
USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 281

Gadara: Dynamic Deadlock Avoidance for Multithreaded Programs

Yin Wang 1,2 Terence Kelly 2 Manjunath Kudlur 1 Stéphane Lafortune 1 Scott Mahlke 1

1EECS Department, University of Michigan 2Hewlett-Packard Laboratories

Abstract

Deadlock is an increasingly pressing concern as the
multicore revolution forces parallel programming upon
the average programmer. Existing approaches to dead-
lock impose onerous burdens on developers, entail high
runtime performance overheads, or offer no help for
unmodified legacy code. Gadara automates dynamic
deadlock avoidance for conventional multithreaded pro-
grams. It employs whole-program static analysis to
model programs, and Discrete Control Theory to synthe-
size lightweight, decentralized, highly concurrent logic
that controls them at runtime. Gadara is safe, and can
be applied to legacy code with modest programmer ef-
fort. Gadara is efficient because it performs expensive
deadlock-avoidance computations offline rather than on-
line. We have implemented Gadara for C/Pthreads pro-
grams. In benchmark tests, Gadara successfully avoids
injected deadlock faults, imposes negligible to modest
performance overheads (at most 18%), and outperforms
a software transactional memory system. Tests on a real
application show that Gadara identifies and avoids both
previously known and unknown deadlocks while adding
performance overheads ranging from negligible to 10%.

1 Introduction

Deadlock remains a perennial scourge of parallel pro-
gramming, and hardware technology trends threaten to
increase its prevalence: The dawning multicore era
brings more cores, but not faster cores, in each new pro-
cessor generation. Performance-conscious developers of
all skill levels must therefore parallelize software, and
deadlock afflicts even expert code. Furthermore, parallel
hardware often exposes latent deadlocks in legacy mul-
tithreaded software that ran successfully on uniproces-
sors. For these reasons, the “deadly embrace” threatens
to ensnare an ever wider range of programs, program-
mers, and users as the multicore era unfolds.

Our work addresses circular-mutex-wait deadlocks in
conventional shared-memory multithreaded programs.
Although alternative paradigms such as transactional
memory and lock-free data structures attract increas-
ing attention, mutexes will remain important in practice
for the foreseeable future. One reason is that mutexes
are sometimes preferable, e.g., in terms of performance,
compatibility with I/O, or maturity of implementations.
Another reason is sheer inertia: Enormous investments,
unlikely to be abandoned soon, reside in existing lock-
based programs and the developers who write them.

Decades of study have yielded several approaches
to deadlock, but none is a panacea. Static deadlock
prevention via strict global lock-acquisition ordering is
straightforward in principle but can be remarkably diffi-
cult to apply in practice. Static deadlock detection via
program analysis has made impressive strides in recent
years [9,11], but spurious warnings can be numerous and
the cost of manually repairing genuine deadlock bugs
remains high. Dynamic deadlock detection may iden-
tify the problem too late, when recovery is awkward
or impossible; automated rollback and re-execution can
help [38], but irrevocable actions such as I/O can pre-
clude rollback. Variants of the Banker’s Algorithm [8]
provide dynamic deadlock avoidance, but require more
resource demand information than is often available and
involve expensive runtime calculations.

Fear of deadlock distorts software development and
diverts energy from more profitable pursuits, e.g., by in-
timidating programmers into adopting cautious coarse-
grained locking when multicore performance demands
deadlock-prone fine-grained locking. Deadlock in lock-
based programs is difficult to reason about because locks
are not composable: Deadlock-free lock-based soft-
ware components may interact to deadlock a larger pro-
gram [44]. Deadlock-freedom is a global program prop-
erty that is difficult to reason about and difficult to co-
ordinate across independently developed software mod-
ules. Non-composability therefore undermines the cor-

282 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

nerstones of programmer productivity, software modu-
larity and divide-and-conquer problem decomposition.
Finally, insidious corner-case deadlocks may lurk even
within single modules developed by individual expert
programmers [9]; such bugs can be difficult to detect,
and repairing them is a costly, manual, time-consuming,
and error-prone chore. In addition to preserving the value
of legacy code, a good solution to the deadlock problem
will improve new code by allowing requirements rather
than fear to dictate locking strategy, and by allowing pro-
grammers to focus on modular common-case logic rather
than fragile global properties and obscure corner cases.

This paper presents Gadara, our approach to automat-
ically enabling multithreaded programs to dynamically
avoid circular-mutex-wait deadlocks. It proceeds in four
phases: 1) compiler techniques extract a formal model
from program source code; 2) Discrete Control Theory
methods automatically synthesize control logic that dy-
namically avoids deadlocks in the model; 3) instrumen-
tation embeds the control logic in the program where it
monitors and controls relevant aspects of program exe-
cution; 4) run-time control logic compels the program to
behave like the controlled model, thereby dynamically
avoiding deadlocks. (Gadara is the Biblical place where
a miraculous cure liberated a possessed man by banish-
ing en masse a legion of demons.)

Gadara intelligently postpones lock acquisition at-
tempts when necessary to ensure that deadlock cannot
occur in a worst-case future. Sometimes the net effect
is to alter the scheduling of threads onto locks; in other
cases, a thread requesting a lock must wait to acquire it
even though the lock is available. Gadara may thereby
impair performance by limiting concurrency; program
instrumentation is another potential performance over-
head. Gadara strives to meddle as little as possible while
guaranteeing deadlock avoidance, and Discrete Control
Theory provides a rigorous foundation that helps Gadara
avoid unnecessary instrumentation and concurrency re-
duction. In practice, we find that the runtime perfor-
mance overhead of Gadara is typically negligible and al-
ways modest—at most 18% in all of our experiments.
The computational overhead of Gadara’s offline phases
(modeling, control logic synthesis, and instrumentation)
is similarly tolerable—no worse than the time required
to build a program from source. Programmers may se-
lectively override Gadara by disabling the avoidance of
some potential deadlocks but not others, e.g., to improve
performance in cases where they deem deadlocks highly
improbable.

Gadara offers numerous benefits. It dynamically
avoids both deterministic/repeatable and also nondeter-
ministic deadlocks. It guarantees that all circular-mutex-
wait deadlocks are eliminated from a program, and does
not introduce new deadlocks or other liveness/progress

instrumented executableC program

control
flow graph

Petri net
control
logic

logic
synthesis

control
control
logic observe

control

control
logic observe

control

control
logic observe

control

translation

compile

in
st

ru
m

en
ta

tio
n

compile

onlineoffline

source code

Figure 1: Gadara Architecture.

bugs. It is safe and cannot cause a correct program to
behave incorrectly. It performs control-synthesis com-
putations offline, greatly reducing the overhead of on-
line control. While it does impose performance over-
heads, it does not introduce a compulsory global perfor-
mance bottleneck (e.g., a mandatory “big global lock”
or analogous serialization); its control logic is decentral-
ized, fine-grained, and highly concurrent. It works with
legacy programs and also with existing programmers, re-
quiring no retraining or conceptual reorientation. It nei-
ther forbids nor discourages unrestricted I/O. Finally, it
relieves programmers of the burden of global reasoning
about composability and corner-case deadlock faults.

We have implemented Gadara for C/Pthreads pro-
grams. Our experiments show that Gadara enables
deadlock-prone software to avoid deadlock at runtime.
Gadara furthermore imposes only modest performance
overheads, which compare favorably with those of a
software transactional memory system. This paper de-
scribes the Gadara methodology and our prototype im-
plementation and presents experiments on benchmark
software and on a real application, the OpenLDAP di-
rectory server. Additional technical details on the Dis-
crete Control Theory techniques underlying Gadara and
experiments on randomly generated programs are avail-
able in [47].

The remainder of this paper is organized as follows:
Section 2 provides an overview of our approach and Sec-
tion 3 introduces elements of Discrete Control Theory
central to Gadara. Section 4 describes how we extract
suitable models from program source code, Section 5 ex-
plains how Gadara synthesizes control logic from such
models, and Section 6 describes Gadara’s program in-
strumentation and run-time control. Section 7 presents
our experimental results. Section 8 surveys related work,
and Section 9 concludes.

