of a misconfiguration in its output set, yet the
cardinality of the output set would be very large. For
many bugs, ConfAid would return a significant fraction
of the tokens in the configuration file.

In analyzing our initial results, we realized that it was
insufficient to track information flow dependencies as bi-
nary values. In our design as described so far, two con-
figuration tokens are considered equal taint sources even
if one has a direct causal relationship to a location (e.g.,
the value in memory was read directly from the configu-
ration file) and another has a nebulous relationship (e.g.,
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the taint was propagated along a long chain of condi-
tional assignments deep along alternate paths).

Another problem we noticed was that loops could
cause a location to become a global source and sink for
taint. For instance, Apache reads its configuration values
into a linked list structure, and then traverses the list in a
loop to find the value of a particular configuration token.
During the traversal, the program control flow picks up
taint from many configuration options, and these taints
are sometimes transferred to the configuration variable
that is the target of the search.

We realized that both of these problems were caused
by the implicit assumption in our design that all infor-
mation flow relationships should be treated equally. Es-
sentially, our design had no shades of gray: it either con-
sidered a location to be tainted by a token or it did not.
Based on this observation, we decided to modify our de-
sign to instead track taint as a floating-point weight rang-
ing in value between zero and one. For example, the taint
of x might be represented as{ FOO:wf oo, BAR:wbar }.
As before, this set indicates that modifying either token
FOO or BAR might change the value ofx. However, if
wf oo > wbar, FOO has a more direct relationship tox,
and hence is believed to be a better candidate for the root
cause of an error that depends onx.

We revised ConfAid to use heuristics to weight the
dependencies introduced by information flow differently,
with those relationships that are more likely to lead to the
root cause given a higher weight than those less likely to
lead to the root cause. We also modified ConfAid to or-
der the set of tokens on which an erroneous behavior de-
pends by their respective weights before outputting them.

Our weights are based on two heuristics. First, data
flow dependencies are assumed to be more likely to lead
to the root cause than control flow dependencies. Sec-
ond, control flow dependencies are assumed to be more
likely to lead to the root cause if they occur later in the
execution (i.e., closer to the erroneous behavior).

Specifically, we assign taints introduced by control
flow dependencies only half the weight of taints intro-
duced by data flow dependencies. Further, each nested
conditional branch reduces the weight of dependencies
introduced by prior branches in the nest by one half. We
chose a weight of 0.5 for speed: it can be implemented
efficiently with a vector bit shift.

For example, in Figure 4, the assignmentx = a is a
data flow dependency, soTx = Ta (any dependencies from
a are inherited at full weight). However,y inherits taint
from c1 through a control flow dependency. Thus,Ty =

max(Ta,
Tc1
2 ). That is, we weight any taint fromc1 by

half, while taint inherited froma is given full weight.
We use a specialmaxoperator here rather than a simple
union operator, since the values are now floating point
rather than binary. Specifically,max(Tx,Ty) produces a

x = a;

if (c1 == 0) { /* c1 set to 0 in config file */

y = a;

} else {

z = b;

}

if (c2 == 0) { /* c2 set to 0 in config file */

if (c3 == 0) { /* c3 also set to 0 */

w = a;

}

}

Figure 4: Example to illustrate the weighting heuristic

set that contains all tokens that occur in eitherTx andTy.
If a token appears in only one ofTx or Ty, its weight is
set to its weight in that set. If a token appears in bothTx

andTy, its weight is set to the maximum of its weight in
either set.

Similarly, Tz = max(Tz,
Tc1
2 ) (recall that with binary

values,Tz = Tz∪ Tc1 due to the single mistake heuris-
tic). When ConfAid explores an alternate path, it re-
places the intersection operator with a correspondingmin
operator. Thus, in the prior example from Figure 3,
Ty = max(Ty,min(Tc1

4 ,
Tc2
2 )).

