
Reining in the Outliers inMap-Reduce Clusters usingMantri

Ganesh Ananthanarayanan†⋄ Srikanth Kandula† Albert Greenberg†

Ion Stoica⋄ Yi Lu† Bikas Saha‡ Edward Harris‡
†Microso
 Research ⋄ UC Berkeley ‡ Microso
 Bing

Abstract– Experience from an operational Map-Reduce
cluster reveals that outliers signi�cantly prolong job com-
pletion. �e causes for outliers include run-time con-
tention for processor, memory and other resources, disk
failures, varying bandwidth and congestion along net-
work paths and, imbalance in task workload. We present
Mantri, a system that monitors tasks and culls outliers us-
ing cause- and resource-aware techniques. Mantri’s strate-
gies include restarting outliers, network-aware placement
of tasks and protecting outputs of valuable tasks. Using
real-time progress reports,Mantri detects and acts on out-
liers early in their lifetime. Early action frees up resources
that can be used by subsequent tasks and expedites the job
overall. Acting based on the causes and the resource and
opportunity cost of actions lets Mantri improve over prior
work that only duplicates the laggards. Deployment in
Bing’s production clusters and trace-driven simulations
show that Mantri improves job completion times by .

 Introduction

In a very short time, Map-Reduce has become the domi-
nant paradigm for large data processing on compute clus-
ters. So
ware frameworks based on Map-Reduce [, ,
] have been deployed on tens of thousands of machines
to implement a variety of applications, such as building
search indices, optimizing advertisements, and mining
social networks.

While highly successful, Map-Reduce clusters come
with their own set of challenges. One such challenge is
the o
en unpredictable performance of the Map-Reduce
jobs. A job consists of a set of tasks which are organized in
phases. Tasks in a phase depend on the results computed
by the tasks in the previous phase and can run in paral-
lel. When a task takes longer to �nish than other similar
tasks, tasks in the subsequent phase are delayed. At key
points in the job, a few such outlier tasks can prevent the
rest of the job from making progress. As the size of the
cluster and the size of the jobs grow, the impact of outliers
increases dramatically. Addressing the outlier problem is
critical to speed up job completion and improve cluster
e�ciency.

Even a few percent of improvement in the e�ciency
of a cluster consisting of tens of thousands of nodes can

save millions of dollars a year. In addition, �nishing pro-
duction jobs quickly is a competitive advantage. Doing
so predictably allows SLAs to be met. In iterative mod-
ify/ debug/ analyze development cycles, the ability to it-
erate faster improves programmer productivity.

In this paper, we characterize the impact and causes
of outliers by measuring a large Map-Reduce production
cluster. �is cluster is up to two orders of magnitude
larger than those in previous publications [, , ] and
exhibits a high level of concurrency due to many jobs si-
multaneously running on the cluster and many tasks on
a machine. We �nd that variation in completion times
among functionally similar tasks is large and that outliers
in�ate the completion time of jobs by 34% at median.

We identify three categories of root causes for outliers
that are induced by the interplay between storage, net-
work and structure of Map-Reduce jobs. First, machine
characteristics play a key role in the performance of tasks.
�ese include static aspects such as hardware reliabil-
ity (e.g., disk failures) and dynamic aspects such as con-
tention for processor, memory and other resources. Sec-
ond, network characteristics impact the data transfer rates
of tasks. Datacenter networks are over-subscribed leading
to variance in congestion among di�erent paths. Finally,
the speci�cs of Map-Reduce leads to imbalance in work –
partitioning data over a low entropy key space o
en leads
to a skew in the input sizes of tasks.

We present Mantri1, a system that monitors tasks and
culls outliers based on their causes. It uses the follow-
ing techniques: (i) Restarting outlier tasks cognizant of
resource constraints and work imbalances, (ii) Network-
aware placement of tasks, and (iii) Protecting output of
tasks based on a cost-bene�t analysis.

�e detailed analysis and decision process employed by
Mantri is a key departure from the state-of-the-art for out-
lier mitigation in Map-Reduce implementations [, ,
]; these focus only on duplicating tasks. To our knowl-
edge, none of them protect against data loss induced re-
computations or network congestion induced outliers.
Mantri places tasks based on the locations of their data
sources as well as the current utilization of network links.
On a task’s completion, Mantri replicates its output if the

1From Sanskrit, a minister who keeps the king’s court in order

bene�t of not having to recompute outweighs the cost of
replication.

Further, Mantri performs intelligent restarting of out-
liers. A task that runs for long because it has more work
to do will not be restarted; if it lags due to reading data
over a low-bandwidth path, it will be restarted only if a
more advantageous network location becomes available.
Unlike current approaches that duplicate tasks only at the
end of a phase, Mantri uses real-time progress reports to
act early. While early action on outliers frees up resources
that could be used for pending tasks, doing so is nontriv-
ial. A duplicate may �nish faster than the original task
but has the opportunity cost of consuming resources that
other pending work could have used.

In summary we make the following contributions.
First, we provide an analysis of the causes of outliers in
a large production Map-Reduce cluster. Second, we de-
velop Mantri, that takes early actions based on under-
standing the causes and the opportunity cost of actions.
Finally, we perform an extensive evaluation of Mantri and
compare it to existing solutions.

Mantri runs live in all of Bing’s production clusters since
May . Results from a deployment of Mantri on a pro-
duction cluster of thousands of servers and from replay-
ing several thousand jobs collected on this cluster in a
simulator show that:
• Mantri reduces the completion time of jobs by 32% on
average on the production clusters. Extensive simula-
tions show that job phases are quicker by 21% and 42%
at the th and th percentiles. Mantri’s median re-
duction in completion time improves on the next best
scheme by .x while using fewer resources.

• By placing reduce tasks to avoid network hotspots,
Mantri improves the completion times of the reduce
phases by 60%.

• By preferentially replicating the output of tasks that are
more likely to be lost or expensive to recompute, Mantri

speeds up half of the jobs by at least 20% each while
only increasing the network tra�c by 1%.

 Background

Wemonitored the cluster and so
ware systems that sup-
port the Bing search engine for over twelve months. �is
is a cluster of tens of thousands of commodity servers
managed by Cosmos [], a proprietary upgraded form of
Dryad []. Despite a few di�erences, implementations
of Map-Reduce [, , , ] are broadly similar.

Most of the jobs in the examined cluster are written
in Scope [], a mash-up language that mixes SQL-like
declarative statements with user code. �e Scope com-
piler transforms a job into a work�ow– a directed acyclic
graph where each node is a phase and each edge joins a
phase that produces data to another that uses it. A phase

is a set of one or more tasks that run in parallel and per-
form the same computation on di�erent parts of the in-
put stream. Typical phases are map, reduce and join. �e
number of tasks in a phase is chosen at compile time. A
task will read its input over the network if it is not avail-
able on the local disk but outputs are written to the local
disk. �e eventual outputs of a job (as well as rawdata) are
stored in a reliable block storage system implemented on
the same servers that do computation. Blocks are repli-
cated n-ways for reliability. A run-time scheduler assigns
tasks to machines, based on data locations, dependence
patterns and cluster-wide resource availability. �e net-
work layout provides more bandwidth within a rack than
across racks.
We obtain detailed logs from the Scope compiler and

the Cosmos scheduler. At each of the job, phase and task
levels, we record the execution behavior as represented
by begin and end times, the machines(s) involved, the
sizes of input and output data, the fraction of data that
was read across racks and a code denoting the success or
type of failure. We also record the work�ow of jobs. Ta-
ble  depicts the random subset of logs that we analyze
here. Spanning eighteen days, this dataset is at least one
order ofmagnitude larger than prior published data along
many dimensions, e.g., number of jobs, cluster size.

 �e Outlier Problem

We begin with a �rst principles approach to the outlier
problem, then analyze data from the production cluster
to quantify the problem and obtain a breakdown of the
causes of outliers (§). Beginning at the �rst principles
motivates a distinct approach (§) which as we show in §
signi�cantly improves on prior art.