2 Overview of Approach

Figure 1 shows the architecture of Gadara. The of-
fline calculations depicted on the left involve three steps.
First, Gadara automatically constructs a formal model
from a whole-program Control Flow Graph (CFG) ob-

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 283

tained at compile time. This step involves enhancing the
standard CFG construction procedure and translating the
enhanced graph into a formal model suitable for Discrete
Control Theory (DCT) analysis and control logic synthe-
sis. Second, Gadara synthesizes feedback control logic
from the model by using DCT techniques. We improve
the computational efficiency of standard DCT algorithms
by supplementing them with special-purpose strategies
that exploit the structure of the model. Third, the synthe-
sized feedback control logic guides source code instru-
mentation. The key objective of this step is to minimize
the online overhead of updating control-related state and
implementing the control actions. Finally, online exe-
cution of the instrumented program proceeds according
to the familiar observation-action paradigm of feedback
control. In our problem, control logic delays lock acqui-
sitions to ensure deadlock-free execution of the original
program.

An important goal of Gadara’s control synthesis phase
is a property called “maximally permissive control”
(MPC). In the present context, MPC means that the con-
trol logic will postpone a lock acquisition only if the pro-
gram model indicates that deadlock might occur in the
future execution of the program if the lock were granted
immediately. In other words, control strives to avoid
inhibiting concurrency more than necessary to guaran-
tee deadlock avoidance. (One could of course ensure
deadlock-freedom in many programs by serializing all
threads, but that would defeat the purpose of paralleliza-
tion.) We are able to make formal statements about MPC
because Gadara employs a model-based approach and
uses DCT algorithms that guarantee MPC.

Numerous challenges arise in the application of
Gadara to real-world programs. We must enhance the
standard CFG to obtain a formal model that more accu-
rately captures program behavior; pointer analysis and
related difficulties loom large in this area. Imperfec-
tions in the formal model can complicate the problem of
achieving MPC during the control synthesis phase. In-
strumentation must be tolerably lightweight to minimize
runtime overhead. Subsequent sections discuss in detail
how we address these challenges.

Gadara’s limitations fall into two categories: those that
are inherent in the problem domain, and those that are
artifacts of our current prototype. A trivial example of
the former is that Gadara cannot avoid inevitable dead-
locks, e.g., due to repeatedly locking a nonrecursive mu-
tex; Gadara issues warnings about such deadlocks. An-
other limitation inherent to the domain involves the unde-
cidability of general static analysis [23]. It is well known
that no method exists for statically determining with cer-
tainty any non-trivial dynamic/behavioral property of a
program, including deadlock susceptibility. However,
most real-world programs do admit useful static analy-

sis. Gadara builds a program model for which synthesiz-
ing deadlock-avoidance control logic is decidable. The
model is conservative in the sense that it causes control
intervention when static analysis cannot prove that inter-
vention is unnecessary. The net effect is that superfluous
control logic sometimes harms performance through in-
strumentation overhead and concurrency reduction.

if (x)
lock(L)

...
if (x)

unlock(L)

A second source of conservatism arises
from a limitation in our current proto-
type: Gadara’s offline phases empha-
size control flow, performing only lim-
ited data-flow analyses; in this respect,
Gadara resembles many existing static analysis tools.
The code above illustrates the “false paths” problem [9].
Gadara does not currently know that the two conditional
branches share identical outcomes if x is not modified
between them, and therefore mistakenly concludes that
this code might acquire the lock but not release it. In
the context of a larger program, false paths might cause
Gadara to insert superfluous control logic that may need-
lessly reduce run-time concurrency.

As with many existing program checkers, imperfect
data flow analysis may cause unaided Gadara to iden-
tify large numbers of spurious potential deadlocks. We
therefore introduce a novel style of programmer-supplied
annotation that allows Gadara to eliminate many such
“false positives.” A first pass of Gadara directs the pro-
grammer to problematic functions associated with large
numbers of suspected potential deadlocks. The program-
mer may then annotate these functions to aid a second
pass of Gadara, which typically identifies far fewer po-
tential deadlocks by exploiting the annotations. In prac-
tice, it is not difficult to annotate real programs correctly
and comprehensively. The number of functions that re-
quire inspection after the first pass is typically small
and it is straightforward for the programmer to annotate
them appropriately. Omitted annotations can reduce per-
formance and incorrect annotations can prevent Gadara
from avoiding deadlocks already present in the program,
but neither compromise safety or correctness. Similarly,
illegal pointer casts involving wrapper structures con-
taining mutexes can confuse Gadara and void the guar-
antee of deadlock-freedom.

Gadara’s model-based approach entails both benefits
and challenges. Gadara requires that all locking and syn-
chronization be included in its program model; Gadara
recognizes standard Pthread functions but, e.g., home-
brew synchronization primitives must be annotated. To
be fully effective, Gadara must analyze and potentially
instrument a whole program. Whole-program analy-
sis can be performed incrementally (e.g., models of li-
brary code can accompany libraries to facilitate analy-
sis of client programs), but instrumenting binary-only li-
braries with control logic would be more difficult. On

284 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the positive side, a strength of a model-based approach is
that modeling tends to improve with time, and Gadara’s
modeling framework facilitates extensions. Petri nets
model language features and library functions handled
by our current Gadara prototype (calls through func-
tion pointers, gotos, libpthread functions) and also exten-
sions (setjmp()/longjmp(), IPC). Some phenom-
ena may be difficult to handle well in our framework,
e.g., lock acquisition in signal handlers, but most real-
world programming practices can be accommodated nat-
urally and conveniently.

With a modicum of programmer assistance in the form
of annotations, Gadara’s run-time performance overhead
ranges from negligible to modest. Section 7 presents ex-
perimental results that quantify these overheads. Before
explaining the details of Gadara’s phases, we review ele-
ments of DCT crucial to Gadara’s operation.

3 Discrete Control Theory

Prior research has applied feedback control techniques to
computer systems problems [14]. However, this research
applied classical control to time-driven systems modeled
with continuous variables evolving according to differ-
ential or difference equations. Classical control cannot
model logical properties (e.g., deadlock) in event-driven
systems. This is the realm of Discrete Control Theory,
which considers discrete event dynamic systems with dis-
crete state variables and event-driven dynamics. As in
classical control, the paradigm of DCT is to synthesize
a feedback controller for a dynamic system such that the
controlled system will satisfy given specifications. How-
ever, the models and specifications that DCT addresses
are completely different from those of classical control,
as are the modeling formalisms and controller synthesis
techniques. DCT is a mature and rigorous body of the-
ory developed since the mid-1980s. This section briefly
reviews the specific methods that Gadara employs; see
Cassandras & Lafortune for a comprehensive graduate-
level introduction to DCT [5].

Finite-state automata and Petri nets [32] are two com-
mon modeling formalisms used in DCT, and they are
well suited for studying deadlock and other logical cor-
rectness properties of discrete event dynamic systems.
Given a model of a system in the form of an automa-
ton or a Petri net, DCT techniques can construct feed-
back controllers that will enforce logical specifications
such as avoidance of deadlock, illegal states, and illegal
event sequences. DCT is different from (but complemen-
tary to) model checking [6] and other formal analysis
methods: DCT emphasizes automatically synthesizing
a controller that provably achieves given specifications,
as opposed to verifying that a given controller (possibly
obtained in an ad hoc or heuristic manner) satisfies the

specifications. DCT control is correct by construction,
obviating the need for a separate verification step.

Wallace et al. [46] proposed the use of DCT in IT
automation for scheduling actions in workflow manage-
ment. We proposed a failure-avoidance system for work-
flows using DCT [48]. However, these prior efforts
assume severely restricted programming paradigms.
Gadara moves beyond these limitations and handles mul-
tithreaded C programs. DCT has not previously been
applied in computer systems for deadlock avoidance in
general-purpose software. The finite-automata models of
our previous work [48] were adequate since the control
flow state spaces of workflows are typically quite small.
In the present context, however, automata models do not
scale sufficiently for the large C programs that Gadara
targets. Gadara therefore employs Petri net models.

1

L

CC

F F

A A

UU

R R1 2

2

2

2

2

1

1

1

As illustrated to the right, Petri
nets are bipartite directed graphs
containing two types of nodes:
places, shown as circles, and tran-
sitions, shown as solid bars. To-
kens in places are shown as dots,
and the number of tokens in each
place is the Petri net’s state, or
marking. Transitions model the
occurrence of events that change
the marking.