Figure 4 also shows two nested conditions. In calculat-
ing the taint ofw, conditionc3 is considered more influ-
ential than conditionc2 because it occurs later in the pro-
gram execution. ThereforeTw = max(Ta,

Tc3
2 ,

Tc2
4 ). The

same weighting applies to alternate path execution; as-
signments on an alternate path starting at thec3 branch
are given twice the weight as those on an alternate path
starting at thec2 branch.

ConfAid also weights alternate paths that avoid the
erroneous behavior by their proximity to the point in
application execution where the behavior is exhibited.
Paths starting from the closest tainted conditional branch
that avoids the erroneous behavior are given full weight,
those from the next closest branch are given half weight,
and so on. Note that if a configuration token has a much
stronger weight on the condition of a distant branch than
any tokens for closer branches, ConfAid may still rank it
as the most likely root cause.

Of course, when programs do not behave as expected,
ConfAid’s heuristics may lead to incorrect results. For
example, an application could potentially execute a sub-
stantial amount of code between the point where the erro-
neous behavior occurs and the point where the program
outputs some value that exhibits the error (e.g., an error
message). If that code contains a condition tainted by
a configuration token other than the one that caused the
errorand that condition changes the specific error mes-
sage that is generated, ConfAid might identify the wrong
token as the most likely root cause. While such a sce-
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nario is uncommon, we did observe a single Apache bug
(described further in the evaluation) in which ConfAid’s
heuristic failed in this manner.

3.5 Multi-process causality tracking

The most difficult configuration errors to troubleshoot
involve multiple interacting processes. Such processes
may be on a single computer, or they may reside on mul-
tiple computers connected by a network. To troubleshoot
such cases, ConfAid instruments multiple processes at
the same time and propagates taint information along
with the data sent when the processes communicate.

ConfAid supports processes that communicate using
sockets and files. The socket support includes Unix sock-
ets and pipes, as well as UDP and TCP sockets. Conf-
Aid instruments the system calls that create sockets and
pipes. It marks these objects as taint propagating chan-
nels if the destination is another instrumented process.
Then, ConfAid intercepts all sends and receives using
those channels. When data is sent, ConfAid appends a
header that indicates whether or not the data is tainted
and, when applicable, the exact taint of the data. Taint
information is propagated at per-byte granularity if the
taints of different bytes of the buffer are different. On
the receiving side, ConfAid extracts the header from the
received data and assigns the indicated taints to the re-
ceived data.

For files, ConfAid creates an auxiliary file with a spe-
cial “.confaid” extension when an instrumented process
writes tainted data to a file. The auxiliary file records
which bytes in the corresponding file are tainted and
the specific values of those taints. Like sockets, file
taint is recorded at granularities as small as one byte.
For instance, the file “foo.confaid” records the tainted
bytes in file “foo”. When an instrumented process reads
data from a file and a corresponding auxiliary file exists,
ConfAid sets the taints of bytes read from the file to the
values specified in the auxiliary file.

Since these operations are performed by PIN instru-
mentation immediately before and after system call exe-
cution, the taint propagation is hidden from the applica-
tion. No operating system modifications are needed.

3.6 Limitations and future work

Since configuration troubleshooting is complex, Conf-
Aid makes a number of assumptions to simplify its anal-
ysis. First, ConfAid only troubleshoots configuration
problems that lead to crashes, assertion failures, and in-
correct output; it does not yet help diagnose misconfig-
urations that cause poor performance. One approach to
tackling performance problems that we are investigating

is to first use statistical sampling to associate use of a bot-
tleneck resource such as disk or CPU with specific points
in the program execution. Then, ConfAid-style analysis
can determine which configuration tokens most directly
affect the frequency of execution of those points.