. Outliers in a Phase

Assume a phase consists ofn tasks and has s slots. Slot is a
virtual token, akin to a quota, for sharing cluster resources
among multiple jobs. One task can run per slot at a time.
On our cluster, the median ratio of n

s
is 2.11 with a stdev

of 12.37. �e goal is to minimize the phase completion
time, i.e., the time when the last task �nishes.
Based on data from the production cluster, we model

ti, the completion time of task i, as a function of the size
of the data it processes, the code it runs, the resources
available on the machine it executes and the bandwidth
available on the network paths involved:

ti = f (datasize, code,machine, network) . ()

Large variation exists along each of the four variables
leading to considerable di�erence in task completion
times. �e amount of data processed by tasks in the same
phase varies, sometimes widely, due to limitations in di-
viding work evenly. �e code is the same for tasks in a

Dates Phases Jobs Compute Data Network

-’ x 103 (years) (PB) (PB)

May , .  . . .
Jun , .  . . .
Jul , .  . . .
Aug , .  . . .
Sep , .  . . .
Oct , .  . . .
Nov , .  . . .
Dec , .  . . .
Jan , .  . . .

Table : Details of the logs from a production cluster consisting
of thousands of servers.

phase, but di�ers signi�cantly across phases (e.g., map
and reduce). Placing a task on a machine that has other
resource hungry tasks in�ates completion time, as does
reading data across congested links.

In the ideal scenario, where every task takes the same
amount of time, say T , scheduling is simple. Any
work-conserving schedule would complete the phase in
(

⌈n
s
⌉ × T

)

.When the task completion time varies, how-
ever, a naive work-conserving scheduler can take up to
(

P

n
ti

s
+ max ti

)

. A large variation in ti increases the

term max ti and manifests as outliers.

�e goal of a scheduler is to minimize the phase com-

pletion time and make it closer to
P

n
ti

s
. Sometimes, it

can do even better. By placing tasks at less congested ma-
chines or network locations, the ti’s themselves can be
lowered. �e challenge lies in recognizing the aspects that
can be changed and scheduling accordingly.

. Extending from a phase to a job

�ephase structure of Map-Reduce jobs adds to the vari-
ability. An outlier in an early phase, by delaying when
tasks that use its output may start, has cumulative e�ects
on the job. At barriers in the work�ow, where none of
the tasks in successive phase(s) can begin until all of the
tasks in the preceding phase(s) �nish, even one outlier
can bring the job to a standstill2. Barriers occur primar-
ily due to reduce operations that are neither commuta-
tive nor associative [], for instance, a reduce that com-
putes the median of records that have the same key. In
our cluster, the median job work�ow has eight phases and
eleven edges,  are barriers (number of edges exceeds
the number of phases due to table joins).

Dependency across phases also leads to outliers when
task output is lost and needs to be recomputed. Data loss
happens due to a combination of disk errors, so
ware er-

2�ere is a variant in implementation where a slot is reserved for
a task before all its inputs are ready. �is is either to amortize the
latency of network transfer by moving data over the network as soon
as it is generated [, ], or compute partial results and present answers
online even before the job is complete []. Regardless, pre-allocation
of slots hogs resources for longer periods if the input task(s) straggle.

Extract 22K Partition 13K Aggregate 51K

Barrier

File
System

(a) Partial work�ow with the number of tasks in each phase

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

#
 R

u
n
n
in

g
 T

a
s
k
s

(N
o
rm

a
liz

e
d
 b

y
 m

a
x
 i
n
 p

h
a
s
e
)

Time (Normalized by Job Lifetime)

B

R R

Extract
Partition

Aggregate

(b) Time lapse of task execution (R=Recomputes, B=Barrier).

Figure : An example job from the production cluster

rors (e.g., bugs in garbage collectors) and timeouts due to
machines going unresponsive at times of high load. In
fact, recomputes cause some of the longest waiting times
observed on the production cluster. A recompute can cas-
cade into earlier phases if the inputs for the recomputed
task are no longer available and need to be regenerated.

. Illustration of Outliers

Figure (a) shows the work�ow for a job whose structure
is typical of those in the cluster. �e job reads a dataset
of search usage and derives an index. It consists of two
Map-Reduce operations and a join, but for clarity we only
show the �rst Map-Reduce here. Phase names follow the
Dryad [] convention– extract reads raw blocks, parti-
tion divides data on the key and aggregate reduces items
that share a key.

Figure (b) depicts a timeline of an execution of this
work�ow. It plots the number of tasks of each phase that
are active, normalized by themaximum tasks active at any
time in that phase, over the lifetime of the job. Tasks in
the �rst two phases start in quick succession to each other
at ∼., whereas the third starts a
er a barrier.

Some of the outliers are evident in the long lulls before
a phase endswhen only a few of its tasks are active. In par-
ticular, note the regions before x∼. and x∼.. �e spike
in phase  here is due to the outliers in phase  holding
on to the job’s slots. At the barrier, x∼., just a few outliers
hold back the job frommaking forward progress. �ough
most aggregate tasks �nish at x∼., the phase persists for
another .

�e worst cases of waiting immediately follow recom-
putations of lost intermediate data marked by R. Recom-
putations manifest as tiny blips near the x axes for phases
that had �nished earlier, e.g., phase  sees recomputes at
x∼. though it �nished at x∼.. At x∼., note that aggre-
gate almost stops due to a few recomputations.

Wenowquantify themagnitude of the outlier problem,
before presenting our solution in detail.

 Quantifying the Outlier Problem

We characterize the prevalence and causes of outliers and
their impact on job completion times and cluster resource
usage. We will argue that three factors – dynamics, con-
currency and scale, that are somewhat unique to large
Map-Reduce clusters for e�cient and economic opera-
tion, lie at the core of the outlier problem. To our knowl-
edge, we are the �rst to report detailed experiences from
a large production Map-Reduce cluster.

. Prevalence of Outliers

Figure (a) plots the fraction of high runtime outliers and
recomputes in a phase. For exposition, we arbitrarily say
that a task has high runtime if its time to �nish is longer
than .x the median task duration in its phase. By re-
computes, we mean instances where a task output is lost
and dependent tasks wait until the output is regenerated.

We see in Figure (a) that  of phases have more
than  of their tasks as outliers. �e �gure also shows
that  of the phases see no recomputes. �ough rare,
recomputes have a widespread impact (§.). Two out of
a thousand phases have over  of their tasks waiting for
data to be recomputed.

How much longer do outliers run for? Figure (b)
shows that  of the runtime outliers last less than .
times the phase’s median task duration, with a uniform
probability of being delayed by between .x to .x. �e
tail is heavy and long–  take more than x the me-
dian duration. Ignoring these if they happen early in a
phase, as current approaches do, appears wasteful.

Figure (b) shows that most recomputations behave
normally,  of them are clustered about the median
task, but  take over x longer.

. Causes of Outliers

To tease apart the contributions of each cause, we �rst de-
termine whether a task’s runtime can be explained by the
amount of data it processes or reads across the network3.
If yes, then the outlier is likely due to workload imbalance
or poor placement. Otherwise, the outlier is likely due to
resource contention or problematic machines.

Figure (a) shows that in  of the phases (top right),
all the tasks with high runtimes (i.e., over .x the me-

3For each phase, we �t a linear regression model for task lifetime
given the size of input and the volume of tra�c moved across low
bandwidth links. When the residual error for a task is less than ,
i.e., its run time is within [., .]x of the time predicted by this model,
we call it explainable.

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

C
u

m
u

la
ti
v
e

 F
ra

c
ti
o

n
 o

f
P

h
a

s
e

s

Fraction of Outliers

high runtime
recompute

(a) What fraction of tasks in a
phase are outliers?

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 4 6 8 10

C
u

m
u

la
ti
v
e

Ratio of Straggler Duration to the
 Duration of the Median Task

high runtime
recompute

(b) How much longer do out-
liers take to �nish?

Figure : Prevalence of Outliers.

dian task) are well explained by the amount of data they
process or move on the network. Duplicating these tasks
would not make them run faster and will waste resources.
At the other extreme, in  of the phases (bottom le
),
none of the high runtime tasks are explained by the data
they process. Figure (b) shows tasks that take longer
than they should, as predicted by the model, but do not
take over .x the median task in their phase. Such tasks
present an opportunity for improvement. �ey may �n-
ish faster if run elsewhere, yet current schemes donothing
for them.  of the phases (on the top right) have over
 of such improvable tasks.