Arcs connecting places to a transition represent pre-
conditions of the event associated with the transition. For
instance, transition A1 in our example can occur only if
its input places R1 and L each contain at least one token;
in this case, we say that A1 is enabled. Similarly, A2 is
enabled, but all other transitions in the example are dis-
abled. Here, one can think of place L as representing the
status of a lock: if L is empty, the lock is not available; if
L contains a token, the lock is available. Thus this Petri
net models two threads, 1 and 2, that each require the
lock. Place Ri represents the request for acquiring the
lock for thread i, i = 1,2, with transition Ai represent-
ing the lock acquisition event. The two lock requests are
in conflict: The lock can be granted to only one thread
at a time. If transition A1 fires, it consumes one token
from each input place R1 and L and deposits one token
in its output place C1, which models the critical region of
thread 1. In general, the firing of a transition consumes
tokens from each of its input places and produces tokens
in each of its output places; the token count need not re-
main constant. After A1 fires, A2 becomes disabled and
must wait for U1 to occur (lock release by thread 1) be-
fore it becomes enabled again. Place Fi represents that
thread i has finished.

DCT control logic synthesis techniques for Petri nets
exploit the structure of Petri nets for computational effi-
ciency, avoiding an enumeration of the state space (the

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 285

set of all markings reachable from a given initial mark-
ing) [15]. This is a key advantage of Petri nets over au-
tomata, which by construction enumerate the entire state
space and thus do not scale to large systems. In a Petri
net, state information is distributed and “encoded” as the
contents of the places.

Many of the techniques for analyzing the dynamic
behavior of a Petri net employ linear algebraic manip-
ulations of matrix representations [32]. In turn, these
techniques underlie the control synthesis methodology
known as Supervision Based on Place Invariants (SBPI);
see [19,31] and references therein. Gadara uses SBPI for
control logic synthesis. In SBPI, the control synthesis
problem is posed in terms of a set of linear inequalities
on the marking of the Petri net. SBPI strategically adds
control places, and tokens in these, to the Petri net. These
control places restrict the behavior of the net and guaran-
tee that the given linear inequalities are satisfied at all
reachable markings. Moreover, the control actions prov-
ably satisfy the MPC property with respect to the given
control specification. In our example Petri net, one could
interpret place L as a control place that ensures that the
sum of tokens in C1 and C2 never exceeds 1. Given this
Petri net without place L and its adjacent arcs, and given
the constraint that the total number of tokens in C1 and
C2 cannot exceed 1, SBPI would automatically add L, its
arcs, and its initial token. In SBPI, the online control
logic is therefore “compiled” offline in the form of the
augmented Petri net (with control places). During on-
line execution, the markings of the control places dictate
control actions. SBPI terminates with an error message if
the system is fundamentally uncontrollable with respect
to the given specifications. For Gadara, an example of an
uncontrollable program is one that repeatedly acquires a
nonrecursive mutex.

Gadara achieves deadlock avoidance by combining
SBPI with siphon analysis [4]. A siphon is a set of places
that never regains a token if it becomes empty. If a Petri
net arrives at a marking with an empty siphon, no tran-
sition reached by the siphon’s places can ever fire. We
can therefore establish a straightforward correspondence
between deadlocks in a program and empty siphons in its
Petri net model.

Gadara employs SBPI to ensure that siphons corre-
sponding to potential circular-mutex-wait deadlocks do
not empty. The control places added by SBPI may cre-
ate new siphons, so Gadara ensures that newly created
siphons will never become empty by repeated application
of SBPI. Gadara thus resolves deadlocks introduced by
its own control logic offline, ensuring that no such dead-
locks can occur at run time. We have developed strate-
gies for siphon analysis that exploit the special struc-
ture of our Petri net models and employ recent results
in DCT [27]. These strategies accelerate convergence of

Gadara’s iterative algorithm while preserving the MPC
property.

In summary, siphon analysis and SBPI augment the
program’s Petri net model with control places that en-
code feedback control logic; this process does not enu-
merate the reachable markings of the net. The control
logic is provably deadlock-free and maximally permis-
sive with respect to the program model. Program instru-
mentation ensures that the online behavior of the pro-
gram corresponds to that of the control-augmented Petri
net. Gadara control logic and corresponding instrumen-
tation are decentralized, fine-grained, and highly con-
current. Gadara introduces no global runtime perfor-
mance bottleneck because there is no centralized allo-
cator (“banker”) adjudicating lock-acquisition requests,
nor is there any global lock-disposition database (“ac-
count ledger”) requiring serial modification.

4 Modeling Programs

We use the open source compiler OpenIMPACT [36] to
construct an augmented control flow graph (CFG) for
each function in the input program. Each basic block is
augmented with a list of lock variables that are acquired
(or released) and the functions that are called within the
basic block.

Lock functions We recognize standard Pthreads
functions and augment the basic blocks from which they
are called. Recognized functions include the mutex, spin,
and reader-writer lock/unlock functions and condition
variable functions. Large scale software often uses wrap-
per functions for the primitive Pthread functions. It is
beneficial to recognize these wrapper functions, which
appear higher up in the call tree where more information
is available about the lock involved (e.g., the structures
that enclose it). We rely on programmer annotations to
recognize wrapper functions. The programmer annotates
the wrapper functions at the declaration site using pre-
processor directives, along with the argument position
that corresponds to the lock variable. Basic blocks that
call wrapper functions are marked as acquiring/releasing
locks.

Lock variables Every lock function call site in
a basic block is also augmented with the lock vari-
able it acquires/releases. Wrapper lock functions typ-
ically take wrapper structures as arguments, which ul-
timately embed the lock variable of the primitive type
pthread mutex t. The argument position used in the
annotation of a wrapper function automatically marks
these wrapper structure types. We define a lock type
as the type of the wrapper structure that encloses the
primitive lock. Basic blocks are augmented with the
names of the lock variables if the lock acquisition is di-
rectly through the ampersand on a lock variable (e.g.,

286 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

lock(&M)). If a pointer to a lock type is passed to the
lock function at the acquisition site, then the basic block
is annotated with the lock type.

Translation To Petri Nets Translating the CFG into a
Petri net follows the methodology described in Section 3.
A detailed discussion of modeling Pthread functions can
be found in [21]. Here, we focus on practical issues re-
lated to modeling real-world programs.

We translate each function’s CFG into a Petri net in
which each transition has a single input place and a sin-
gle output place. Each basic block in the function is rep-
resented by a place in the Petri net, and control transfer
from one basic block to another is represented by a tran-
sition. Function calls are modeled by substituting into
the call site a copy of the callee’s Petri net model, i.e.,
our overall Petri net represents the program’s global in-
lined CFG.

Recursion Recursive function calls are handled
somewhat like loops when building the inlined CFG for
control synthesis. For each function in a recursion, we
inline exactly one copy of its Petri net in the model. The
recursive call of the function is linked back to the Petri
net representing the topmost invocation of the function
in the call stack. Control synthesis need not distinguish
these “special” loops from normal loops. For control in-
strumentation, when there are control actions associated
with recursive functions, we need to correctly identify
entry and return from the recursive call. We augment the
function parameter to record the depth of the recursion.

Locks Each statically allocated lock is added to
the net as a mutex place with one initial token. In ad-
dition, every unique lock type (i.e., wrapper structure
type) has its own mutex place. An acquisition of a stat-
ically allocated lock is modeled as an arc from its cor-
responding mutex place to the transition corresponding
to the lock acquisition. However, an acquisition through
a lock pointer is conservatively approximated as an arc
from the single place corresponding to the lock type to
the corresponding transition. Note that this approxima-
tion does not miss any deadlock bugs, but could lead to
conservative control. For example, a circular wait de-
tected by Gadara may not be a real deadlock since the
threads might be waiting on different lock instances of
the same lock type. Section 5 revisits spurious deadlocks
and shows how programmer annotations can help Gadara
distinguish them.

Thread creation We model thread creation by
marking the input places of functions spawned by
pthread create() with an infinite number of to-
kens. This models the scenario in which any number of
threads could be running concurrently, and deadlock is
detected for this scenario. In a real execution, if N is the
maximum number of threads that will ever be spawned,
and deadlock can occur only when the number of con-

current threads exceeds N, then Gadara will conserva-
tively add control logic to address the spurious deadlock;
the runtime cost of this superfluous control is typically
a constant. We identify potential thread entry functions
in two ways: as statically resolvable pointers passed to
pthread create(), and as entry points in the global
function call graph; programmer annotations can elimi-
nate some of the latter.