Second, like previous configuration troubleshooting
systems [38, 39], ConfAid currently assumes that the
configuration file contains only one erroneous token. If
fixing a particular error requires changing two tokens,
then ConfAid’s alternate path analysis may not identify
both tokens, as described in Section 3.3.2. However, if
a file contains two incorrect tokens that represent inde-
pendent mistakes, ConfAid can tackle the two errors se-
quentially by first identifying the token that leads to the
most immediate failure, and then identifying the other
token once the first error is corrected. The single mis-
take heuristic improves ConfAid’s performance by re-
ducing the set of possible taints tracked during dynamic
analysis. In the future, we plan to allow ConfAid to
track sets of two or more misconfigured tokens and mea-
sure the resulting performance overhead. Potentially, we
may use an expanding search technique in which Conf-
Aid initially performs an analysis assuming only a single
mistake, and then performs a lengthier analysis allowing
multiple mistakes if the first analysis does not yield sat-
isfactory results.

4 Evaluation

Our evaluation answers the following questions:

• How effective is ConfAid in identifying the root
cause of configuration problems?

• How long does ConfAid take to find the root cause?

4.1 Experimental setup

We evaluated ConfAid on three applications: the
OpenSSH server version 5.1, the Apache HTTP server
version 2.2.14, and the Postfix mail transfer agent version
2.7. All of our experiments were run on a Dell OptiPlex
980 desktop computer with an Intel Core i5 Dual Core
processor and 4 GB of memory. The machine runs Linux
kernel version 2.6.21. For Apache, ConfAid instruments
a single process; for OpenSSH and Postfix, multiple pro-
cesses are instrumented.

To evaluate ConfAid, we manually injected errors into
correct configuration files. Then, we ran a test case that
caused the error we injected to be exhibited. We used
ConfAid to instrument the process (or processes) for that
application, and obtained the ordered list of root causes
found by ConfAid. We use two metrics to evaluate Conf-
Aid’s effectiveness: the ranking of the actual root cause,
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i.e., the injected mistake, in the list returned by ConfAid
and the time to execute the instrumented application.

We used two different methods to generate configu-
ration errors. First, we injected 18 real-world configu-
ration errors that were reported in online forums, FAQ
pages, and application documentation. Second, we used
the ConfErr tool [25] to inject random errors into the con-
figuration files of the three applications.

4.2 Real-world misconfigurations

We searched forums, FAQ pages and configuration doc-
uments to find actual configuration problems that users
have experienced with our target applications. In total,
we chose 18 misconfigurations (5–7 for each application)
that were caused by errors in the configuration files. The
18 misconfigured values cover a range of data types, such
as binary options, enumerated types, numerical ranges,
and text entries such as server names. Table 1 lists the
configuration errors for each application, as well as the
ConfAid results.

In these experiments, ConfAid tracks dependencies
among multiple processes for all OpenSSH and Postfix
bugs. For OpenSSH, it instruments two processes that
communicate via Unix sockets. For Postfix, it instru-
ments between four and six processes that communicate
via Unix sockets and files; the number of instrumented
processes varies depending on how many processes are
started before a particular bug manifests. Multi-process
causality tracking is necessary to diagnose 4 out of 5
Postfix and 3 out of 7 OpenSSH bugs. For Apache, Conf-
Aid does not track dependencies across processes since
that application starts only a single process.

As shown in Table 1, ConfAid is highly effective in
pinpointing the root cause of misconfigurations. Conf-
Aid ranks the actual root cause first in 13 cases, and
second in the other 5. Sometimes, when the actual root
cause is ranked second, the token ranked first provides a
valuable clue to help debug the problem. For instance,
in Apache the actual error usually occurs nested inside a
section or directive command in the config file. For the
two Apache errors where the root cause is ranked second,
the top-ranked option is the section or directive contain-
ing the error.