Data Skew: It is natural to ask why data size varies across
tasks in a phase. Across phases, the coe�cient of vari-
ation (stdev

mean
) in data size is . and . at the th and

th percentiles. From experience, dividing work evenly
is non-trivial for a few reasons. First, scheduling each ad-
ditional task has overhead at the job manager. Network
bandwidth is another reason. �ere might be too much
data on a machine for a task to process, but it may be
worse to split the work into multiple tasks and move data
over the network. A third reason is poor coding practice.
If the data is partitioned on a key space that has too little
entropy, i.e., a few keys correspond to a lot of data, then
the partitions will di�er in size. Some reduce tasks are not
amenable to splitting (neither commutative nor associa-
tive []), and hence each partition has to be processed by
one task. Some joins and sorts are similarly constrained.
Duplicating tasks that run for long because they have a lot
of work to do is counter-productive.

Crossrack Tra�c: Reduce phases contribute over 
of the cross rack tra�c in the cluster, while most of the
rest is due to joins. We focus on cross rack tra�c because
the links upstream of the racks have less bandwidth than
the cumulative capacity of servers in the rack.

We �nd that crossrack tra�c leads to outliers in two
ways. First, in phases where moving data across racks is
avoidable (through locality constraints), a task that ends
up in a disadvantageous network location runs slower
than others. Second, in phases where moving data across
racks is unavoidable, not accounting for the competition
among tasks within the phase (self-interference) leads to
outliers. In a reduce phase, for example, each task reads

0.2

0.4

0.6

0.8

1
C

u
m

u
la

ti
v

e
 #

P
h

a
se

s

0

0.2

0 20 40 60 80 100

C
u

m
u

la
ti

v
e

 #
P

h
a

se
s

% of tasks that have high

runtime but are explainable

(a)

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e

 #
P

h
a

se
s

0

0.2

0 20 40 60 80 100

C
u

m
u

la
ti

v
e

 #
P

h
a

se
s

% of tasks that are unexplainably

long, but not long per-se
(b)

Figure : Contribution of data size to task runtime (see §.)

40

60

80

100

C
D

F
 %

 P
h

a
se

T
im

e

0

20

0 20 40 60 80 100

C
D

F
 %

 P
h

a
se

Ideal Redn. (%) in Completion Time

(62.8%)

Figure : For reduce phases, the reduction in comple-
tion time over the current placement by placing tasks in a
network-aware fashion.

40

60

80

100

1.2

1.3

1.4

CPU Ratio

Memory Ratio

#Recomputes

R
e

co
m

p
 U

ti
l

to
 A

v
g

C
u

m
u

la
ti

v
e

0

20

40

1

1.1

0 10 20 30
Fraction of Cluster (%)

#Recomputes

R
e

co
m

p

C
u

m
u

la
ti

v
e

Figure : �e ratio of processor and memory usage when
recomputations happen to the average at that machine (y).
Also, the cumulative percentage of recomputations across ma-
chines (y).

fromevery map task. Since themaps are spread across the
cluster, regardless of where a reduce task is placed, it will
read a lot of data from other racks. Current implementa-
tions place reduce tasks on any machine with spare slots.
A rack that has too many reduce tasks will be congested
on its downlink leading to outliers.

Figure  compares the current placement with an ideal
one that minimizes the impact of network transfer. When
possible it avoids reading data across racks and if not,
places tasks such that their competition for bandwidth
does not result in hotspots. In over of the jobs, reduce
phases account for  of the job’s lifetime. For the re-
duce phases, the �gure shows that the median phase takes
 longer under the current placement.

Bad and Busy Machines: We rarely �nd machines that
persistently in�ate runtimes. Recomputations, however,
aremore localized. Half of them happen on  of the ma-
chines in the cluster. Figure  plots the cumulative share
of recomputes across machines on the axes on the right.
�e �gure also plots the ratio of processor and memory
utilization during recomputes to the overall average on
that machine. �e occurrence of recomputes is correlated

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

T
im

e
~

(m
in

u
te

s
)

Machine Id

model outliers recomputes

Figure : Clustering recomputations and outliers.

with increased use of resources by at least . �e sub-
set of machines that triggers most of the recomputes is
steady over days but varies over weeks, likely indicative
of changing hotspots in data popularity or corruption in
disks [].

Figure  investigates the occurrence of “spikes” in out-
liers. For legibility, we only plot a subset of the machines.
We �nd that runtime outliers (shown as stars) cluster by
time. If outliers were happening at random, there should
not be any horizontal bands. Rather it appears that jobs
contend for resources at some times. Even at these busy
times, other lightly loaded machines exist. Recomputa-
tions (shown as circles) cluster by machine. When a ma-
chine loses the output of a task, it has a higher chance of
losing the output of other tasks.

Rarely does an entire rack of servers experience the
same anomaly. When an anomaly happens, the frac-
tion of other machines within the rack that see the same
anomaly is less than 1

20
for recomputes, and 4

20
for run-

time with high probability. So, it is possible to restart a
task, or replicate output to protect against loss on another
machine within the same rack as the original machine.

. Impact of Outliers

We now examine the impact of outliers on job comple-
tion times and cluster usage. Figure  plots the CDF for
the ratio of job completion times, with di�erent types of
outliers included, to an ideal execution that neither has
skewed run times nor loses intermediate data. �e y-axes
weighs each job by the total cluster time its tasks take to
run. �e hypothetical scenarios, with some combination
of outliers present but not the others, do not exist in prac-
tice. So we replayed the logs in a trace driven simulator
that retains the structure of the job, the observed task du-
rations and the probabilities of the various anomalies (de-
tails in §). �e �gure shows that at median, the job com-
pletion time would be lower by  if runtime outliers
did not happen, and by more than  when none of the
outliers happen. Recomputations impact fewer jobs than
runtime outliers, but when they do, they delay comple-
tion time by a larger amount.

40

60

80

100

No Stragglers

No Recomputes

C
D

F
 %

 J
o

b
 T

im
e

0

20

0 20 40 60 80 100

No Recomputes

Neither

Ideal Redn. (%) in Completion Time

C
D

F
 %

 J
o

b

(34.7%)

Figure : Percentage speed-up of job completion time in the
ideal case when (some combination of) outliers do not occur.

Contention

for resources

Paths have

diff. capacity

• duplicate

• kill, restart

network aware

placement

• replicate output

• pre-compute

start tasks that

do more first

Unequal work

division

executeTask Operations read input

Outlier

Causes

Solutions

Input becomes

unavailable

Figure : �eOutlier Problem: Causes and Solutions

By inducing high variability in repeat runs of the same
job, outliers make it hard to meet SLAs. At median, the
ratio of stdev

mean
in job completion time is ., i.e., jobs have a

non-trivial probability of taking twice as long or �nishing
half as quickly.

To summarize, we take the following lessons from our
experience.
• High running times of tasks do not necessarily indicate
slow execution - there are multiple reasons for legiti-
mate variation in durations of tasks.

• Every job is guaranteed some slots, as determined by
cluster policy, but can use idle slots of other jobs.
Hence, judicious usage of resources while mitigating
outliers has collateral bene�t.

• Recomputations a�ect jobs disproportionately. �ey
manifest in select faulty machines and during times of
heavy resource usage. Nonetheless, there are no indi-
cations of faulty racks.

 Mantri Design

Mantri identi�es points at which tasks are unable to make
progress at the normal rate and implements targeted solu-
tions. �e guiding principles that distinguish Mantri from
prior outlier mitigation schemes are cause awareness and
resource cognizance.

Distinct actions are required for di�erent causes. Fig-
ure  speci�es the actions Mantri takes for each cause. If a
task straggles due to contention for resources on the ma-
chine, restarting or duplicating it elsewhere can speed it
up (§.). However, not moving data over the low band-
width cross rack links, and if unavoidable, doing so while
avoiding hotspots requires systematic placement (§.).
To speed up tasks that wait for lost input to be recom-
puted, we �nd ways to protect task output (§.). Finally,
for tasks with a work imbalance, we schedule the large

time

1
2

t t

t t

2t t

2t

time

1
2

t t
t

t 2t
t 2t

time

slots

1
2

t
5t

t
t

2t t 2t baseline,

kill, restart

duplicate

w/o early

Figure : A stylized example to illustrate our main ideas. Tasks
that are eventually killed are �lled with stripes, repeat instances
of a task are �lled with a lighter mesh.

tasks before the others to avoid being stuck with the large
ones near completion (§.).

