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Abstract

Transactional flash (TxFlash) is a novel solid-state drive
(SSD) that uses flash memory and exports a transactional
interface (WriteAtomic) to the higher-level software.
The copy-on-write nature of the flash translation layer
and the fast random access makes flash memory the right
medium to support such an interface. We further de-
velop a novel commit protocol called cyclic commit for
TxFlash; the protocol has been specified formally and
model checked.

Our evaluation, both on a simulator and an emu-
lator on top of a real SSD, shows that TxFlash does
not increase the flash firmware complexity significantly
and provides transactional features with very small over-
heads (less than 1%), thereby making file systems eas-
ier to build. It further shows that the new cyclic com-
mit protocol significantly outperforms traditional commit
for small transactions (95% improvement in transaction
throughput) and completely eliminates the space over-
head due to commit records.

1 Introduction

Recent advances in NAND-based flash memory have
made solid state drives (SSDs) an attractive alternative
to hard disks. It is natural to have such SSDs export the
same block-level read and write APIs as hard disks do,
especially for compatibility with current systems. SSDs
are thus simply “hard disks” with different performance
characteristics.

By providing the same API as disks, there is a lost op-
portunity of new abstractions that better match the nature
of the new medium as well as the need from applications
such as file systems and database systems. In this pa-
per, we propose a new device called Transactional Flash
(TxFlash) that exports such an abstraction. TxFlash is an
SSD exposing a linear array of pages to support not only
read and write operations, but also a simple transactional

construct, where each transaction consists of a series of
write operations. TxFlash ensures atomicity, i.e., either
all or none of the write operations in a transaction are ex-
ecuted, and provides isolation among concurrent transac-
tions. When committed, the data written by a transaction
is made durable on the SSD.

The atomicity property offered by the transactional
construct has proven useful in building file systems
and database systems that maintain consistency across
crashes and reboots. For example, a file creation involves
multiple write operations to update the metadata of the
parent directory and the new file. Often, a higher-level
system employs copy-on-write (CoW) or a variant of it,
such as write-ahead-logging (WAL) [13], to ensure con-
sistency. The essence of these mechanisms is to avoid
in-place modification of data.

Although known for decades, these mechanisms re-
main a significant source of bugs that can lead to in-
consistent data in the presence of failures [30, 16, 29],
not to mention the redundant work needed for each sys-
tem to implement such a mechanism. For example, in
Linux, the common journaling module (jbd) is used only
by Ext3 [28], although there are several other journaling
file systems, such as IBM JFS [3] and XFS [26].

Having a storage layer provide a transactional API re-
duces the complexity of the higher level systems signif-
icantly and improves the overall reliability. Indeed, pre-
vious work has attempted to provide such constructs on
hard disks using CoW and logging [5, 6, 22]. Unfor-
tunately, one common side effect of CoW techniques is
the fragmentation of the linear address space, i.e., CoW
tends to scatter related pieces of information over the
disk when updating them. Reading those fragmented
pieces of related information requires seeks, leading to
poor performance. To mitigate this performance prob-
lem, systems that implement CoW also employ some
form of checkpointing and cleaning [20], where related
pages are reorganized into their home locations. How-
ever, cleaning costs can themselves be high [24].

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 147



The significant extra complexity at the disk controller
layer and the poor read performance due to fragmenta-
tion are some of the main obstacles for providing a trans-
actional API on hard disks. SSDs mitigate both prob-
lems, making it an ideal medium for supporting transac-
tions. Modern SSD controllers already implement vari-
ants of CoW for performance reasons. Furthermore,
fragmentation does not lead to performance degradation
on SSDs because random read accesses are fast.

We develop a new cyclic commit protocol for TxFlash
to allow efficient implementation of transactions. Cyclic
commit uses per-page metadata to eliminate the need for
a separate commit record as in a standard commit pro-
tocol. Traditionally, the existence of a commit record is
used to judge whether a transaction is committed or not.
In our cyclic commit protocol, the judgment is based on
the metadata stored along with the data. The result is
a better commit protocol in terms of performance and
space overheads.