The performance of ConfAid is reasonable. The time
to manifest the buggy behavior varies among applica-
tions. Postfix and OpenSSH take less than 2 minutes,
while Apache takes 2–3 minutes to complete. The av-
erage execution time of 1:32 minutes is much faster and
less frustrating than trying to fix such configuration er-
rors by looking at the logs, searching the Internet, and
asking colleagues for potential clues. For instance, the
6th Apache misconfiguration in Table 1 is taken from a
thread in linuxforums.org [28]. After trying to fix the

misconfiguration for quite a while, the user went to the
trouble of posting the question in the forum and waited
two days for an answer. In contrast, ConfAid identified
the root cause in less than 3 minutes.

4.3 Effect of the weighting heuristic

We next examine the effect of the weighting heuristic in-
troduced in Section 3.4. For each of the 18 real-world
misconfigurations, we disabled the heuristic and re-ran
ConfAid. With the heuristic disabled, ConfAid treats all
sources of information flow equally. Therefore, instead
of producing a ranked list of possible root causes, Conf-
Aid returns a single set of tokens, each of which is con-
sidered equally likely to be the root cause.

The last column of Table 1 shows the number of false
positives when the heuristic is disabled. In every case,
ConfAid identifies the correct root cause as one of the
returned tokens. However, the number of other tokens
returned varies substantially. Without the heuristic, there
were only two misconfigurations (the 6th OpenSSH bug
and the 5th Postfix bug) for which ConfAid produces no
false positives. For six other bugs, the number of false
positives is relatively low (less than 6). For the remain-
ing 10 bugs, ConfAid returns almost all options as pos-
sible root causes. Thus, without the weighting heuristic,
ConfAid is ineffective for 55% of the misconfigurations.

4.4 Effects of bounded horizon heuristic

We next investigated the effect of varying ConfAid’s
limit on the number of instructions executed along each
alternate path (discussed in Section 3.3.1) from the de-
fault value of 80 instructions. As Figure 5 shows, varying
the limit has substantially different effects on execution
time, depending on the application being instrumented.
For OpenSSH (bug #1), the execution time increases ap-
proximately linearly from 56 seconds with no alternate
path exploration to 2:29 minutes with a horizon of 1600
instructions. On the other hand, Postfix (bug #1), shows
an apparently exponential growth as the bound increases.
The execution time starts at 21 seconds with no alternate
path exploration and increases to 7:10 minutes for a hori-
zon of 800 instructions. With a horizon of 1600, ConfAid
analysis did not complete.

This difference in behavior derives from the nature of
the applications. We found that even with a limit of 80
instructions, more than 80% of the tainted conditional
branches in the OpenSSH bug reach their merge points
for all alternate paths. Increasing the horizon only affects
a small fraction of the branches since the rest are short
enough to finish within the limit. On the other hand, for
Postfix, less than 50% of the branches reach their merge
point within the limit of 80 instructions. As we raise the
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Application Bug Description of misconfiguration
Total # of ConfAid rank of Execution # false positives
options the root cause time w/o weights

1
The PermitRootLogin option is disabled. Therefore,
the user cannot ssh as root. The server keeps denying
permission although the password is entered correctly.

47 2nd(tied w/1) 1m 16s 6

2
The server only has the PasswordAuthentication op-
tion enabled, while the user can only authenticate via
RSA keys.

47 1st(tied w/1) 1m 10s 1

3
The user does not have his public key in the directory
specified in the SSH server config file. Therefore, he
cannot authenticate.

48 2nd 51s 43

OpenSSH 4
The user is not in the AllowUsers list in the SSH con-
fig file. Therefore, he cannot connect to the server al-
though he enters the password correctly.

49 2nd 48s 44

Server 5
The MaxAuthTries option in SSH server config is set
too low. Therefore, the user is disconnected if she en-
ters her password incorrectly once.

47 1st 1m 13s 43

6
The MaxStartups options is set to 1. Therefore, the
server refuses to start a new session, while another
unauthenticated session is still in progress.

47 1st 9s 0

7
The location of the server RSA key is not set correctly
in the config file. Therefore, the client fails to verify
the host key.

47 1st(tied w/1) 36s 43

1

The path specified in the DocumentRoot option does
not have a corresponding<Directory> section. There-
fore, all accesses to this path are denied according to
the default policy.