Pruning the Petri net Real programs could result
in a large Petri net, slowing offline control logic syn-
thesis. However, logic unrelated to mutexes constitutes
the vast majority of real programs. We therefore per-
form a correctness-preserving performance optimization
for the offline control logic synthesis phase by remov-
ing such irrelevant areas of program logic from the Petri
net model. We prune the original Petri net to a much
smaller equivalent by removing functions that do not call
lock-related functions directly or indirectly, and then by
further reducing the representations of the functions that
remain. Function removal involves straightforward anal-
ysis of the global function call graph, but function re-
duction is a more elaborate procedure; see [47] for the
details. An important property of our pruning algorithm
is that it preserves the mapping from Petri net places to
basic blocks in the original program, which facilitates the
online control implementation.

5 Offline Control Logic Synthesis

Gadara synthesizes maximally permissive control logic
using specialized versions of standard Discrete Control
Theory methods. This section explains the basics of our
procedures; several correctness-preserving optimizations
speed up control logic synthesis, as described in [47].

As explained in Section 3, control logic synthesis in
Gadara iteratively identifies siphons in a Petri net corre-
sponding to deadlocks in a real program and uses SBPI to
add control places that ensure deadlock avoidance. SBPI
operates on a P×T matrix representation of the Petri net
structure, where P and T , respectively, are the number of
places and transitions in our pruned Petri net. The com-
putational cost of a single iteration of SBPI is O(PT 2) us-
ing naı̈ve methods; Gadara’s methods are usually faster
because they are specialized to sparse matrices, which
are common in practice. In the worst case, the cost of
siphon detection is exponential in the number of distinct
lock types held by any thread at any instant; better worst-
case performance is unlikely because MPC logic synthe-
sis is NP-hard even in our special class of Petri nets [39].
In practice, however, Gadara’s entire control logic syn-
thesis phase typically terminates after a single iteration.
For a real program like OpenLDAP slapd, it is more
than an order of magnitude faster than running make
(seconds vs. minutes).

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 287

Deadlock faults may involve distinct lock types, or
multiple instances of a single type. Gadara uses standard
SBPI control synthesis procedures to identify the for-
mer and synthesize satisfactory control logic. Because
Gadara’s modeling phase substitutes lock types for lock
instances, however, standard DCT techniques detect but
cannot remedy deadlock faults involving multiple lock
instances of the same lock type. This is not a shortcom-
ing of DCT, but rather a consequence of a modeling sim-
plification forced upon us by the difficulty of data flow
analysis, as discussed in Section 4.

while (...)
lock(&(a[i]));

Deadlock potentials involving
lock instances all of the same type
can arise, e.g., in the code on the
right. Gadara cannot determine which lock instances are
acquired by this loop, nor the acquisition order. Gadara
does, however, know that all acquired locks in array a[]
are of the same lock type (call it W). Gadara therefore
serializes the acquisition phases for locks of this type by
adding control logic that prevents more than one thread
from acquiring multiple locks of type W concurrently,
e.g., no more than one thread at a time is permitted to
execute the code above.

This approach guarantees deadlock avoidance, but
may be deemed unnecessary by programmers: In prac-
tice, most real deadlock bugs involve different lock
types [9, 28], since it is relatively easy to ensure correct
lock ordering within the same lock type. The program-
mer may therefore choose to disable Gadara’s deadlock
avoidance for deadlocks involving a single lock type (all
such deadlocks, or individual ones).

The control logic that Gadara synthesizes is typically
far more subtle than in the simple example discussed
above. Most of the subtlety arises from three factors:
complicated branching in real programs, the constraint
that Gadara’s run-time control logic may intervene only
by postponing lock acquisitions, and the demand for
MPC. We illustrate a more realistic example of deadlock-
avoidance control logic using an actual OpenLDAP bug
shown in Figure 2, to which we have added clarifying
comments; Gadara instrumentation is shown in italics.

Correct lock acquisition order is alphabetical in the
notation of the comments. Deadlock occurs if one
thread reaches line 10 (holding lock B and requesting A)
while another reaches line 2 (holding A, requesting B).
Gadara’s control logic addresses this fault as follows: Let
t denote the first thread to reach line 1. Gadara immedi-
ately forbids other threads from passing line 1 by post-
poning this lock acquisition, even if lock A is available
(e.g., if thread t is at line 6). If t branches over the body of
the if on line 7, or if it executes line 13, Gadara knows
that t cannot be involved in this deadlock bug and there-
fore permits other threads to acquire the lock at line 1.

1 : L_rdwr_wlock(&E.c_rwlock); /*LOCK(A)*/
gadara_wlock_and_deplete(&E.c_rwlock,

&ctrlplace);
2 : ...
3 : L_mutex_lock(&E.lru_mutex); /*LOCK(B)*/
4 : ...
5 : L_rdwr_wunlock(&E.c_rwlock); /*UNLK(A)*/
6 : ...
7 : if (E.c_cursize > E.c_maxsize) {
8 : ...
9 : for (elru = E.c_lrutail; elru;

elru = elprev, i++) {
10: ...
11: L_rdwr_wlock(&E.c_rwlock); /*LOCK(A)*/
12: ...
13: L_rdwr_wunlock(&E.c_rwlock); /*UNLK(A)*/

gadara_replenish(&ctrlplace);
14: ...
15: }
16: ...
17: }

else gadara_replenish(&ctrlplace);
18: ...
19: L_mutex_unlock(&E.lru_mutex); /*UNLK(B)*/

Figure 2: OpenLDAP deadlock, bug #3494. For clarity,
two long strings are abbreviated “L” and “E.”

We instrument the code as follows: we re-
place the boldface lock-acquisition call on line 1
of the original code with a call to wrapper func-
tion gadara wlock and deplete(), which atom-
ically depletes the token in the control place that
Gadara has added to address this deadlock and calls
the program’s original lock function. Calls to
gadara replenish() restore the token to the con-
trol place when it is safe to do so, permitting other
threads to pass the modified line 1. MPC guarantees
that these replenish calls are inserted as soon as possi-
ble, while preserving deadlock-free control. The con-
trol place is implemented with a condition variable;
the deplete function waits on this condition and the
replenish function signals it.

This example shows that Gadara’s control logic is
lightweight, because it adds only a simple condition vari-
able wait/signal to the code. It is also decentralized and
therefore highly concurrent, because it affects only code
that acquires or releases locks A and B; threads acquiring
unrelated locks are completely unaffected by the control
logic that addresses this deadlock fault, and no central
allocator or “banker” is involved. Finally, Gadara’s con-
trol logic is fine grained, because it addresses this spe-
cific fault with a dedicated control place; other potential
deadlocks are addressed with control places of their own.

Annotations Like many state-of-the-art static analy-
sis tools, Gadara’s modeling and control logic synthesis
phases do not analyze data flow. As noted in Section 2,
false control flow paths lead directly to the detection of

288 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

spurious deadlock potentials. Whereas a static analysis
tool like RacerX [9] may strive to rank suspected dead-
lock bugs to aid the human analyst, Gadara is conserva-
tive and therefore treats all suspected deadlocks equally
by synthesizing control logic to dynamically avoid them.
Gadara encourages the programmer to add annotations
that help rule out spurious deadlocks by showing where
annotations are likely to be most helpful; annotations re-
duce runtime overhead by reducing instrumentation and
control.

We found that function-level annotations can greatly
reduce the false positive rate with modest programmer
effort. Many false positives arise because Gadara be-
lieves that a lock type acquired within a function may or
may not be held upon return; we call such functions am-
biguous. Programmer annotations can tell Gadara that
a particular lock type is always or never held upon re-
turn from a particular function, thereby disambiguating
it. This is a local property of the function and is typi-
cally easy to reason about. In our experience, a person
with little or no knowledge of a large real program such
as OpenLDAP can correctly annotate a function in a few
minutes. A first pass of Gadara uses lockset analysis [40]
to identify ambiguous functions, which are not numerous
even in large programs. After the programmer annotates
these, Gadara’s second pass exploits the annotations to
reduce false positives.

if (OK != lock(&M))
return ERROR;

...
unlock(&M);

lock(&S->M);
...
free(&S);

We have identified two other
patterns, shown on the right, that
frequently cause false positives
that our annotations can elimi-
nate. In the first case, Gadara
cannot tell that the error return
occurs only when the lock ac-
quisition fails. In the second case, a function acquires
a lock embedded within a dynamically allocated wrap-
per structure and frees the latter before returning, with-
out bothering to release the enclosed lock. In a variant of
the second pattern, the function aborts the entire program
without releasing the lock. Annotations reassure Gadara
that the enclosing function never returns holding a live
mutex.