We evaluate TxFlash in three complementary ways.

e We formally specify the cyclic commit protocol in
TLA+ and check it using the TLC model checker [10].

e We design and implement TxFlash as an extension to
an SSD simulator from previous work [1]. The resulting
simulator is used to compare the variants of cyclic com-
mit with traditional commit, as well as to assess the over-
heads of transactional support by comparing TxFlash
with the basic SSD.

o We develop TxExt3, a version of the Linux Ext3 file
system modified to exploit TxFlash’s transactional API.
To obtain realistic end-to-end performance numbers, we
run TxExt3 on a real SSD using an intermediate pseudo-
device driver to emulate the TxFlash firmware.

Compared to traditional commit, cyclic commit im-
proves the performance significantly, especially for small
transactions, while eliminating the space overhead com-
pletely. For transactions less than 100 KB in size, cyclic
commit improves transaction throughput by 95% over
traditional commit. For transactions larger than 4 MB,
cyclic commit performs as well as traditional commit.
Our simulation results show that TxFlash can provide the
transactional capabilities with negligible overhead (less
than 1%) when compared to an SSD. Finally, for I/O
intensive synchronous applications, TxExt3 reduces the
run time by as much as 65%, in both data and metadata
journaling modes. However, the benefits for compute-
intensive applications are small (about 2%).

The rest of the paper is organized as follows. Next, we
make a case for TxFlash and explain its API and architec-
ture (§2). The core cyclic commit protocol and its vari-
ations are the subject of the following section (§3). We
follow this with the details of the implementation (§4)
and evaluation (§5). Then, we cover the related work
(§6) and finally conclude (§7).

2 The Case for TxFlash

The rationale for TxFlash is deeply tied to the fundamen-
tals of the flash based SSDs, which are covered in this
section. We then describe the API and the architecture
of TxFlash, followed by a discussion of the rationale for
TxFlash. For the rest of the paper, we interchangeably
use “page” or “logical page” to refer to pages as used by
a higher-level system. A page on the stable storage is
referred as a “physical page” or “flash page”.

2.1 SSDs: A Primer

Similar to disks, NAND-flash based SSDs provide a per-
sistent medium to store data. Unlike disks, however,
SSDs have no mechanically moving parts, yielding dras-
tically different performance characteristics from disks.

An SSD consists of multiple flash packages that are
connected to a controller, which uses some volatile mem-
ory for buffering I/O requests and maintaining internal
data structures. A flash package is internally made up
of several planes, each containing thousands of blocks;
each block in turn consists of many 4 KB pages. In ad-
dition to the data portion, a flash page also contains a
metadata portion: for every 4 KB page, there is a corre-
sponding 128 bytes for metadata such as checksums and
error correction codes. Reads and writes can be issued
at page granularity and SSDs can be designed to ensure
atomicity for a single page write, covering both the data
and the metadata.

Another characteristic of NAND-flash is that, after a
physical page has been written, it must be erased before
any subsequent writes, and erasures must be performed
at the block granularity. Since a block erase is costly
(1.5 ms), SSDs implement a flash translation layer (FTL)
that maintains an in-memory remap table, which maps
logical pages to physical ones. When a logical page is
written, the FTL writes the data to a new physical page
and updates the mapping. Essentially, the FTL imple-
ments CoW to provide the illusion of in-place writes and
hide the cost of block erasures.

The in-memory remap table must be reconstructed
during boot time. An SSD can use the metadata por-
tion of a physical page to store the identity and version
number of the logical page that is stored.

The FTL further maintains a list of free blocks. Be-
cause of CoW, obsolete versions of logical pages may be
present and should eventually be released to generate free
space. SSDs implement a garbage collection routine that
selects a block, copies valid pages out of the block, erases
it, and adds it to the free-blocks queue. The remapping
and garbage collection techniques are also used to bal-
ance the wearing down of different blocks on the flash,
often referred to as wear-leveling.
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Figure 1: Architecture of a TxFlash Device. The controller runs
the logic for ensuring atomicity, isolation, and recovery of transactions.
Data and metadata are stored on the flash packages.

2.2 TxFlash API and Architecture

Figure 1 shows a schematic of TxFlash. Similar to an
SSD, TxFlash is constructed with commodity flash pack-
ages. TxFlash differs from an SSD only in the API it
provides and in the firmware changes to support the new
APL

Transactional Model. TxFlash exports a new interface,
WriteAtomic (p;...pn), which allows an applica-
tion to specify a transaction with a set of page writes,
p1 to p,. TxFlash ensures atomicity, i.e., either all the
pages are written or none are modified. TxFlash further
provides isolation among multiple WriteAtomic calls.
Before it is committed, a WriteAtomic operation can
be aborted by calling an Abort. By ensuring atomicity,
isolation, and durability, TxFlash guarantees consistency
for transactions with WriteAtomic calls.