88 2nd(tied w/1) 2m 46s 87

2

The cgi-bin directory is ScriptAlised in the config file.
This prevents the DirectoryIndex from working as ex-
pected. Therefore, the user cannot access the index file
in the directory.

89 1st 2m 45s 87

Apache 3

The cgi-bin directory is aliased in the config file. How-
ever, the corresponding Directory section does not pro-
vide sufficient permissions. Therefore, accesses to this
directory are denied.

89 2nd(tied w/1) 2m 45s 88

HTTP Server 4

A virtual host with the same interface coverage is set
for the HTTP server. This host points to a differ-
ent DocumentRoot which overwrites the default one.
Therefore, the user gets an index file with incorrect
content upon accessing the server DocumentRoot.

93 1st 2m 59s 91

5

The cgi-bin directory is aliased and a CGI Handler is
activated in the config file. However, the correspond-
ing <Directory> section does not have the ExecCGI
option set. The user cannot access the executables in
this directory.

89 1st 2m 46s 88

6

A specific directory in DocumentRoot is also aliased to
another directory outside DocumentRoot. Therefore,
accesses to files in the first directory are redirected to
the aliased directory, and the files are not found.

89 1st(tied w/1) 2m 47s 86

1
The mydestination option is not set correctly in the
Postfix config file. Therefore, Postfix cannot deliver
mail locally.

27 1st 37s 4

2
The myorigin option is set incorrectly in the Postfix
config file. Therefore, the next relay host bounces the
mail sent from the user’s machine to the Internet.

27 1st 1m 10s 4

Postfix 3
The relayhost option is set incorrectly. Therefore,
Postfix cannot forward the email sent from the user’s
machine to the Internet.

29 1st 47s 4

4
The type of aliasmaps option is not supported in the
user’s machine. Therefore, Postfix fails to send any
mail locally or to the Internet.

29 1st 32s 2

5
The email address provided in luser-replay is not
reachable. Therefore, Postfix cannot redirect other
mail with wrong recipient to the luser-replay.

29 1st 1m 38s 0

Table 1: Results for 18 real-world configuration bugs
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Figure 5: The effect of varying the horizon

limit, the percentage of the completed branches increases
slowly to 60%.

To summarize, we found that there is no single limit
that works best for all applications. Consequently, we
envision that we could augment ConfAid to use an iter-
ative search process in which it would start with a small
horizon to generate results quickly, then continue to exe-
cute with larger horizons to refine the results.

4.5 Random fault injection

We next used ConfErr [25] to randomly generate config-
uration errors. ConfErr uses human error models rooted
in psychology and linguistics to generate realistic config-
uration mistakes. We used ConfErr to produce 20 errors
for each application. We then injected the errors one by
one and measured the effectiveness and performance of
ConfAid.

As shown in Table 2, ConfAid performs very well on
these errors. The average time to execute all three appli-
cations is lower than the average execution time for the
real-world errors used in the previous section. The main
reason for this difference is that the real-world errors are
often more complex than the randomly-generated ones.
Therefore, it takes more time for the application to man-
ifest the buggy behavior for real-world errors.

For the randomly generated errors, ConfAid instru-
ments up to two processes for OpenSSH and up to six
processes for Postfix. However, many faults are exhib-
ited before these applications start additional processes;
in such cases, ConfAid only instruments one process.

For OpenSSH, ConfAid successfully pinpointed the
root cause (where we define success as listing the actual
root cause as one of the top two options) for 95% of the
bugs. For the last bug, ConfAid could not run to com-
pletion due to unsupported system calls used in the code
path. We could remedy this by abstracting more calls.