�ere is a subtle point with outlier mitigation: reduc-
ing the completion time of a task may in fact increase the
job completion time. For example, replicating the output
of every task will drastically reduce recomputations–both
copies are unlikely to be lost at the same time, but can
slow down the job because more time and bandwidth are
used up for this task denying resources to other tasks that
are waiting to run. Similarly, addressing outliers early in
a phase vacates slots for outstanding tasks and can speed
up completion. But, potentially uses more resources per
task. Unlike Mantri, none of the existing approaches act
early or replicate output. Further, naively extending cur-
rent schemes to act early without being cognizant of the
cost of resources, as we show in §, leads to worse perfor-
mance.

Closed-loop action allows Mantri to act optimistically
by bounding the cost when probabilistic predictions go
awry. For example, even when Mantri cannot ascertain
the cause of an outlier, it experimentally starts copies. If
the cause does not repeatedly impact the task, the copy
can �nish faster. To handle the contrary case, Mantri con-
tinuously monitors running copies and kills those whose
cost exceeds the bene�t.

Based on task progress reports, Mantri estimates for
each task the remaining time to �nish, trem, and the pre-
dicted completion time of a new copy of the task, tnew .
Tasks report progress once every s or ten times in their
lifetime, whichever is smaller. We use ∆ to refer to this
period. We defer details of the estimation to §. and pro-
ceed to describe the algorithms for mitigating each of the
main causes of outliers. All that matters is that trem be
an accurate estimate and that the predicted distribution
tnew account for the underlying work that the task has to
do, the appropriateness of the network location and any
persistent slowness of the new machine.

. Resource-aware Restart

We begin with a simple example to help exposition. Fig-
ure  shows a phase that has seven tasks and two slots.

: let ∆ = period of progress reports
: let c = number of copies of a task
: periodically, for each running task, kill all but the fastestα copies

a
er ∆ time has passed since begin
: while slots are available do
: if tasks are waiting for slots then
: kill, restart task if trem > E(tnew)+∆, stop at γ restarts
: duplicate if P(trem > tnew

c+1

c
) > δ

: start the waiting task that has the largest data to read
: else ⊲ all tasks have begun
: duplicate i� E(tnew − trem) > ρ∆
: end if

: end while

Pseudocode : Algorithm for Resource-aware restarts (simpli-

�ed).

Normal tasks run for times t and 2t. One outlier has a
runtime of 5t. Time increases along the x axes.
�e timeline at the top shows a baseline which ignores

outliers and �nishes at 7t. Prior approaches that only ad-
dress outliers at the end of the phase also �nish at 7t.
Note that if this outlier has a large amount of data to

process letting the straggling task be is better than killing
or duplicating it, both of which waste resources.
If however, the outlier was slowed down by its loca-

tion, the second and third timelines compare duplication
to a restart that kills the original copy. A
er a short time
to identify the outlier, the scheduler can duplicate it at
the next available slot (the middle time-line) or restart it
in-place (the bottom timeline). If prediction is accurate,
restarting is strictly better. However, if slots are going idle,
it may be worthwhile to duplicate rather than incur the
risk of losing work by killing.
Duplicating the outlier costs a total of 3t in re-

sources (2t before the original task is killed and t for the
duplicate) which may be wasteful if the outlier were to
�nish in sooner than 3t by itself.

Restart Algorithm: Mantri uses two variants of restart,
the �rst kills a running task and restarts it elsewhere,
the second schedules a duplicate copy. In either method,
Mantri restarts only when the probability of success, i.e.,
P(tnew < trem) is high. Since tnew accounts for the sys-
tematic di�erences and the expected dynamic variation,
Mantridoes not restart tasks that are normal (e.g., runtime
proportional to work). Pseudocode  summarizes the al-
gorithm. Mantri kills and restarts a task if its remaining
time is so large that there is a more than even chance that
a restart would �nish sooner. In particular, Mantri does so
when trem > E(tnew)+∆ 4. To not thrash on inaccurate
estimates, Mantri kills a task no more than γ = 3 times.
�e “kill and restart" scheme drastically improves the

job completion time without requiring extra slots as we
show analytically in []. However, the current job sched-
uler incurs a queueing delay before restarting a task, that

4Since the median of the heavy tailed task completion time
distribution is smaller than the mean, this check implies that
P (tnew < trem) > P (tnew < E(tnew)) ≥ .5

(a) Ad-hoc placement (b) Even spread

Figure : �ree reduce tasks (rhombus boxes) are to be placed
across three racks. �e rectangles indicate their input. �e type
of the rectangle indicates the map that produced this data. Each
reduce task has to process one shard of each type. �e ad-hoc
placement on the le
 creates network bottlenecks on the cross-
rack links (highlighted). Tasks in such racks will straggle. If the
network has no other tra�c, the even placement on the right
avoids hotspots.

can be large and highly variant. Hence, we consider
scheduling duplicates.

Scheduling a duplicate results in the minimum com-
pletion time of the two copies and provides a safety net
when estimates are noisy or the queueing delay is large.
However, it requires an extra slot and if allowed to run
to �nish, consumes extra computation resource that will
increase the job completion time if outstanding tasks are
prevented from starting. Hence, when there are outstand-
ing tasks and no spare slots, we schedule a duplicate only
if the total amount of computation resource consumed
decreases. In particular, if c copies of the task are cur-
rently running, a duplicate is scheduled only if P(trem >

tnew
c+1

c
) > δ. By default, δ = .25. For example, a

task with one running copy is duplicated only if tnew is
less than half of trem. For stability, Mantri does not re-
duplicate a task for which it launched a copy recently. Any
copy that has run for some time and is slower than the
second fastest copy of the task will be killed to conserve
resources. Hence, there are never more than three run-
ning copies of a task5. When spare slots are available, as
happens towards the end of the job, Mantri schedules du-
plicates more aggressively, i.e., whenever the reduction in
the job completion time is larger than the start up time,
E(tnew − trem) > ρ∆. By default, ρ = 3. Note that in all
the above cases, if more than one task satis�es the neces-
sary conditions, Mantri breaks ties in favor of the task that
will bene�t the most.

Mantri’s restart algorithm is independent of the values
for its parameters. Setting γ to a larger and ρ, δ to a
smaller value trades o� the risk of wasteful restarts for
the reward of a larger speed-up. �e default values that
are speci�ed here err on the side of caution.

By scheduling duplicates conservatively and pruning
aggressively, Mantri has a high success rate of its restarts.
As a result, it reduces completion time and conserves re-
sources (§.).

5�e two fastest copies and the copy that has recently started.

. Network-Aware Placement

Reduce tasks, as noted before (§.), have to read data
across racks. A rack with too many reduce tasks is con-
gested on its downlink and such tasks will straggle. Fig-
ure  illustrates such a scenario.

Given the utilization of all the network links and the
locations of inputs for all the tasks (and jobs) that are
waiting to run, optimally placing the tasks to minimize
job completion time is a form of the centralized tra�c
engineering problem [, ]. However achieving up-
to-date information of network state and centralized co-
ordination across all jobs in the cluster are challenging.
Instead, Mantri approximates the optimal placement by
a local algorithm that does not track bandwidth changes
nor require co-ordination across jobs.

With Mantri, each job manager places tasks so as
to minimize the load on the network and avoid self-
interference among its tasks. If every job manager takes
this independent action, network hotspots will not cause
outliers. Note that the sizes of the map outputs in each
rack are known to the job manager prior to placing the
tasks of the subsequent reduce phase. For a reduce phase
with n tasks running on a cluster with r racks, let its input
matrix In,r specify the size of input in each rack for each
of the tasks6. For any placement of reduce tasks to racks,
let the data to be moved out (on the uplink) and read in
(on the downlink) on the ith rack bedi

u, d
i
v , and the corre-

sponding available bandwidths be bi
u and bi

d respectively.