In addition to the remap table and free-blocks queue
maintained in an SSD, TxFlash further keeps track of in-
progress transactions. When a transaction is in progress,
the isolation layer ensures that no conflicting writes (i.e.,
those updating the same pages as the pending transac-
tions) are issued. Once a transaction is committed, the
remap table is updated for all the pages in the transac-
tion.

At the core of TxFlash is a commit protocol that en-
sures atomicity of transactions despite system failures. A
commit protocol includes both a commit logic that is ex-
ecuted when a transaction is committed, and a recovery
logic that is executed at boot time. The latter reconstructs
the correct mapping information based on the informa-
tion persisted on the flash. The actions of other modules,
such as the garbage collector, depend on the actual com-
mit protocol used.

2.3 Rationale for TxFlash

There are two main points in favor of TxFlash: utility and
efficiency. TxFlash is useful because its API can benefit
a large number of storage applications. TxFlash is effi-
cient because the underlying SSD architecture matches
the API well.

Interface Design. We choose to support a limited no-
tion of transactions in TxFlash because we believe this
choice reflects a reasonable trade-off between complex-
ity and usefulness. The WriteAtomic interface is de-
sirable to any storage system that must ensure consis-
tency of multi-page writes despite system failures; file
systems and database systems are known examples.

We choose not to implement full-fledged transactions,
where each transaction consists of not only write opera-
tions, but also read operations. This is because they in-
troduce significant additional complexity and are overkill
for applications such as file systems.

Compatibility is often a concern for a new API. This
is not an issue in this case because we preserve the sim-
ple disk APIs so that existing systems can be run directly
on TxFlash. However, by using the additional transac-
tional constructs certain parts of a system can be made
simpler and more efficient. We show later in the pa-
per (§4) that while Ext3 can be run directly on TxFlash,
parts of its journaling code can be simplified to use the
new WriteAtomic construct.

Transactions on SSDs. Compared to hard disks, SSDs
are particularly ideal for supporting transactions for the
following reasons.

e Copy-on-write nature of SSDs. Extending a log-
structured system to support transactions is not new [23].
The FTL already follows the CoW principle because of
the write-erase-write nature of the flash pages and wear-
leveling. Extending FTL to support transactions intro-
duces relatively little extra complexity or overhead.

e Fast random reads. Unlike hard disks, fragmentation
is not an issue in SSDs, again because of their inher-
ent solid-state nature: an SSD can rapidly access random
flash-memory locations in constant time. Although SSDs
perform cleaning for freeing more re-usable space, there
is no need for data re-organization for locality.

e High concurrency. SSDs provide a high degree of con-
currency with multiple flash packages and several planes
per package, and multiple planes can operate concur-
rently. Enabled with such high parallelism, SSDs can
support cleaning and wear-leveling without affecting the
foreground I/O.

e New interface specifications. Traditional storage inter-
faces such as SATA do not allow the devices to export
new abstractions. Since SSDs are relatively new, alterna-
tive specifications can be proposed, which may provide
the freedom to offer new device abstractions.
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Figure 2: Page Format. Information stored in the metadata portion
of a flash page by various commit protocols.

3 Commit Protocols

To ensure the atomicity of transactions, TxFlash uses a
commit protocol. The protocol specifies the steps needed
to commit a transaction, as well as a recovery procedure.
The recovery procedure is executed after a system reboot
to determine which transactions are committed based on
the persistent state on the storage. Commit protocols
tend not to update the data in-place and therefore in-
variably require a separate garbage collection process,
whose purpose is to release the space used by obsolete
or aborted transactions.

3.1 Traditional Commit (TC)

Modern journaling file systems such as Ext3 [28], IBM
JES [3], XFS [26], and NTFS [25] use a form of redo
logging [13] for atomicity; we refer to this mechanism
as the traditional commit protocol. In traditional com-
mit, new data for each page is written to the storage de-
vice as an intention record, which contains a data portion
and a metadata portion. The metadata portion stores the
identity of the page and the transaction ID as shown in
Figure 2(a). Once all the writes of the intention records
have completed successfully, a commit record is written
to the storage device. Once the commit record is made
persistent, the transaction is committed. When recover-
ing during a reboot, traditional commit decides whether
a transaction is committed or not based on the existence
of the corresponding commit record.