6 Instrumentation and Control

The output of the control logic synthesis algorithm is an
augmented version of the input Petri net, to which con-
trol places with incoming and outgoing arcs to transi-
tions in the original Petri net have been added. An out-
going arc from a control place delays the target transition
until a token is available in the control place; the token
is consumed when the transition fires. An incoming arc
from a transition to a control place replenishes the con-
trol place with a token when the transition fires. Outgo-

ing arcs from control places always link to lock acquisi-
tion calls, which are the transitions that Gadara’s runtime
control logic controls. Incoming arcs originate at transi-
tions corresponding to lock release calls or branches that
the control logic must observe.

Gadara’s runtime control consists of wrappers for
lock-acquisition functions, a control logic state update
function, and local variables inserted into the program
during instrumentation. The wrappers handle control ac-
tions by postponing lock acquisitions; the update func-
tion observes selected runtime events and updates control
state. Both the wrappers and the update function must
correlate program execution state with the corresponding
Petri net state. Because we inlined functions to create the
Petri net, the runtime control logic requires more con-
text than just the currently executing basic block in the
function-level CFG. The extra information could be ob-
tained by inspecting the call stack, but we instead instru-
ment functions as necessary with additional parameters
that encode the required context. In practice, the control
logic usually needs only the innermost two or three func-
tions on the stack, and we add exactly as much instru-
mentation as required to provide this. For real programs,
only a handful of functions require such instrumentation.

As illustrated in Figure 2 and the accompanying dis-
cussion, we replace the native lock-acquisition functions
with our wrappers only in cases where the correspond-
ing transitions in the Petri net are controlled, i.e., tran-
sitions with incoming arcs from a control place. The
wrapper function depletes a token from the control place
and grants the lock to the thread. If the control place is
empty, it waits on a condition variable that implements
the control place, which effectively delays the calling
thread. For transitions with an outgoing arc to a con-
trol place, we insert a control update function that re-
plenishes the token and signals the condition variable of
the control place. In certain simple cases, control places
can be implemented with mutexes rather than condition
variables. In all cases, control is implemented with stan-
dard Pthread functions. Gadara carefully orders the locks
used in the implementation so that instrumentation itself
introduces no deadlocks or other liveness/progress bugs.

The net effect of instrumentation and control is to
compel the program’s runtime behavior to conform to
that of the controlled Petri net model. The control logic
intervenes in program execution only by postponing lock
acquisition calls. Runtime performance penalties are due
to control state update overhead and concurrency reduc-
tion from postponing lock acquisitions. The former over-
head for a given lock-acquisition function call is propor-
tional to the number of potential deadlocks associated
with the call. In practice, we found control update over-
head negligible compared to the performance penalty of

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 289

postponing lock acquisitions; MPC helps to mitigate the
latter.

7 Experiments

We conducted experiments to verify Gadara’s dynamic
deadlock avoidance capabilities, measure its perfor-
mance overheads, and compare it with an alternative
method of guaranteeing deadlock-free execution. Sec-
tion 7.1 employs several variants of a benchmark appli-
cation in experiments that exercise Gadara’s ability to
exorcise injected deadlock bugs, evaluate Gadara’s im-
pact on both throughput and response time, and compare
Gadara with a software transactional memory (STM) im-
plementation. Section 7.2 shows that Gadara automat-
ically eliminates one known nondeterministic deadlock
bug and two previously unreported potential deadlocks in
OpenLDAP, and measures Gadara’s performance over-
head on OpenLDAP. The benchmark deadlock fault in-
volves common-case code, but the OpenLDAP bug in-
volves corner-case code. Section 7.3 briefly summarizes
our experience applying Gadara to a deadlock-free pro-
gram, Apache. Earlier experiments involving randomly
generated “dining philosophers” programs are reported
in [47].

7.1 Benchmark

We implemented in C/Pthreads a simple client-server
publish-subscribe application, PUBSUB, to facilitate
fault-injection experiments and comparisons with STM.
At a high level, the main logic of the server resem-
bles the “listener pattern” popularized by Miller [29] and
Lee [26] to exemplify a simple, useful, and widespread
programming pattern that is remarkably troublesome un-
der concurrency. Our PUBSUB server supports three op-
erations: clients may subscribe to channels, publish data
to a channel, and request a snapshot of all of their current
subscriptions.

The server maintains two data structures: a table of
each client’s subscription lists, indexed by client ID, and
a table of channel state and subscriber lists, indexed by
channel ID. Both are implemented as open hash tables.
Subscribe operations atomically insert a client ID in a
channel record and a channel ID in a client’s subscrip-
tion list, thus modifying both tables. Publish operations
update the state of a channel and broadcast the result to
all of its subscribers. Snapshots first copy the requesting
client’s list of subscriptions and then traverse the chan-
nel table, sending the client the current state of all chan-
nels on the list. The server employs a fixed-size pool of
worker threads (12 in all of our experiments) and ensures
consistent access to shared data via medium-grain lock-
ing: one mutex per hash table bucket. An additional mu-

tex per network interface ensures atomicity of snapshot
replies. A deadlock-free variant of the server acquires
locks in a fixed global order; it is straightforward to in-
ject deadlock faults by perturbing this order. We replaced
locks with atomic { } blocks to obtain a variant suit-
able for the Intel C/C++ compiler’s prototype STM ex-
tension [18, 34].

Server

switch

client

switch

client

switch

client

switch

client

NICNIC NIC NIC

We ran our benchmark tests
in the test environment depicted
at right. The server is an
HP Compaq dc7800 CMT with
8 GB RAM and a dual-core In-
tel 2.66 GHz CPU running 64-
bit SMP Linux kernel 2.6.22.
Four identical dc7800 USD clients with 1 GB RAM and
one 2.2 GHz dual-core Intel CPU each running 64-bit
SMP Linux kernels 2.6.23 are connected to separate net-
work interface cards on the server via dedicated Cisco
10/100 Mbps Fast Ethernet switches.

Each client machine emulates 1024 clients. Each em-
ulated client first subscribes to 50 different randomly
selected channels, then each client machine issues ran-
dom publish/snapshot requests, with request type, client
ID, and channel ID selected with uniform probability;
each client machine issues a total of 250,000 requests.
The client emulator carefully checks replies for evi-
dence of server-end races, e.g., publication output inter-
leaved with snapshot replies (the latter are supposed to be
atomic); we saw no suspicious replies in our tests. The
client emulator generates open-arrival requests, which al-
lows us to control server load more readily [41], by us-
ing separate threads to issue requests and read replies.
We test three variants of the PUBSUB server under two
conditions: in heavy-load tests, clients issue requests as
rapidly as possible; light-load tests add inter-request de-
lays to throttle request rates to within server capacity.

The table below presents mean server-to-client band-
widths under heavy load and mean response times under
light load measured at one of our four symmetric client
machines (results on the other client machines are sim-
ilar). These results are qualitatively representative of a
wider range of experiments not reported in detail here.

PUBSUB Heavy Load Light Load
variant b/w (Mbit/s) resp. time (ms)

DL-free 94.25 10.83
Gadarized 76.88 10.52

STM 47.15 66.70

The deadlock-free variant of PUBSUB (DL-free) repre-
sents best-case performance for any deadlock-prone (but
race-free) variant. Under heavy load it saturates all four
dedicated Fast Ethernet connections to all four client ma-
chines, and it serves requests in roughly 11 ms under
light load.

290 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Due to the conservatism of Gadara’s modeling—
specifically, due to the absence of data flow analysis—
Gadara cannot distinguish the original deadlock-free
PUBSUB from variants containing injected deadlock
faults, and Gadara treats both the same way (no anno-
tations were added to PUBSUB, because they would not
have helped). The “Gadarized” row in the table therefore
represents performance in two scenarios: when Gadara
successfully avoids real deadlock bugs, and also when
it operates upon a deadlock-free PUBSUB. In the latter
case Gadara can only harm performance. In our tests,
the harm is moderate: an 18% reduction in throughput
under heavy load, and essentially unchanged response
times under light load.

The STM results in the last row of the table seem baf-
fling. The optimistic concurrency of TM seems well-
suited to the PUBSUB server’s data structures and al-
gorithms [25]. PUBSUB-STM should match the perfor-
mance of the deadlock-free mutex variant under heavy
load, and should achieve faster response times under
light load. The Gadarized variant should (hopefully) per-
form acceptably, but might reasonably be expected to
trail the pack.