For each rack, we compute two terms c2i−1 =
di

u

bi
u

and

c2i =
di

v

bi

d

. �e �rst term is the ratio of outgoing tra�c

and available uplink bandwidth, and the second term is
the ratio of incoming tra�c and available downlink band-
width. �e algorithm computes the optimal value over all
placement permutations, i.e., the rack location for each
task that minimizes the maximum data transfer time, as
arg min maxj cj , j = 1, · · · , 2n,.

Rather than track the available bandwidths bi
u and bi

d

as they change with time and as a function of other jobs
in the cluster, Mantri uses these estimates. Reduce phases
with a small amount of data �nish quickly, and the band-
widths can be assumed to be constant throughout the ex-
ecution of the phase. For phases with a large amount of
data, the bandwidth averaged over their long lifetime can
be assumed to be equal for all links. We see that with these
estimates Mantri’s placement comes close to the ideal in
our experiments (see §.).

For phases other than reduce, Mantri complements the
Cosmos policy of placing a task close to its data []. By
accounting for the cost of moving data over low band-
width links in tnew , Mantri ensures that no copy is started

6In I , the row sum indicates the data to be read by the task, whereas
the column sum indicates the total input present in that rack.

M1

M2

M0

t2redo = r2(t2 +t
1
redo)

…

t0redo=r0t0

(a)

M1
orig

M2

M1
replica

r1=r1
replica

*r1
orig

(b)

M11 M1n

M2

….

t1redo=
max(t11redo, …t

1n
redo)

(c)

replication
cost

recompute
cost

tredo > trep
tredo

trep

In budget?
yes yes

replicate

(d) Decision Process

Figure : Avoiding costly recomputations: �e cost to redo a
task includes the recursive probability of predecessor tasks hav-
ing to be re-done (a). Replicating output reduces the e�ective
probability of loss (b). Tasks with many-to-one input patterns
have high recomputation cost and are more valuable (c).

at a location where it has little chance of �nishing earlier
thereby not wasting resources.

. Avoiding Recomputation

To mitigate costly recomputations that stall a job, Mantri

protects against interim data loss by replicating task out-
put. It acts early by replicating those outputswhose cost to
recompute exceeds the cost to replicate. Mantri estimates
the cost to recompute as the product of the probability
that the output will be lost and the time to repeat the task.
�e probability of loss is estimated for a machine over a
long period of time. �e time to repeat the task is tredo

with a recursive adjustment that accounts for the task’s
inputs also being lost. Figure  illustrates the calcula-
tion of tredo based on the data loss probabilities (ri’s), the
time taken by the tasks (ti’s) and recursively looks at prior
phases. Replicating the output reduces the likelihood of
recomputation to the case when all replicas are unavail-
able. If a task reads input frommany tasks (e.g., a reduce),
tredo is higher since any of the inputs needing to be re-
computed will stall the task’s recomputation 7. �e cost
to replicate, trep, is the time to move the data to another
machine in the rack.

In e�ect, the algorithm replicates tasks at key places in
a job’s work�ow – when the cumulative cost of not repli-
cating many successive tasks builds up or when tasks ran
on very �aky machines (high ri) or when the output is so
small that replicating it would cost little (low trep).

Further, to avoid excessive replication, Mantri limits the
amount of data replicated to 10% of the data processed by
the job. �is limit is implemented by granting tokens pro-
portional to the amount of data processed by each task.
Task output that satis�es the above cost-bene�t check is

7In Fig. (c), we assume that if multiple inputs are lost, they are re-
computed in parallel and the task is stalled by the longest input. Since
recomputes are rare (Fig. (a)), this is a fair approximation of practice.

replicated only if an equal number of tokens are available.
Tokens are deducted on replication.

Mantri proactively recomputes tasks whose output and
replicas, if any, have been lost. From §, we see that re-
computations on a machine cluster by time, hence Mantri

considers a recompute to be the onset of a temporal prob-
lem which will cause future requests for data on this ma-
chine to fail and pre-computes such output. Doing so de-
creases the time that a dependent task will have to wait
for lost input to be regenerated. As before, Mantri im-
poses a budget on the extra cluster cycles used for pre-
computation. Together, probabilistic replication and pre-
computation approximate the ideal scheme in our evalu-
ation (§.).

. Data-aware Task Ordering

Workload imbalance causes tasks to straggle. Mantri does
not restart outliers that take a long time to run because
they have more work to do. Instead, Mantri improves job
completion time by scheduling tasks in a phase in de-
scending order of their input size. Given n tasks, s slots
and input sizes d[1 · · ·n], if the optimal completion time
isTO, scheduling tasks in inverse order of their input sizes
will take T , where T

TO
≤ 4

3
− 1

3s
[]. �is means that

scheduling tasks with the longest processing time �rst is
at most 33%worse than the optimal schedule; computing
the optimal is NP-hard [].

. Estimation of trem and tnew

Periodically, every running task informs the job sched-
uler of its status, including how many bytes it has read,
dread, thus far. Mantri combines the progress reports with
the size of the input data that each task has to process,
d, and predicts how much longer the task would take to
�nish using this model:

trem = telapsed

d

dread

+ twrapup. ()

�e �rst term captures the remaining time to process
data. �e second term is the time to compute a
er all
the input has been read and is estimated from the be-
havior of earlier tasks in the phase. Tasks may speed up
or slow down and hence, rather than extrapolating from
each progress report, Mantri uses a moving average. To
be robust against lost progress reports, when a task hasn’t
reported for a while, Mantri increases trem by assuming
that the task has not progressed since its last report. �is
linear model for estimating the remaining time for a task
is well suited for data-intensive computations like Map-
Reduce where a task spends most of its time reading the
input data. We seldom see variance in computation time
among tasks that read equal amounts of data [].

Mantri estimates tnew , the distribution over time that a
new copy of the task will take to run, as follows:

tnew = processRate ∗ locationFactor ∗ d + schedLag. ()

�e �rst term is a distribution of the process rate, i.e.,
∆time
∆data

, of all the tasks in this phase. �e second term is
a relative factor that accounts for whether the candidate
machine for running this task is persistently slower (or
faster) than other machines or has smaller (or larger) ca-
pacity on the network path to where the task’s inputs are
located. �e third term, as before, is the amount of data
the task has to process. �e last term is the average delay
between a task being scheduled and when it gets to run.
We show in §. that these estimates of trem and tnew are
su�ciently accurate for Mantri’s functioning.

 Evaluation

We deployed and evaluated Mantri on Bing’s production
cluster consisting of thousands of servers. Mantrihas been
running as the outlier mitigation module for all the jobs
in Bing’s clusters since May . To compare against a
wider set of alternate techniques, we built a trace driven
simulator that replays logs from production.

. Setup

Clusters: �e production cluster consists of thousands
of server-class multi-core machines with tens of GBs of
RAM that are spread roughly  servers to a rack. �is
cluster is used by Bing product groups. �e data we an-
alyzed earlier is from this cluster, so the observations
from § hold here.

Workload: Mantri is the default outlier mitigation solu-
tion for the production cluster. �e jobs submitted to
this cluster are independent of us, enabling us to evalu-
ateMantri’s performance in a live cluster across a variety of
production jobs. We compare Mantri’s performance on all
jobs in themonth of June with prior runs of the same
jobs in April-May  that ran with the earlier build of
Cosmos.

In addition, we also evaluate Mantri on four hand-
picked applications that represent common building
blocks. Word Count calculates the number of unique
words in the input. Table Join inner joins two tables each
with three columns of data on one of the columns. Group
By counts the number of occurrences of each word in the
�le. Finally, grep searches for string patterns in the input.
We vary input sizes from  GB to  GB.