Typically, the intention records and the commit
records are written into a log. The updates in commit-
ted intention records are written in-place to the home lo-
cations by a checkpoint process. Once checkpointing is
completed, all the intention records and commit records
are garbage collected by truncating the log.

Traditional Commit on SSDs. With an SSD as the un-
derlying storage device, thanks to the indirection pro-
vided by the remap table, no separate checkpointing is
necessary: the logical pages can be remapped to the new
locations when a transaction commits. Also, all writes
within the same transaction can be issued concurrently,

thereby exploiting the inherent parallelism on an SSD.

However, the need for the separate commit record in
traditional commit may become particularly undesirable.
The commit record write must be issued only after all the
intention record writes are completed; such write order-
ing introduces the latency of an extra write per transac-
tion. Because of the absence of a separate checkpointing
process, a special garbage collection process is needed
for commit records: a commit record can be released
only after all the intention records of the correspond-
ing transaction are made obsolete by later transactions.
Both the performance and space overheads introduced
by commit records are particularly significant for small
transactions. Group commit [7] was designed to reduce
some of these overheads but it works well only when
there are multiple operations that can be delayed and
grouped together.

3.2 Simple Cyclic Commit (SCC)

Instead of using commit records to determine whether a
transaction is committed or not, a cyclic commit proto-
col stores a link to the next record in the metadata of an
intention record (i.e., the logical page of an SSD) and
creates a cycle among the intention records of the same
transaction. This eliminates the need for a separate com-
mit record for each transaction, thereby removing the
space and performance overheads.

Figure 2(b) shows the intention record used by the
cyclic commit, where the next page and version num-
bers are additionally stored in the metadata portion as the
next-link. For each transaction, the next-link information
is added to the intention records before they are concur-
rently written. The transaction is committed once all the
intention records have been written. Starting with any in-
tention record, a cycle that contains all the intentions in
the transaction can be found by following the next-links.
Alternatively, the transaction can be aborted by stopping
its progress before it commits. Any intention record be-
longing to an aborted transaction is uncommitted.

In the event of a system failure, TxFlash must be
restarted to recover the last committed version for each
page. The recovery procedure starts by scanning the
physical pages and then runs a recovery algorithm to
classify the intention records as committed or uncommit-
ted and identify the last committed version for each page
based on the metadata stored in the physical pages.

We use S to refer to the set of intention records (in
terms of their logical page numbers and versions) ob-
tained by scanning the stable storage and R for the set of
intention records that are referenced by the next-link field
of any intention record in S. All records in S © R are
present on the storage, but not referenced by any other
record (& represents set difference); similarly, all records
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Figure 3: Ambiguous Scenario of Aborted and Committed Trans-
actions. Two cases with a broken link to B1: an aborted transaction
on the left, where B1 was not written; a committed transaction on the
right, where By was superseded and cleaned.

in RS S are referenced by some record in the stable stor-
age but not present themselves. For an intention record
r, we use r.next to refer to the next-link in 7.

The following Cycle Property from cyclic commit is
fundamental to the recovery algorithms. It states that
the classification of an intention record can be inferred
from its next-link; this is because they belong to the same
transaction. It further states that, if a set of intention
records forms a cycle, then all of them are committed.

Cycle Property. For any intention record r € S, r is
committed if and only if r.next is committed.

If there exists a set T of intention records {r; €
S |0 <4i<n-—1}, such that foreach 0 < i <
n — 1, condition r;.next = T(;4+1)mod n holds, then
any r € T is committed.

It is worth noting that a break in a cycle (i.e., r € S
and r.next ¢ S) is not necessarily an indication that the
involved intention record is uncommitted. Figure 3 illus-
trates this case. In this example, pages are referred to by
the letters A through C' and the version numbers are 1
and 2. Next links of intention records are shown by ar-
rows. In this Figure, various versions are labeled as to
whether they are committed (crosshatch fill) or uncom-
mitted (white fill). Missing versions are indicated by a
dotted border. We use “P;” for version 7 of page P. Con-
sider the scenario where A; has its next-link set to By,
but By does not exist on the SSD. There are two cases
that could lead to the same ambiguous scenario: in the
first case, as shown in Figure 3(a), the transaction with
A; and B; was aborted and B, was never written; in
the second case, as shown in Figure 3(b), the transaction
with A; and B; commits, followed by another success-

ful transaction that creates B and C', making By obso-
lete and causing B to be garbage collected. In the first
case, A; belongs to an aborted transaction and should
be discarded, while in the second case A; belongs to a
committed transaction and should be preserved.