ConfAid also successfully diagnoses 95% of the
Apache errors. For the remaining error, ConfAid ranks
the root cause 9th. The configuration error is that the
DirectoryIndex file for the main document root is listed
incorrectly in the Apache configuration file. The Directo-
ryIndex file is the file that Apache serves if that directory
is accessed without mentioning a specific file. For in-
stance, accessinghttp://server.com/images/ will
return the DirectoryIndex file listed for theimagesdirec-
tory. However, theIndexes option is also activated for
the document root directory. This option allows Apache
to send the list of the files in the directory if no specific
file in that directory is requested. The combination of
these two options causes Apache to serve the list of files
in the main document directory instead of the index file.
ConfAid determines that the content sent to the user is
dependent on theIndexes and related options first and
the DirectoryIndex option next. Thus, the root cause gets
ranked lower in the list. This ordering is a direct result
of the heuristic discussed in Section 3.4 that considers
branches closer to the erroneous behavior to be more
likely to lead to the root cause than those farther away.

For Postfix, ConfAid diagnoses 85% of the errors ef-
fectively. The remaining 3 errors are due to missing
configuration options. Currently, ConfAid only consid-
ers all tokens present in the configuration file as possi-
ble sources of the root cause. If a default value can be
overridden by a token not actually in the file, then Conf-
Aid will not detect the missing token as a possible root
cause. Based on these results, we plan to extend our al-
ternate path analysis to look for tokens that could be read
from the config file along branches that are not actually
executed. We can taint variables modified along those
branches with a value that is dependent upon the branch
conditions that led to that path.

Overall, ConfAid successfully diagnosed 55 out of 60
random errors by ranking the actual root cause first or
second. Out of the remaining 5 errors, we believe that 4
(the OpenSSH server error and the three Postfix errors)
can be diagnosed with further improvements to the Conf-
Aid implementation. The remaining error (the Apache
error) is a direct result of our weighting heuristic and
seems hard for ConfAid to diagnose correctly.

5 Related work

Several prior research efforts have applied different tech-
niques to the problem of configuration troubleshooting.
Unlike ConfAid, most prior systems have taken ablack
boxapproach that uses only state external to the applica-
tion being debugged to infer the problem.

PeerPressure [38] and its predecessor, Strider [39], use
statistical methods to compare configuration state in the
Windows registry on different machines. When a value
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Application root causes root causes ranked root causes root causes ranked root causes ranked Avg. time
ranked first first with one tie ranked second second with one tie worse than second to run

OpenSSH 17 (85%) 1 (5%) 1 (5%) 0 1 (5%) 7s
Apache 17 (85%) 1 (5%) 0 1 (5%) 1 (5%) 24s
Postfix 15 (75%) 0 2 (10%) 0 3 (15%) 38s

Table 2: Random fault injection results

on a machine exhibiting erroneous behavior differs from
the value usually chosen by other machines, PeerPres-
sure flags the value as a potential error. This approach
works well as long as the majority configuration is ap-
propriate for the target machine; however, PeerPressure
and Strider cannot separate custom configuration vari-
ables from erroneous ones since they do not observe how
applications actually use those values. In contrast, Conf-
Aid can differentiate these cases by observing how the
values are used inside the application binary.

Chronus [40] also compares multiple configuration
states, Instead of comparing states across computers, it
uses virtual machine checkpoint and rollback to “time
travel” through states on the same machine, looking for
the instance in which the program behavior on a particu-
lar test case switched from correct to incorrect.

Other projects monitor state external to applications
as they run. Cohen et al. [15] use statistical techniques
to help troubleshoot performance issues by correlating
those issues with low-level performance statistics for the
CPU, disk, and other system components. AutoBash [37]
traces causality inside the OS by monitoring system call
execution, but treats execution inside each process as a
black box. AutoBash can suggest that a particular con-
figuration file may be erroneous, but it cannot identify
the specific value within the file that is at fault.