Prototype: Mantri builds on the Cosmos job scheduler
and consists of about  lines of C++ code. To com-
pute trem, Mantri maintains an execution record for each
of the running tasks that is updated when the task reports

progress. A phase-wide data structure stores the neces-
sary statistics to compute tnew . When slots become avail-
able, Mantri runs Pseudocode  and restarts or duplicates
the task that would bene�t the most or starts new tasks
in descending order of data size. To place tasks appropri-
ately, name builds on the per-task a�nity list, a preferred
set of machines and racks that the task can run on. At
run-time the job manager attempts to place the task at
its preferred locations in random order, and when none
of them are available runs the task at the �rst available
slot. �e a�nity list for map tasks has machines that have
replicas of the input blocks. For reduce tasks, to obtain
the desired proportional spread across racks (see §.),
we populate the a�nity list with a proportional number
of machines in those racks.

Trace-driven Simulator: �e simulator replays the logs
shown in Table . For each phase, it faithfully repeats
the observed distributions of task completion times, data
read by each task, size and location of inputs, probability
of failures and recomputations, and fairness based evic-
tions. Restarted tasks have their execution times and fail-
ure probabilities sampled from the same distribution of
tasks in their phase. �e simulator also mimics the job
work�ow including semantics like barriers before phases,
the permissible concurrent slots per phase and the in-
put/output relationships between phases. It mimics clus-
ter characteristics like machine failures, network conges-
tion and availability of computation slots. For the net-
work, it uses a �uid model rather than simulating indi-
vidual packets. Doing the latter, at petabyte scale, is out
of scope for this work.

Compared Schemes: Our results on the production clus-
ter uses the current Dryad implementation as the base-
line (§.). It contains state-of-the-art outlier mitigation
strategies and runs thousands of jobs daily.

Our simulator performs a wider and detailed com-
parison. It compares Mantri with the outlier mitigation
strategies in Hadoop [], Dryad [], Map-Reduce [],
LATE [], and a modi�ed form of LATE that acts on
stragglers early in the phase. As the current Dryad build
already has modules for straggler mitigation, we com-
pare all of these schemes to a baseline that does not miti-
gate any stragglers (§.). On the other hand, since these
schemes do not do network-aware placement or recom-
pute mitigation, we use the current Dryad implementa-
tion itself as their baseline (§. and §.).

We also compare Mantri against some ideal bench-
marks. NoSkewmimics the case when all tasks in a phase
take the same amount of time, set to the average over
the observed task durations. NoSkew + ChopTail goes
even further, it removes the worst quartile of the observed
durations, and sets every task to the average of remain-
ing durations. IdealReduce assumes perfect up-to-date

40

60

80

100

C
D

F
 %

 J
o

b
 T

im
e

0

20

40

0 20 40 60 80 100

C
D

F
 %

 J
o

b
 T

im
e

% Reduction in Completion Time

(32.1%)

(a) Completion Time

40

60

80

100

C
D

F
 %

 J
o

b
 T

im
e

0

20

40

-20 0 20 40 60 80

C
D

F
 %

 J
o

b
 T

im
e

% Reduction in Job Resources

(b)  Resource Usage

Figure : Evaluation of Mantri as the default build for all jobs
on the production cluster for twenty-�ve days.

knowledge of available bandwidths and places reduce
tasks accordingly. IdealRecompute uses future knowledge
of which tasks will have their inputs recomputed and pro-
tects those inputs.

Metrics: As our primary metrics, we use the reduction in
completion time and resource usage8, where

Reduction =
Current − Modi�ed

Current
. ()

Summary: Our results are summarized as follows:
• In live deployment in the production cluster Mantri

sped up the median job by .  of the jobs ex-
perienced a net reduction in resources used. Further
Mantri’s network-aware placement reduced the com-
pletion times of typical reduce phases by .

• Simulations driven from production logs show that
Mantri’s restart strategy reduces the completion time of
phases by  (and ) at the th (and th) per-
centile. Here, Mantri’s reduction in completion time
improves on Hadoop by .x while using fewer re-
sources than Map-Reduce, each of which are the cur-
rent best on those respective metrics.

• Mantri’s network-aware placement of tasks speeds up
half of the reduce phases by at least  each.

• Mantri reduces the completion times due to recomputa-
tions of jobs that constitute  (or ) of the work-
load by at least  (or ) each while consuming
negligible extra resources.

. Deployment Results

Jobs in the Wild: We compare one month of jobs in the
Bing production cluster that ran a
er Mantri was turned
live with runs of the same job(s) on earlier builds. We
use only those recurring jobs that have roughly similar
amounts of input and output across runs. Figure (a)
plots the CDF of the improvement in completion time.
�e y axes weighs each job by the total time its tasks take
to run since improvement on larger jobs adds more value

8A reduction of  implies that the property in question, com-
pletion time or resources used, decreases by half. Negative values of
reduction imply that the modi�cation uses more resources or takes
longer.

21.7

31.0
26.2

21.4
20

30

40

50
%

 R
e

d
u

ct
io

n
 i

n

C
o

m
p

le
ti

o
n

 T
im

e

0

10

20

%
 R

e
d

u
ct

io
n

 i
n

C
o

m
p

le
ti

o
n

 T
im

e

Word

Count

Table

Join

Group

By

Grep

(a) Completion Time

13.4

20

30

40

%
 R

e
d

u
ct

io
n

 i
n

Jo
b

 R
e

so
u

rc
e

s

2.5

13.4

7.6 9.5

0

10

%
 R

e
d

u
ct

io
n

 i
n

Jo
b

 R
e

so
u

rc
e

s

Word

Count

Table

Join

Group

By

Grep

(b)  Resource Usage

Figure : Comparing Mantri’s straggler mitigation with the
baseline implementation on a production cluster of thousands
of servers for the four representative jobs.

 reduction in completion time

avg min max

Phase . . .
Job . . .

Table : Comparing Mantri’s network-aware spread of tasks
with the baseline implementation on a production cluster of
thousands of servers.

to the cluster. Jobs that occupy the cluster for half the time
sped up by at least .. Figure (b) shows that  of
jobs see a reduction in resource consumption while the
others use up a few extra resources. �ese gains are due
to Mantri’s ability to detect outliers early and accurately.
�e success rate ofMantri’s copies, i.e., the fraction of time
they �nish before the original copy, improves by .x over
the earlier build. At the same time, Mantri expends fewer
resources, it starts .x fewer copies. Further, Mantri acts
early, over  of its copies are started before the original
task has completed  of its work as opposed to 
with the earlier build.

Straggler Mitigation: To cross-check the above results
on standard jobs, we ran four prototypical jobs with and
without Mantri twenty times each. Figure  shows that
job completion times improve by roughly  and re-
source usage falls by roughly . �e histograms plot
the average reduction, error bars are the th and th

percentiles of samples. Further, we logged all the progress
reports for these jobs. We �nd that Mantri’s predictor,
based on reports from the recent past, estimates trem to
within a . error of the actual completion time.

Placement of Tasks: To evaluate Mantri’s network-aware
spreading of reduce tasks, we ran Group By, a job with a
long-running reduce phase, ten times on the production
cluster. Table  shows that the reduce phase’s completion
time reduces by . on average causing the job to speed
up by an average of .. To understand why, we mea-
sure the spread of tasks, i.e., the ratio of the number of
concurrent reduce tasks to the number of racks they ran
in. High spread implies that some racks have more tasks
which interfere with each other while other racks are idle.
Mantri’s spread is . compared to . for the earlier build.

To compare against alternative schemes and to piece
apart gains from the various algorithms in Mantri, we

40

60

80

100

Dryad

Hadoop

LATE

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

0

20

-20 0 20 40 60 80 100

LATE

MapReduce

Mantri

C
D

F
 %

 P
h

a
se

% Reduction in Completion Time
(a) Change in Completion Time

40

60

80

100

Dryad

Hadoop

LATE

MapReduce

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

0

20

40

-40 -20 0 20 40 60 80 100

MapReduce

Mantri

C
D

F
 %

 P
h

a
se

% Reduction in Resource Usage
(b) Change in Resource Usage

Figure : Comparing straggler mitigation strategies. Mantri
provides a greater speed-up in completion time while using
fewer resources than existing schemes.

present results from the trace-driven simulator.

. Can Mantri mitigate stragglers?

Figure  compares stragglermitigation strategies in their
impact on completion time and resource usage. �e y-
axes weighs phases by their lifetime since improving the
longer phases improves cluster e�ciency. �e �gures plot
the cumulative reduction in these metrics for the K
phases in Table  with each repeated thrice. For this sec-
tion, our common baseline is the scheduler that takes no
action on outliers. Recall from §. that the simulator re-
plays the task durations and the anomalies observed in
production.