Observe that an intention record P; can be garbage
collected only when there is a higher version P; (j > 1)
that is committed. SCC is based on the following SCC
Invariant, which is ensured by correct initialization and
handling of uncommitted intention records.

SCC Invariant: If P; € S, any intention record P; €
S UR with i < j is committed.

SCC Initialization. When TxFlash starts for the first
time, it initializes the metadata of each page by setting
the version number to 0 and the next-link to itself.

Handling Uncommitted Intention Records. If an in-
tention record P; € S UTR belongs to an aborted transac-
tion, to preserve the SCC Invariant, before a newer ver-
sion of P is written, P; and ); must be erased, where
Qj.next = P;. This avoids misclassification of P; (due
to the newer version of P) and Q; (by following the next
link). That is, any uncommitted intention on the stable
storage must be erased before any new writes are issued
to the same or a referenced page.

SCC Garbage Collection. With SCC Invariant, any
committed intention record can be garbage collected as
long as a newer version of the same logical page is
committed. Any uncommitted intention record can be
garbage collected at any time. Garbage collection in-
volves selecting a candidate block, copying the valid
pages out of it, and erasing the block to add to the free-
blocks list. TxFlash copies each valid version to another
location, preserving the same metadata. If the system
crashes after copying a version and before erasing the
block, multiple identical versions may be present for the
same page. This is a minor complication. TxFlash can
pick one copy as the principal copy and treat the others
as redundancies to be erased when convenient.

SCC Recovery. During recovery, SCC classifies the in-
tention records and identifies the highest committed ver-
sion for each logical page, as follows:

Since isolation is guaranteed, i.e., there are no over-
lapping write operations for the same page, for each log-
ical page, the recovery algorithm only has to choose be-
tween the intentions having the highest and the second
highest version numbers. This is true for the following
reason. The intentions having the second highest version
numbers must have been committed, since the applica-
tion must have completed their transactions before going
on to start a subsequent transaction on the same page.
The only question to answer is whether the highest ver-
sion numbered intention is also committed for a page.
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Figure 4: An Example TxFlash System State with SCC.

Let hp represent the highest version number for a page
P and P, be the intention record with the highest ver-
sion number. The goal of the recovery algorithm is to
determine, for every page P, whether P, is commit-
ted or uncommitted using the following analysis. Let
Q) = Py.next. These values are available from the
metadata portion of the P, intention record. Let hg be
the highest version number of any intention that exists on
the storage device for page @). There are three cases.

I. hg > I: P, is a committed intention because Q)
is committed because of the presence of hg (SCC In-
variant), and so is P, (Cycle Property). For example,
consider A; in Figure 4, whose next-link is B;. Since
the highest version for B is Bo, By is committed and
therefore A; is committed too.

IL. hg < I: Py is an uncommitted intention. The rea-
soning is as follows: the transaction involving P}, could
not have completed, because if it had, there would be
an intention of page () with a version number at least as
high as [. Consider D; in Figure 4, whose next-link C5
is greater than the highest version numbered intention C
for page C. Therefore, D is uncommitted.

L. hg = I: P, links to another highest version num-
bered intention ()5, and the answer is the same as for the
intention ()5, which may be determined recursively. If
this results in a cycle, then all of the involved intentions
are committed intentions (Cycle Property). For example,
in Figure 4, following the next-link from Bs, a cycle is
detected and Bs is classified as committed.

For each page, the last committed intention is identi-
fied using the above analysis and the remap table is up-
dated accordingly. Since each logical page is visited only
once and only the top two versions are considered for
each logical page, the running time of the SCC recovery
takes O(n), where n is the number of logical pages.