Our previous work on misconfiguration diagnosis [4]
uses the application’s system call trace to extract the files
and processes on which the application causally depends.
It then generates a signature based on those dependencies
to represent the misconfiguration and search for the sig-
nature in a database of known bugs. Clarify [21] uses
similar execution signatures to improve error reporting.
It uses program features such as function call counts, call
sites, and stack dumps to generate the signatures. The
improved error reporting, although helpful, does not di-
agnose the root cause.

In contrast to all these projects, ConfAid takes awhite
boxapproach to configuration troubleshooting by moni-
toring causality within the program binary as it executes.
Thus, ConfAid can observe the actual dependencies as
they are introduced rather than inferring them through
statistical and other methods.

Two recent systems apply white box analysis to a re-
lated problem: helping developers replicate a problem

experienced in the field. SherLog [43] and ESD [44]
both use static analysis and symbolic execution to infer
the execution path of the application. SherLog uses log
messages and ESD leverages the bug report generated by
the application to constrain the execution path. Both of
these systems can replicate an execution path that derives
from a misconfiguration. However, they make different
design decisions than ConfAid, driven by their differ-
ent use case. They both require application source code,
and SherLog also may require guidance from developers
about which functions should be symbolically executed.
This is appropriate for a tool used by software experts,
but less so for one like ConfAid that is targeted at ad-
ministrators and users. More generally, symbolic execu-
tion systems have been applied to model checking file
systems and other complex software systems [9, 41].

A number of systems trace causality external to pro-
cesses to debug configuration and performance issues in
distributed systems. For example, the work of Aguilera
et al. [2] and Magpie [5, 6] trace RPCs and other net-
work communication to debug performance problems.
Causeway [11] allows applications to inject metadata
that follows causal paths for distributed applications.
Pinpoint [13] traces middleware and communications be-
tween components in a distributed system and statis-
tically correlates traces with success and failure data.
Follow-on work to Pinpoint [12] adds the abstraction of
causalpathsthat link black-box components. ConfAid
and these systems share the common idea of propagat-
ing causal information among distributed components;
however, ConfAid also propagates causal information
within processes, which allows it to precisely determine
the causal relationships between inputs and outputs.

More generally, many systems reason about causal in-
teractions in the operating system and in distributed sys-
tems. For example, taint tracking [34] monitors data flow
dependencies to determine when input data is used in
an insecure manner. ConfAid uses the same approach
for data flow analysis, but applies it to a different do-
main. Dytan [14] proposes a generic dynamic taint anal-
ysis framework to ease the implementation of various
taint-based techniques. ConfAid enhances the basic dy-
namic taint analysis with essential heuristics and ap-
plies it to configuration troubleshooting problem. Red-
Flag [17] uses data flow analysis to reduce the leaks of
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sensitive information by personal machines. Resin [42]
uses application-level data flow assertions to improve
the security of applications. Decentralized informa-
tion flow [32, 45] monitors both control flow and data
flow dependencies to determine if a code component
leaks information that it is not authorized to divulge.
BackTracker [26] traces causal interactions to determine
what state has been changed during an intrusion. As-
bestos [19] and HiStar [46] monitor causality in the OS
to prevent inadvertent disclosure of private data.

Program slicing [1, 48, 47], intended to aid in debug-
ging, is a more general approach that determines which
statements could affect the value of a variable using a
backward or forward computations. ConfAid applies
similar data and control flow analysis techniques to a new
problem, namely determining the root causes of miscon-
figurations.

6 Conclusion

Configuration errors are costly, time-consuming, and
frustrating to troubleshoot. ConfAid makes trou-
bleshooting easier by pinpointing the specific token in a
configuration file that led to an erroneous behavior. Com-
pared to prior approaches, ConfAid distinguishes itself
by analyzing causalitywithin processes as they execute
without the need for application source code. It propa-
gates causal dependencies among multiple processes and
outputs a ranked list of probable root causes. Our results
show that ConfAid usually lists the actual root cause as
the first or second entry in this list. Thus, ConfAid can
substantially reduce total time to recovery and perhaps
make configuration problems a little less frustrating.
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