Figures (a) and (b) show that Mantri improves
completion time by  and  at the th and th

percentiles and reduces resource usage by  and  at
these percentiles. From Figure (a), at the th per-
centile, Mantri sped up phases by an additional .x over
the . improvement of Hadoop, the next best scheme.
To achieve the smaller improvement Hadoop uses .
more resources (Fig. (b)). Map-Reduce and Dryad
have no positive impact for  and  of the phases
respectively. Up to the th percentile Dryad increases
the completion time of phases. LATE is similar in its time
improvement to Hadoop but uses fewer resources.

�e reason for poor performance is that they miss out-
liers that happen early in the phase and by not knowing
the true causes of outliers, the duplicates they schedule are
mostly not useful. Mantri and Dryad schedule . restarts
per task for the average phase (. and . for LATE and

40

60

80

100

LATE + Early

P
h

a
se

 D
u

ra
ti

o
n

0

20

40

-20 -10 0 10 20 30 40

LATE + Early

LATE

C
D

F
 %

 P
h

a
se

% Reduction in Completion Time

(a) Time

40

60

80

100

LATE

LATE + Early

P
h

a
se

 D
u

ra
ti

o
n

0

20

-20 -10 0 10 20 30 40

% Reduction in Resource Usage

C
D

F
 %

 P
h

a
se

(b) Resources

Figure : Extending LATE to speculate early results in worse
performance

40

60

80

100
NoSkew

NoSkew + ChopTail

Mantri

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

0

20

40

-10 0 10 20 30 40 50

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

% Reduction in Completion Time
(a) Time

40

60

80

100

NoSkew + ChopTail

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

% Reduction in Resource Usage

0

20

40

-10 0 10 20 30 40 50

NoSkew + ChopTail

NoSkew

Mantri

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

(b) Resources

Figure : Mantri is on par with an ideal NoSkew benchmark
and slightly worse than NoSkew+ChopTail (see end of §.)

40

60

80

100 Start

Equal

Mantri

IdealReduce

P
h

a
se

 D
u

ra
ti

o
n

0

20

40

0 20 40 60 80 100

% Reduction in Completion Time

C
D

F
 %

P
h

a
se

(59.1%)

Figure : By being network aware, Mantri speeds up the me-
dian reduce phase by  over the current placement.

Hadoop). But, Mantri’s restarts have a success rate of 
compared to the  for LATE. �e other schemes have
lower success rates.

While the insight of early action on stragglers is valu-
able, it is nonetheless non trivial. We evaluate this in Fig-
ures (a) and (b) that present a form of LATE that
is identical in all ways except that it addresses stragglers
early. We see that addressing stragglers early increases
completion time up to the th percentile, uses more re-
sources and is worse than vanilla LATE. Being resource
aware is crucial to get the best out of early action (§.).

Finally, Fig.  shows thatMantri is on parwith the ideal
benchmark that has no variation in tasks, NoSkew, and is
slightly worse than the variant that removes all durations
in the top quartile, NoSkew+ChopTail. �e reason is that
Mantri’s ability to substitute long running tasks with their
faster copies makes up for its inability to act with perfect
future knowledge of which tasks straggle.

. Does Mantri improve placement?

Figure  plots the reduction in completion time due to
Mantri’s placement of reduce tasks as a CDF over all re-
duce phases in the dataset in Table . As before, the y-
axesweighs phases by their lifetime. �e�gure shows that
Mantri provides a median speed up of  or a .x im-
provement over the current implementation.

�e �gure also compares Mantri against strategies that
estimate available bandwidths di�erently. �e IdealRe-
duce strategy tracks perfectly the changes in available
bandwidth of links due to the other jobs in the cluster. �e
Equal strategy assumes that the available bandwidths are
equal across all links whereas Start assumes that the avail-
able bandwidths are the same as at the start of the phase.
We see a partial order between Start and Equal (the two
solid lines). Short phases are impacted by transient dif-
ferences in the available bandwidths and Start is a good
choice for these phases. However, these di�erences even
out over the lifetime of long phases forwhomEqualworks
better. Mantri is a hybrid of Start and Equal. It achieves a
good approximation of IdealReduce without re-sampling
available bandwidths.

To capture how Mantri’s placement di�ers from Dryad,
Figure  plots the ratio of the throughput obtained by the
median task in each reduce phase to that obtained by the
slowest task. With Mantri, this ratio is . at median and
never larger than . In contrast, with Dryad’s policy of
placing tasks at the �rst available slot, this ratio is . (or
.) at the th (or th) percentile. Note that duplicat-
ing tasks that are delayed due to network congestionwith-
out considering the available bandwidths or where other
tasks are located would be wasteful.

. Does Mantri help with recomputations?

�e best possible protection against loss of output would
(a) eliminate all the increase in job completion time due
to tasks waiting for their inputs to be recomputed and (b)
do so with little additional cost. Mantri approximates both
goals. Fig.  shows that Mantri achieves parity with Ideal-
Recompute. Recall that IdealRecompute has perfect future
knowledge of loss. �e improvement in job completion
time is  () at the th (th) percentile.

�e reason is that Mantri’s policy of selective replica-
tion is both accurate and biased towards the more expen-
sive recomputations. �e probability that task output that
was replicated will be used because the original data be-
comes unavailable is . Similarly, the probability that a
pre-computation becomes useful is , which increases
to  if pre-computations are triggered only when two
recomputations happen at a machine in quick succes-
sion. Figure  shows the complementary contributions
from replication and pre-computation– each contribute

20

40

60

80

100

Dryad

Mantri
C

D
F

 %
 P

h
a

se
 D

u
ra

ti
o

n

0

20

1 6 11 16 21 26 31

Mantri

Ratio of median to slowest

read throughputs of tasks

C
D

F
 %

 P
h

a
se

 D
u

ra
ti

o
n

Figure : Unlike Dryad, Mantri’s placement provides more
consistent throughput to tasks in reduce phases.

40

60

80

100

Mantri

IdealRecomputeJo
b

 D
u

ra
ti

o
n

0

20

0 20 40 60 80 100

IdealRecompute

% Reduction in Completion Time

C
D

F
 %

Jo
b

Figure : By probabilistically replicating task output and
recomputing lost data before it is needed Mantri speeds up
jobs by an amount equal to the ideal case of no data loss.

40

60

80

100 Pre-computation

Replication

Mantri

C
D

F
 %

 J
o

b
 D

u
ra

ti
o

n

0

20

40

0 20 40 60 80 100

(78%)(53%)(25%)

% Recomputes Eliminated

C
D

F
 %

 J
o

b
 D

u
ra

ti
o

n

Figure : Fraction of recomputations that are eliminated due
to Mantri’s recomputation mitigation strategy, along with indi-
vidual contributions from replication and pre-computation.

roughly  and  to the total. Cumulatively, the �g-
ure shows that Mantri eliminates  of recomputations
for the median job. We note that Mantri ignores  of
the recomputations in the bottom quartile of jobs since
their impact on job completion time is small.

Fig. (a) shows that the extra network tra�c due to
replication is (overall negligible and) comparable to Ide-
alReduce. Mantri sometimes replicates more data than the
ideal, and at other times misses some tasks that should be
replicated. Fig. (b) shows that pre-computations take
only a few percentage extra resources.

 RelatedWork

Much recent work focuses on large scale data parallel
computing. Following on the Map-Reduce [] paper,
there has been work in improving work�ows [, ], lan-
guage design [, ], and fair schedulers []. Our work

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

Replication

IdealRecompute

 C
D

F
 %

 o
f

T
o

ta
l

T
ra

ff
ic

Increase in Traffic (%)

(a) Cost: Network Tra�c

40

60

80

100

C
lu

st
e

r
R

e
so

u
rc

e
s

0

20

40

0 0.5 1 1.5 2 2.5 3

Increase in Cluster Resource(%)

C
D

F
 %

 C
lu

st
e

r
R

e
so

u
rc

e
s

(b) Cost: Cluster Time

Figure : �ecost to protect against recomputes is fewer than
a few percentage points in both the extra tra�c on the network
and cluster time for pre-computation.

here takes the next step of understanding how such pro-
duction clusters behave and can be improved.