3.3 Back Pointer Cyclic Commit (BPCC)

The SCC has the advantage that it can be implemented
relatively easily with minimal changes to the recovery
and garbage collection activities normally performed by

1: | .
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Committed version ’i‘d’f/y
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Missing version
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Fi gure 5: An Example TxFlash System State with BPCC.

an SSD. The simplicity of SCC hinges on the SCC In-
variant, which necessitates the erasure of uncommitted
intentions before newer versions can be created. The
needed erasure could add to the latency of the writes. We
introduce Back Pointer Cyclic Commit (BPCC), a varia-
tion of the SCC, that does not require such erasures.

BPCC indicates the presence of uncommitted inten-
tion records by adding more information to the page
metadata. Specifically, the intention record r for a page
also stores the last committed version number for that
page through a back pointer, r.back. That is, before
writing an intention Pj, of a page P, in addition to the
identity of the page and the next-link, a pointer to the
last committed version of P, say P; (where ¢ < k), is
also stored. Typically, the last committed version num-
ber will be the version number immediately previous to
the version number of the intention (i.e., i = k —1). This
last committed version number provides enough infor-
mation to determine whether uncommitted intentions are
left behind by aborted transactions. Specifically, if there
exists a P; € SUTR, where i < j < k, then P; must be
uncommitted. Figure 2(c) shows the necessary additions
to the metadata to include the back pointer.

For any intention record P;, an intention record P
with Py.back = P; satisfying ¢ < j < k is a straddler
of P; as it straddles the uncommitted intention P;. It is
important to notice that a committed intention can never
be straddled. For correct operation, BPCC upholds the
following BPCC Invariant:

BPCC Invariant: For a highest version numbered in-
tention record P, € S, let Q; = Py.next. If there
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exists a Q € S with £ > [ and there exists no
straddler for ;, then P}, is committed.

BPCC Initialization. When TxFlash starts for the first
time, it initializes the metadata for each page by setting
the version number to 0, the next-link to itself, and the
back pointer to itself.

Handling Uncommitted Intention Records. If an in-
tention record P; belongs to an aborted transaction or is
classified as uncommitted during recovery, a newer ver-
sion of P can be written with a back pointer to the com-
mitted version lower than P;, effectively straddling P;.
Figure 5 shows an example system state as updated
by BPCC, where the back pointers are shown as dashed
arrows. Consider the transaction updating As and Bs.
When the transaction is in progress, the last committed
version of A is A; and therefore A3 stores a pointer to
Aj. This back pointer provides the proof that the inter-
mediate version A, is uncommitted and, moreover, that
any highest version numbered intention with a next-link
pointer that refers to A must also be uncommitted. No-
tice that, unlike SCC, BPCC can proceed with writing
As and Bs without erasing the uncommitted intentions.

BPCC Garbage Collection. To preserve BPCC Invari-
ant, before an intention record r can be garbage col-
lected, the protocol must make sure that the status of
the other intention records straddled by 7 is no longer
useful during recovery. We capture such information by
introducing a straddle responsibility set (SRS) for each
intention record, as follows:
Given an intention record P, € S with Py,.back = P;

the straddle responsibility set of Py is

{Qi eS| Qinext =Pjandi<j<k}.

For each @); in Py’s straddle responsibility set, the fact
that it is uncommitted hinges on the availability of Pj’s
back pointer. Therefore, P, can be garbage collected
only after all such @); are erased. More precisely, for
BPCC, an intention record P; can be garbage collected if
and only if SRS(P;) is empty and P; for some j > i is
committed.

Various optimizations exist to remove entries from the
straddle responsibility sets. This makes it possible to
have certain intention records garbage collected earlier.
We list some of them here.

e For any Q; € SRS(Py), if a higher version of @
is committed, then @; can be removed from SRS (Py).
This is because (); can never in the future be the high-
est numbered version, once a later version is committed.
Observe in Figure 5 that version Bs straddles the next-
link of A5 but A3 is a more recent committed version.
So, As can be removed from SRS(B3).

o If Q; € SRS(P;) N SRS(Py), and j < k, Q; can
be removed from SRS(P;). This is because a higher

version Py straddles Q; as well. In Figure 5, D3 straddles
the next-link of Cs, but D, is a later version of D and
also straddles the next-link of C5, so Cy can be removed
from SRS (D3).

e If P; belongs to an aborted transaction and no higher
version of P is committed, then SRS(P;) can be set to
empty. This is because even if P; is garbage collected,
any uncommitted version of P above the highest com-
mitted version can be classified correctly, either by fol-
lowing its next-link or by another straddler of P with
a higher version. In Figure 5, version Ej straddles the
next-link of D3 but E} is later than the last committed
version on page E so SRS(E,) can be set to empty.