The root cause of the TM performance problem lies
in the interaction between I/O and the semantics of
atomic { } blocks. At best, it is very difficult for a
TM system to permit concurrency among atomic sec-
tions that perform I/O [42, 49]. The Intel STM pro-
totype permits I/O within atomic blocks, but it marks
such blocks as “irrevocable” and serializes their execu-
tion [18]. Like many modern server and client applica-
tions [3], PUBSUB performs I/O in critical sections (to
ensure that snapshot replies are atomic), and this leads to
serialization in the STM variant of PUBSUB.

TM is widely touted as more convenient for the pro-
grammer, and less error-prone, than conventional mu-
texes. Our experience is partly consistent with this view,
with several important qualifications. Defining atomic
sections is indeed easier than managing locks. Our per-
formance results show, however, that this convenience
can carry a price: Mutexes are a more nuanced lan-
guage for expressing I/O concurrency opportunities than
atomic sections, and performance may suffer if the lat-
ter are used. If our goal is to exploit available phys-
ical resources fully, we would currently choose locks
over TM; Gadara removes a major risk associated with
this choice. The STM implementation that we used fur-
thermore requires additional work from the programmer
beyond defining atomic sections, e.g., function annota-
tions; the total amount of programmer effort required to
STM-ify PUBSUB was greater than that of using Gadara.
Moreover, some of the extra work requires great care:
incorrect STM function annotations can yield undefined

behavior [18], whereas omitted or incorrect Gadara an-
notations have less serious consequences.

7.2 OpenLDAP

OpenLDAP is a popular open-source implementation
of the Lightweight Directory Access Protocol (LDAP).
The OpenLDAP server program, slapd, is a high-
performance multithreaded network server. We applied
Gadara to slapd in version 2.2.20, which has a con-
firmed deadlock bug [37]. The bug was fixed in 2.2.21
but returned in 2.3.13 when new code was added.

The slapd program has 1,795 functions, of which
456 remain after pruning. Control flow graph generation
and Gadara’s modeling phase took roughly as long as a
full build of the slapd program; two passes of control
logic synthesis each took far less time (a few seconds).

In addition to standard Pthreads lock functions, we an-
notated six pairs of lock and unlock functions that op-
erate upon file or database locks or call Pthreads lock
functions through pointers. OpenLDAP contains 41 lock
types, i.e., distinct types of wrapper structures that con-
tain locks. After model translation and reduction, the
model contains two separate Petri nets that may poten-
tially deadlock, one with two lock types and the other
with 15 lock types. The model contains separate Petri
nets because different modules of the program use dif-
ferent subsets of locks. We apply Gadara to each sepa-
rate net independently, which reduces the computational
complexity of control logic synthesis without changing
the resulting control logic. Gadara’s first pass com-
pleted in a few seconds and reported 25 ambiguous func-
tions (i.e., the set of locks held on return was ambigu-
ous). We manually inspected these functions and an-
notated 21; ambiguities in the remaining four functions
were genuine. A programmer not deeply familiar with
the source code required a little over an hour to disam-
biguate slapd’s functions.

Disambiguation allows Gadara’s second pass to con-
struct a more accurate model with fewer false execu-
tion paths and fewer spurious deadlock potentials. The
second-pass model of slapd contains four separate
Petri nets that may deadlock, three with two lock types
and one with four. Each separate Petri net contains one
siphon. It was easy to confirm manually that the known
deadlock bug corresponds to one of these siphons. Of the
remaining three siphons, one was clearly a false positive;
it was a trivial variant of the false paths pattern in Sec-
tion 2 that spans two functions and that our current proto-
type does not weed out, even after disambiguation. The
last two siphons correspond to genuine deadlock faults.
We disabled Gadara control for the obvious false positive
and allowed Gadara to address the three genuine faults.

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 291

 0

 200

 400

 600

 800

 1000

 0 4 8 12 16
 0

 2

 4

 6

 8

 10

 12
th

ru
pu

t (
re

qs
/s

ec
)

re
sp

 ti
m

e
(m

s)

clients

thruput

resp. time

solid=Gadara

 0

 100

 200

 300

 0 4 8 12 16
 0

 10

 20

 30

 40

 50

 60

th
ru

pu
t (

re
qs

/s
ec

)

re
sp

 ti
m

e
(m

s)

clients

 0

 50

 100

 150

 200

 250

 0 4 8 12 16
 0

 30

 60

 90

 120

th
ru

pu
t (

re
qs

/s
ec

)

re
sp

 ti
m

e
(m

s)

clients

Figure 3: Modify workload. Figure 4: Search workload. Figure 5: Add/Del workload.

The control synthesis algorithm terminated in a few sec-
onds, after a single iteration.

We first tested whether the Gadarized slapd suc-
cessfully avoids the known deadlock bug, which resides
among database cache functions that participate in inser-
tion and eviction operations on the slapd application-
level cache. The bug is nondeterministic and hard to
reproduce, but we were able to reliably trigger it after
inserting four sched yield() calls immediately be-
fore a thread requests an additional lock while holding
a particular lock. We configured slapd with a small
cache size to trigger frequent cache evictions. After these
changes, we were able to reproduce the deadlock bug re-
liably within one minute or less with a workload con-
sisting of a mixture of add, delete and modify requests.
An otherwise-identical Gadarized version of the same
slapd, however, successfully serves the same workload
indefinitely without deadlock or other difficulty.

Our next experiments compare performance between
original and Gadarized slapd variants (neither con-
taining the sched yield() calls inserted for our
deadlock-avoidance test above). Our OpenLDAP clients
submit three different workloads to a slapd that con-
tains a simulated “employee database” directory: search
workloads perform lookups on indexed fields of ran-
domly selected directory entries; modify workloads alter
the contents of randomly selected entries by adding new
field and deleting a field; and add/delete workloads cre-
ate and remove randomly generated entries. We vary the
number of clients between 1 and 16, and we locate the
client emulators on the same server as slapd to make it
easier to overload the latter.

Preliminary tests showed that Gadara overhead is neg-
ligible when slapd is configured normally, because per-
formance is disk bound and because the deadlock faults
that Gadara addressed involve code paths that execute in-
frequently. We therefore took extraordinary measures to
ensure that slapd is not disk bound and that the faulty
code of the known bug executes frequently: we used a
small directory (100 entries), disabled database synchro-
nization, and configured slapd to serve replies from in-
memory data via the “dirtyread” directive. This con-

figuration is highly atypical but is required to trigger any
Gadara overhead at all for the OpenLDAP deadlock bug.

Figures 3, 4, and 5 present average response time
and throughput measurements for our three workloads.
In terms of both performance metrics, Gadara imposes
overheads of 3–10% for the Modify and Add/delete
workloads; overhead is negligible for the Search work-
load. The difference occurs because the Gadara in-
strumentation and control logic are triggered only in
functions that add and delete items from the slapd
application-level cache. Modify and Add/delete work-
loads cause cache insertions and deletions, and there-
fore incur Gadara overhead. The Search workload, how-
ever, performs only cache lookups, and therefore avoids
Gadara overhead.

7.3 Apache

We applied Gadara to Apache httpd version 2.2.8.
The program has 2,264 functions and 12 distinct lock
types. The first pass of Gadara identifies 28 ambiguous
functions. Almost all ambiguities involve error check-
ing in lock/unlock functions (if the attempt to acquire a
lock fails, return immediately) so it was easy to disam-
biguate these functions. After we appropriately annotate
them, Gadara reports no circular-mutex-wait deadlock,
and therefore Gadara inserts no control logic instrumen-
tation. In Apache, most functions acquire at most one
lock and release it before returning. This lock usage pat-
tern is restrictive, but makes it relatively easy to write
deadlock-free programs. Gadara’s analysis of httpd is
consistent with the Apache bug database, which reports
no circular-mutex-wait deadlocks in any 2.x version of
Apache. Two reported deadlocks in the bug database in-
volve inter-process communication, not mutexes [28].

7.4 Discussion

Our experience shows that Gadara handles large real pro-
grams, and it is easier to Gadarize a program than mi-
grate it to atomic sections. Experiments with our pro-
totype implementation show that Gadara successfully
avoids deadlocks in deadlock-prone programs with little
or no adverse impact on performance. As illustrated by

292 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

our OpenLDAP results, Gadara works particularly well
for corner-case deadlock faults in infrequently-executed
code; Gadara eliminates such faults with modest pro-
grammer effort and with low performance overhead even
under adverse conditions. Our benchmark tests show that
the performance overhead may be tolerable even when
Gadara corrects deadlock faults in common-case code
paths. The history of the OpenLDAP bug furthermore
shows that Gadara may be a reasonable alternative to
the straightforward approach of manually fixing dead-
lock faults—the latter was done for the slapd deadlock
we discuss, but the bug returned many versions later. The
cost of running Gadara to eliminate corner-case dead-
locks in each new version may compare favorably with
the cost of repeated manual repair.