Run-time stragglers have been identi�ed by past
work [, ]. However, we are the �rst to character-
ize the prevalence of stragglers in production and their
causes. By understanding the causes, addressing strag-
glers early and scheduling duplicates only when there is
a fair chance that the speculation saves both time and re-
sources, our approach provides a greater reduction in job
completion time while using fewer resources than prior
strategies that duplicate tasks towards the end of a phase.
Also, we uniquely avoid network hotspots and protect
against loss of task output, two further causes of outliers.

By only acting at the end of a phase, current schemes [,
, ] miss early outliers. �ey vary in the choice of
which tasks to duplicate. A
er a threshold number of
tasks have �nished, Map-Reduce [] duplicates all the
tasks that remain. Dryad [] duplicates those that have
been running for longer than the th percentile of task
durations. A
er all tasks have started, Hadoop [] uses
slots that free up to duplicate any task that has read less
data than the others, while LATE [] duplicates only
those reading at a slow rate.

�ough some recent proposals do away with capacity
over-subscription in data centers [, ], today’s networks
remain over-subscribed albeit at smaller levels. It is com-
mon to place tasks near their input (same machine, rack
etc.) for map and at the �rst free slot for reduce [, , ].
Our approach to eliminate outliers by a network-aware
placement is orthogonal to recent work that packs tasks
requiring di�erent resources on to a machine [], or
trades-o� fairness with e�ciency []. Quincy accounts
for capacity but not for runtime variations in bandwidth
due to competition from other tasks.

ISS [] protects intermediate data by replicating
locally-consumed data. In particular, this does not in-
clude map output, since Hadoop transfers map output to
reduce tasks as it is produced. ISS’s replication strategy
runs the risk of being both wasteful (when very few ma-
chines are error-prone) and insu�cient (when the trans-
fer of map output fails). In contrast, Mantri presents a
broader solution that (a) replicates task output based on
the probability of data loss and the recursive cost of re-

computing inputs and (b) pre-computes lost data.

�e Map-Reduce paradigm is similar to parallel
databases in its goal of analyzing large data [] and to
dedicated HPC clusters and parallel programs [] by
presenting similar optimization opportunities. In the
context of multiple processors, studies have been done on
the classic problem of dynamic task scheduling [, ] as
well as task duplication []. Star-MPI [] adapts param-
eters like network topology between a set of communi-
cating processors by observing performance over time.
Prior work has also focused on modeling and optimiz-
ing the communication in parallel programs [, , ]
that have one-to-all or all-to-all tra�c, i.e., where ev-
ery receiver processes all of the output of tasks in earlier
stages. In the context of the many-to-many tra�c, typical
ofMap-Reduce, we present practical techniques for band-
width estimation and task placement that realizes near-
optimal performance.

 Conclusion

Mantri delivers e�ective mitigation of outliers in Map-
Reduce networks. It is motivated by, what we believe is,
the �rst study of a large production Map-Reduce clus-
ter. �e root of Mantri’s advantage lies in integrating
static knowledge of job structure and dynamically avail-
able progress reports into a uni�ed framework that iden-
ti�es outliers early, applies cause-speci�c mitigation and
does so only if the bene�t is higher than the cost. In our
implementation on a cluster of thousands of servers, we
�nd Mantri to be highly e�ective.
Outliers are an inevitable side-e�ect of parallelizing

work. �ey hurt Map-Reduce networks more due to the
structure of jobs as graphs of dependent phases that pass
data from one to the other. �eir many causes re�ect the
interplay between the network, storage and, computation
in Map-Reduce. Current systems shirk this complexity
and assume that a duplicatewould speed things up. Mantri

embraces it to mitigate a broad set of outliers.

Acknowledgments– For feedback on dra
s, we thank
members of the RAD lab, the Cosmos product group and
the OSDI reviewers. Alexei Polkhanov and Juhan Lee
were invaluable in taking Mantri to production clusters.

References

[] Hadoop distributed �lesystem. http://hadoop.apache.org.
[] A. Faraj, X. Yuan, D. Lowenthal. STAR-MPI: Self Tuned Adap-

tive Routines for MPI Collective Operations. In SC, .
[] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,

P. Patel, and S. Sengupta. VL: A Scalable and Flexible Data
Center Network. In SIGCOMM, .

[] I. Ahmad and M. K. Dhodhi. Semi-distributed load balancing
for massively parallel multicomputer systems. In IEEE TSE.,
.

[] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, and
Y. Lu. Reigning in the outliers in map-reduce clusters. Technical
Report MSR-TR--, Microso
 Research, .

[] B. Ucar, C. Aykanat, K. Kaya, M. Ikinci. Task assignment in Het-
erogeneous Computing Systems. In JPDC, .

[] L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. An analysis of data
corruption in the storage stack. In FAST, .

[] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: Easy and E�cient Parallel Pro-
cessing of Massive Datasets. In VLDB, .

[] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmleegy,
and R. Sears. Mapreduce online. In NSDI, .

[] D. Culler et al. LogP: Towards a Realistic Model of Parallel Com-
putation. In SIGPLAN PPoPP, .

[] J. Dean and S. Ghemawat. Mapreduce: Simpli�ed data process-
ing on large clusters. In OSDI, .

[] R. L. Graham. Bounds on multiprocessing timing anomalies.
SIAM Journal on Applied Mathematics, (), .

[] M. Isard et al. Dryad: Distributed Data-parallel Programs from
Sequential Building Blocks. In Eurosys, .

[] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the
Tightrope: Responsive Yet Stable Tra�c Engineering. In SIG-
COMM, .

[] S. Ko, I. Hoque, B.Cho, and I. Gupta. Making cloud intermediate
data fault-tolerant. In SOCC, .

[] A. Krishnamurthy and K. Yelick. Analysis and optimizations for
shared address space programs. JPDC, .

[] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commod-
ity Data Center Network Architecture. In SIGCOMM, .

[] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, A.
Goldberg. Quincy: Fair scheduling for distributed computing
clusters. In SOSP, .

[] M. Lauria and A. Chien. MPI-FM: High Performance MPI on
Workstation Clusters. In JPDC, .

[] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I. Stoica. Im-
proving MapReduce Performance in Heterogeneous Environ-
ments. In OSDI, .

[] P. Patarasuk, A. Faraj, X. Yuan. Pipelined Broadcast on Ethernet
Switched Clusters. In IEEE IPDPS, .

[] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. R.
Madden, and M. Stonebraker. A comparison of approaches to
large scale data analysis. In SIGMOD, .

[] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken. Na-
ture of Datacenter Tra�c: Measurements and Analysis. In IMC,
.

[] S. Manoharan. E�ect of task duplication on assignment of de-
pendency graphs. In Parallel Comput., .

[] T. Sandholm and K. Lai. Mapreduce optimization using regu-
lated dynamic prioritization. In SIGMETRICS, .

[] Y. Kwon, M. Balazinska, B. Howe, J. Rolia. Skew-Resistant Par-
allel Processing of Feature-Extracting Scienti�c User-De�ned
Functions. In SOCC, .

[] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda,
J. Currey. DryadLINQ: A System for General-Purpose Data-
Parallel Computing Using a High-Level Language. In OSDI,
.

[] Y. Yu, P. K. Gunda, and M. Isard. Distributed Aggregation for
Data-Parallel Computing: Interfaces, Impl. In SOSP, .

http://hadoop.apache.org

	Introduction
	Background
	The Outlier Problem
	Outliers in a Phase
	Extending from a phase to a job
	Illustration of Outliers

	Quantifying the Outlier Problem
	Prevalence of Outliers
	Causes of Outliers
	Impact of Outliers

	Mantri Design
	Resource-aware Restart
	Network-Aware Placement
	Avoiding Recomputation
	Data-aware Task Ordering
	Estimation of trem and tnew

	Evaluation
	Setup
	Deployment Results
	Can Mantri mitigate stragglers?
	Does Mantri improve placement?
	Does Mantri help with recomputations?

	Related Work
	Conclusion