BPCC Recovery. For BPCC, the recovery algorithm
works by determining whether the highest-numbered
version for a given page is committed or not. If it is
committed, then it is the last committed version; other-
wise the version itself indicates the last committed ver-
sion through the back pointer, and all the intermediate
versions between the highest-numbered version and its
back-pointer version must be uncommitted.

For every page P, let P, be the intention record with
the highest version number, Q; = Pj.next, and @y, be
the highest version numbered intention present for Q).
The commit status of P}, is determined by the following
analysis. There are three cases.

I. hg > I: In this case, check if @); is an uncommitted
version by looking for a straddler. That is, look for some
Q; such that ¢ > [ and Q;.back < l. If such a straddler
is present, then P}, is uncommitted, else P, is committed
(BPCC Invariant). In Figure 5, consider the next-link of
C5, which is Dy. Since the highest version numbered
intention Dy is greater than D- and since D, straddles
D5, C5 can be decided as uncommitted.

II. hg < I: P is uncommitted and the reasoning is
similar to the case (II) of SCC recovery. Consider the
next-link of F, which is Cy in Figure 5. Since Cj is
greater than the highest version for C (i.e., C3), Ey is
uncommitted.

III. hg = I: The next-link must be a highest-numbered
version and its commit status can be determined by re-
cursive analysis. The recursive application must check
for a complete cycle, which indicates that all of the in-
volved versions are committed (Cycle Condition). The
cycle between Az and Bs in Figure 5 is an example of
this case.

3.4 Discussion

Dynamic Transactions. Transactions as implemented
in most journaling file systems are static, i.e., the pages
to write are known before the transaction begins. But in
general, transactions are dynamic, i.e., all the writes is-

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 153



| TC | scc | BPCC
Metadata/page 16 bytes 24 bytes | 28 bytes
Space overhead I commit/tx | None None
Perf. overhead 1 write/tx None None
Garbage collection Simple Simple Complex
Recovery Simple Simple Complex
Aborted transactions | Leave Erase Leave

Table 1: Protocol Comparison. Traditional commit compared with
the cyclic commit protocol variants.

sued inside a transaction are not known before the trans-
action begins and they are determined only during the
course of the execution. It is important to note that cyclic
commit can support this more general semantics. For
cyclic commit to work correctly, it is not necessary to
know all the pages that are written within a transaction.
For the next-link pointers to be filled correctly in the cy-
cle, it is sufficient to know the next page write in the
transaction. This is achieved simply by holding the cur-
rent write in a buffer until the next write is issued by the
transaction. When the last page is written, it is linked
back to the first write of the transaction.

TxFlash for Databases. In addition to file systems,
databases can benefit from the transactional support in
a storage system. However, there are certain challenges
that must be overcome. First, databases require the
generic transactional interface with reads and writes in-
stead of a simple WriteAtomic model. Second, in
our current implementation we use a simple lock-based
isolation technique, which may not be sufficient for a
database system. We are exploring the use of a more fine-
grained concurrency control mechanism that can take ad-
vantage of the multiple page versions in an SSD [18]. In
addition, we may need a deadlock detection and abort
mechanism in TxFlash for databases.

Metadata Overhead. In Table 1, we present a qualita-
tive comparison of traditional commit with the two cyclic
commit variants. We assume 4 bytes for transaction ID,
4 bytes for version number, and 8 bytes for logical page
number.

One possible concern in cyclic commit is the space and
write overheads imposed by additional pointers stored in
the metadata portion of an intention record. As shown
in Table 1, we need a maximum of 28 bytes to store the
cyclic commit specific metadata. This still leaves enough
space for larger ECCs to be stored in the future. Re-
garding the write overhead, the hardware specification
of the Samsung flash package [21] states that when a
flash memory page is written, it is recommended to write
the entire 4 KB of data and 128 bytes of metadata to
maintain correctly the on-chip error detection and correc-
tion codes. Therefore, the overhead of writing additional
metadata is common for all the protocols even though the
traditional commit uses less space than cyclic commit.