8 Related Work

There are four basic approaches to dealing with dead-
lock in multithreaded programs that employ locks: static
prevention, static detection, dynamic detection, and dy-
namic avoidance. Static deadlock prevention by acquir-
ing locks in a strict global order is straightforward but
rarely easy. Experience has shown that it is cumbersome
at best to define and enforce a global lock acquisition or-
der in complex, modular, multi-layered software. Lock
ordering can become untenable in software developed by
independent teams separated in both time and geogra-
phy. Indeed, corner-case lock-order bugs arise even in
individual modules written by a single expert program-
mer [9]. Our contribution is to perform systematic global
reasoning in the control logic synthesis phase of Gadara,
relieving programmers of this burden.

Static detection uses program analysis techniques to
identify potential deadlocks. Examples from the re-
search literature include the Extended Static Checker
(ESC) [11] and RacerX [9]; commercial tools are also
available [43]. Adoption, however, is far from universal
because spurious bug reports are common for real-world
programs, and it can be difficult to separate the wheat
from the chaff. Repair of real defects identified by static
analysis remains manual and therefore time-consuming,
error-prone, and costly. By contrast, Gadara automati-
cally repairs deadlocks.

Dynamic detection does not suffer from false posi-
tives, but by the time deadlock is detected, recovery may
be awkward or impossible. Automated rollback and re-
execution can eliminate the burden on the programmer
and guarantee safety in a wider range of conditions [38],
but irrevocable actions such as I/O may preclude roll-
back. Dynamic detection of potential deadlocks (incon-
sistent lock acquisition ordering) can complement static
deadlock detection [1, 2].

Dijkstra’s “Banker’s Algorithm” dynamically avoids
resource deadlocks by postponing requests, thereby con-
straining a set of processes to a safe region from which
it is possible for all processes to terminate [7, 13, 22]
(mutex deadlocks call for different treatment because,
unlike units of resources, mutexes are not fungible).
Holt [16,17] improved the efficiency of the original algo-
rithm and introduced a graphical understanding of its op-
eration. While the classic Banker’s Algorithm is some-
times used in real-time computing, its usefulness in more
general computing is limited because it requires knowl-
edge of a program’s dynamic resource consumption that
is difficult to specify. The Banker’s Algorithm has been
applied to manufacturing systems under assumptions and
system models inappropriate for our domain [39, 45].

Generalizations of the Banker’s Algorithm address
mutex deadlocks, and some can exploit (but do not
provide) models of program behavior of varying so-
phistication [10, 12, 24, 30, 33, 50]. Gadara differs in
several respects. First, it both generates and exploits
models of real programs with greater generality and fi-
delity. More importantly, Gadara’s online computations
are much more efficient. In contrast to the Banker’s Al-
gorithm’s expensive online safety checks, Discrete Con-
trol Theory allows Gadara to perform most computation
offline, greatly reducing the complexity of online con-
trol. Finally, Banker-style schemes employ a central al-
locator whose “account ledger” must be modified when-
ever resources/locks are allocated. In an implementation,
such write updates may be inherently serial, regardless of
the concurrency control mechanisms that ensure consis-
tent updates (conventional locks, lock-free/wait-free ap-
proaches, or transactional memory). For example, in the
classic single-resource Banker’s Algorithm, updates to
the “remaining units” variable are necessarily serial. As
a consequence, performance suffers doubly: acquisitions
are serialized, and each acquisition requires an expensive
safety check. By contrast, Gadara’s control logic admits
true concurrency because it is decentralized; there is no
central controller or global state, and lock acquisitions
are not globally serialized.

Nir-Buchbinder et al. describe a two-stage “exhibit-
ing/healing” scheme that prevents previously observed
lock discipline violations from causing future dead-
locks [35]. The “exhibiting” phase attempts to trigger
lock discipline violations during testing by altering lock
acquisition timing. “Healing” then addresses the poten-
tial deadlocks thus found by adding gate locks to ensure
that they cannot cause deadlocks in subsequent execu-
tions. The production runtime system detects new lock
discipline violations and also deadlocks caused by gates;
it recovers from the latter by canceling the gate, and
ensures that similar gate-induced deadlocks cannot re-
cur. As time goes on, programs progressively become

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 293

deadlock-free as both native and gate-induced deadlocks
are healed. The runtime checks of the healing system re-
quire time linear in the number of locks currently held
and requested; lower overhead is possible if deadlock
detection is disabled. Jula & Candea describe a dead-
lock “immunization” scheme that dynamically detects
specific deadlocks, records the contexts in which they
occur, and dynamically attempts to avoid recurrences of
the same contexts in subsequent executions [20]. This
approach dynamically performs lock-acquisition safety
checks on an allocation graph; the computational com-
plexity of these checks is linear, polynomial, and expo-
nential in various problem size parameters. Like healing,
immunization can introduce deadlocks into a program.

Gadara differs from healing and immunization in sev-
eral respects: Whereas these recent proposals perform
centralized online safety checks involving graph traver-
sals, Gadara’s control logic is much less expensive be-
cause DCT enables it to perform most computation—
including the detection and remediation of avoidance-
induced deadlocks—offline. Healing and immunity tell
the user what deadlocks have been addressed, but not
whether any deadlocks remain. By contrast, Gadara
guarantees that all deadlocks are eliminated at com-
pile time, ensuring that they never occur in production.
Whereas the computational complexity of the safety
checks in healing and immunity depend on runtime con-
ditions, in Gadara the dynamic checks associated with
a lock acquisition (i.e., the control places incident to
a lock acquisition transition) are known statically; pro-
grammers may therefore choose to manually repair dead-
lock faults that entail excessive control logic and allow
Gadara to address the deadlocks that require little con-
trol logic. Whereas healing’s guard locks essentially
coarsen a program’s locking, Gadara’s maximally per-
missive control logic synthesis allows more runtime con-
currency. The price Gadara pays for its advantages is
the need for whole-program analysis, reliance on pro-
grammer annotations to improve performance, and the
possibility of performance degradation due to superflu-
ous control logic for spurious deadlock faults detected
during offline analysis.

9 Conclusions

To the best of our knowledge, Gadara is the first ap-
proach to circular-mutex-wait deadlock that does all of
the following: Leverages deep knowledge of applica-
tions; safely eliminates all circular-mutex-wait dead-
locks; places no major new burdens on programmers;
remains compatible with the installed base of compil-
ers, libraries, and runtime systems; imposes modest per-
formance overheads on real programs serving realis-
tic workloads; and liberates programmers from fear of

deadlock, empowering them to implement more ambi-
tious locking strategies. In Gadara, compiler technol-
ogy supplies deep whole-program analysis that yields a
global model of all possible program behaviors, includ-
ing corner-cases likely to evade testing. Discrete Con-
trol Theory combines the strengths of offline analysis
and control synthesis with online observation and con-
trol to dynamically avoid deadlocks in concurrent pro-
grams. Thanks to DCT, Gadara’s control logic is light-
weight, decentralized, fine-grained, and highly concur-
rent. Gadara exploits the natural synergy between the
strengths of DCT and compiler technology to solve one
of the most formidable problems of concurrent program-
ming. Gadara is set apart from alternative approaches
in that it provides a whole-program model for analyzing
and managing concurrency.

10 Acknowledgments

The research of Wang, Lafortune, and Mahlke is sup-
ported in part by NSF grants ECCS-0624821, CCF-
0819882, and CNS-0615261, and by an HP Labs Open
Innovation award. We thank Marcos Aguilera, Eric An-
derson, Hans Boehm, Dhruva Chakrabarti, Peter Chen,
Pramod Joisha, Xue Liu, Mark Miller, Brian Noble,
and Michael Scott for encouragement, feedback, and
valuable suggestions. Ali-Reza Adl-Tabatabai answered
questions about the Intel STM prototype. We are grate-
ful to Kumar Goswami and Norm Jouppi for funding,
to Laura Falk and Krishnan Narayan for IT support, to
Kelly Cormier and Cindy Watts for administrative and
logistical assistance, and to Shan Lv and Soyeon Park
for sharing details concerning [28]. Finally we thank our
shepherd, Remzi Arpaci-Dusseau, and the anonymous
OSDI reviewers for many helpful suggestions.

References
[1] AGARWAL, R., AND STOLLER, S. D. Run-time detection of po-

tential deadlocks for programs with locks, semaphores, and con-
dition variables. In Proc. Workshop on Parallel and Distributed
Systems: Testing and Debugging (2006).

[2] AGARWAL, R., WANG, L., AND STOLLER, S. D. Detecting
potential deadlocks with static analysis and runtime monitoring.
In Proc. Parallel and Distributed Systems (2006), vol. 3875 of
LNCS, Springer-Verlag.

[3] BAUGH, L., AND ZILLES, C. An analysis of i/o and syscalls in
critical sections and their implications for transactional memory.
In TRANSACT (2007).

[4] BOER, E. R., AND MURATA, T. Generating basis siphons and
traps of Petri nets using the sign incidence matrix. IEEE Trans.
on Circuits and Systems—I 41, 4 (1994).

[5] CASSANDRAS, C. G., AND LAFORTUNE, S. Introduction to
Dsicrete Event Systems, second ed. Springer, 2007.

[6] CLARKE, E., GRUMBERG, O., AND PELED, D. Model Check-
ing. MIT Press, 2002.

[7] DIJKSTRA, E. W. Solution of a problem in concurrent program-
ming control. CACM 8, 9 (1965).

294 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[8] DIJKSTRA, E. W. Selected Writings on Computing. Springer-
Verlag, 1982, ch. The Mathematics Behind the Banker’s Algo-
rithm.

[9] ENGLER, D., AND ASHCRAFT, K. RacerX : effective, static
detection of race conditions and deadlocks. In SOSP (2003).

[10] FINKEL, R., AND MADDURI, H. H. An efficient deadlock avoid-
ance algorithm. Inf. Process. Lett. 24, 1 (1987).

[11] FLANAGAN, C., LEINO, K. R. M., LILLIBRIDGE, M., NEL-
SON, G., SAXE, J. B., AND STATA:, R. Extended static check-
ing for Java. In PLDI (2002).

[12] GOLD, E. M. Deadlock prediction: Easy and difficult cases.
SIAM J. Comput. 7, 3 (1978).

[13] HABERMANN, A. N. Prevention of system deadlocks. CACM
12, 7 (1969).

[14] HELLERSTEIN, J. L., DIAO, Y., PAREKH, S., AND TILBURY,
D. M. Feedback Control of Computing Systems. Wiley, 2004.

[15] HOLLOWAY, L., KROGH, B., AND GIUA, A. A survey of Petri
net methods for controlled discrete event systems. Discrete Event
Dynamic Systems: Theory and Applications 7, 2 (1997).

[16] HOLT, R. C. Comments on prevention of system deadlocks.
CACM 14, 1 (1971).

[17] HOLT, R. C. Some deadlock properties of computer systems.
ACM Comput. Surv. 4, 3 (1972).

[18] Intel C++ STM Compiler, Prototype Edition, Jan. 2008.
[19] IORDACHE, M. V., AND ANTSAKLIS, P. J. Supervisory Con-

trol of Concurrent Systems: A Petri Net Structural Approach.
Birkhäuser, 2006.

[20] JULA, H., AND CANDEA, G. A scalable, sound, eventually-
complete algorithm for deadlock immunity. In Workshop on Run-
time Verification (2008).

[21] KAVI, K. M., MOSHTAGHI, A., AND YI CHEN, D. Modeling
multithreaded applications using Petri nets. International Journal
of Parallel Programming 30, 5 (2002).

[22] KNUTH, D. E. Additional comments on a problem in concurrent
programming control. CACM 9, 5 (1966).

[23] LANDI, W. Undecidability of static analysis. ACM Lett. Pro-
gram. Lang. Syst. 1, 4 (1992).

[24] LANG, S.-D. An extended banker’s algorithm for deadlock
avoidance. IEEE Trans. Software Eng 25, 3 (1999).

[25] LARUS, J., AND RAJWAR, R. Transactional Memory. Morgan
& Claypool Publishers, 2007.

[26] LEE, E. A. The problem with threads. Tech. rep., UC Berkeley
EE & CS Department, Jan. 2006.

[27] LI, Z., ZHOU, M., AND WU, N. A survey and comparison of
Petri net-based deadlock prevention policies for flexible manufac-
turing systems. IEEE Trans. on Systems, Man, and Cybernetics—
Part C 38, 2 (2008).

[28] LU, S., PARK, S., SEO, E., AND ZHOU, Y. Learning from
mistakes: a comprehensive study on real world concurrency bug
characteristics. In ASPLOS (2008).

[29] MILLER, M. S. Robust Composition: Towards a Unified Ap-
proach to Access Control and Concurrency Control. PhD thesis,
Johns Hopkins University, 2006.

[30] MINOURA, T. Deadlock avoidance revisited. J. ACM 29, 4
(1982).

[31] MOODY, J. O., AND ANTSAKLIS, P. J. Supervisory Control
of Discrete Event Systems Using Petri Nets. Kluwer Academic
Publishers, 1998.

[32] MURATA, T. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE 77, 4 (1989).

[33] NEWTON, G. Deadlock prevention, detection, and resolution: an
annotated bibliography. SIGOPS Oper. Syst. Rev. 13, 2 (1979).

[34] NI, Y., WELC, A., ADL-TABATABAI, A.-R., BACH, M.,
BERKOWITS, S., COWNIE, J., GEVA, R., KOZHUKOW, S.,
NARAYANASWAMY, R., PREIS, J. O. S., SAHA, B., TAL, A.,
AND TIAN, X. Design and implementation of transactional con-
structs for C/C++. In OOPSLA (2008).

[35] NIR-BUCHBINDER, Y., TZOREF, R., AND UR, S. Deadlocks:

from exhibiting to healing. In Workshop on Runtime Verification
(2008).

[36] OpenIMPACT. http://www.gelato.uiuc.edu/.
[37] OpenLDAP Issue Tracking System. http://www.

openldap.org/its/.
[38] QIN, F., TUCEK, J., ZHOU, Y., AND SUNDARESAN, J. Rx:

Treating bugs as allergies—safe method to survive software fail-
ures. ACM TOCS 25, 3 (2007).

[39] REVELIOTIS, S. A. Real-Time Management of Resource Allo-
cation Systems: A Discrete-Event Systems Approach. Springer,
2005.

[40] SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO, P.,
AND ANDERSON, T. Eraser: A dynamic data race detector for
multithreaded programs. ACM TOCS 15, 4 (1997).

[41] SCHROEDER, B., WIERMAN, A., AND HARCHOL-BALTER, M.
Open versus closed: A cautionary tale. In NSDI (2006).

[42] SPEAR, M. F., SILVERMAN, M., DALESSANDRO, L.,
MICHAEL, M. M., AND SCOTT, M. L. Implementing and ex-
ploiting inevitability in software transactional memory. In Int’l.
Conf. on Parallel Processing (2008).

[43] SUN. WorkShop: Command-Line Utilities. Sun Press, 2006,
ch. 24: Using Lock Lint.

[44] SUTTER, H., AND LARUS, J. Software and the concurrency rev-
olution. ACM Queue 3, 7 (2005).

[45] TRICAS, F., COLOM, J. M., AND EZPELETA, J. Some improve-
ments to the banker’s algorithm based on the process structure.
In IEEE Int’l. Conf. on Robotics and Automation (2000).

[46] WALLACE, C., JENSEN, P., AND SOPARKAR, N. Supervisory
control of workflow scheduling. In Proc. Int’l. Workshop on Ad-
vanced Transaction Models and Architectures (1996).

[47] WANG, Y., KELLY, T., KUDLUR, M., MAHLKE, S., AND

LAFORTUNE, S. The application of supervisory control to dead-
lock avoidance in concurrent software. In Workshop on Discrete
Event Systems (2008).

[48] WANG, Y., KELLY, T., AND LAFORTUNE, S. Discrete con-
trol for safe execution of IT automation workflows. In EuroSys
(2007).

[49] WELC, A., SAHA, B., AND ADL-TABATABAI, A.-R. Irrevoca-
ble transactions and their applications. In SPAA (2008).

[50] ZÖBEL, D., AND KOCH, C. Resolution techniques and complex-
ity results with deadlocks: a classifying and annotated bibliogra-
phy. SIGOPS Oper. Syst. Rev. 22, 1 (1988).