3.5 Summary

SCC requires that the uncommitted intentions are erased
before the system updates the corresponding pages,
whereas BPCC demands more metadata to be kept in
each intention record and a more complicated analysis
in the recovery algorithm, but it does not require the era-
sure of any uncommitted intentions. BPCC also requires
that the intention records containing obsolete versions
be reclaimed according to a certain precedence order,
whereas SCC has no such requirement. Neither protocol
requires any checkpointing (or reorganization) overhead
for garbage collection. Depending on the overhead of
erasing a storage page, the expected rate of failures and
updates, and the space available to store metadata, either
SCC or BPCC may be preferred.

4 Implementation

In this section, we present the implementation details of
the TxFlash simulator, a pseudo-device driver, and the
modified TxExt3 file system.

4.1 TxFlash Simulator

We modify the trace-driven SSD simulator from previ-
ous work [1] to develop the TxFlash simulator. The SSD
simulator itself is extended from the DiskSim simula-
tor [4] by adding an SSD model into the framework. The
SSD simulator can evaluate various flash package config-
urations, interleaving, wear-leveling, and garbage collec-
tion techniques. The simulator maintains an in-memory
remap table and a free-blocks list to process requests; the
requests are stored in a per-flash-package queue. In or-
der to reduce the recovery time, the simulator also writes
a per-block summary page. During recovery, instead of
reading every page, only the summary pages are read.

WriteAtomic Interface. We built our TxFlash simula-
tor to support the WriteAtomic interface, a restricted
form of transaction where pages written are known be-
fore the transaction commit begins. File systems issue
a WriteAtomic command in which they pass all the
page numbers of the transaction writes and receive a
transaction ID; then they issue the data for each transac-
tional page write. The simulator also supports an Abort
command in addition to the regular read and write
commands.

Other Modifications. The TxFlash simulator keeps
track of the list of pages modified by an in-progress trans-
action to ensure isolation. This list is cleared when the
transaction completes or aborts. Even though each in-
dividual page write is atomic, a block erase operation is
not. That is, TxFlash can crash during a block erase,
which may leave the block contents in an unpredictable
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state. The page integrity can be verified if checksums are
stored in its metadata, and the simulator models a 16 byte
checksum per physical page. Because of its hardware
limitations, TxFlash supports only bounded transactions
(this is not a limitation of the cyclic commit), and our
simulator is configured to support transactions of maxi-
mum size 4 MB (i.e., containing up to one thousand 4 KB
pages).

TxFlash supports a regular write operation because
journaling file systems such as Ext3 issue single page
writes to file system super blocks outside a transaction
even in data journaling mode. TxFlash treats the regular
write operation to a single page as a trivial transaction,
i.e., a transaction containing that single write, and this
can be implemented with no additional costs.

Traditional Commit in TxFlash Simulator. To evalu-
ate the trade-offs, we also implemented the traditional
commit protocol in the TxFlash simulator. It works
by writing one commit record for every transaction that
modifies more than one page. Since there is no log re-
organization, the commit record is preserved until all the
page versions become obsolete, and the commit record
serves as a proof as to whether a page version is com-
mitted or not. In order to do a fair evaluation, we tuned
our traditional commit implementation to be efficient for
single-page transactional write, which is handled by just
writing the page version with a bit set in its metadata
to indicate that it is a single-page transaction without
any additional commit record. That is, for a single page
write, traditional commit is as efficient as cyclic commit.

We simulate a 4 KB commit record write because the
smallest write-granularity on modern NAND-based flash
packages is 4 KB (similar to the 512 bytes granular-
ity on disks). However, commit records are typically
small, storing the transaction ID and a commit identi-
fier. Therefore, simulating a 4 KB write adds unneces-
sary overhead. If SSD controllers support other types of
byte-addressable memory such as battery-backed RAM
or NOR-based flash, then commit records can be stored
more efficiently on them. In such cases, the overhead in
traditional commit is likely to be very small. Since there
is no log reorganization, recovery in traditional commit
scans through the stable storage and finds the most recent
version with a commit record for each page.

4.2 TxFlash Pseudo-Device Driver

We implement a pseudo-device driver supporting the
new transactional calls, WriteAtomic and Abort,
through the ioctl interface. The driver associates a
unique transaction ID with each transaction and forwards
the read and write requests to the underlying storage de-
vice. A tracing framework is also built within the driver
to generate traces for the TxFlash simulator. We record

attributes such as page number, I/O type (read/write),
time stamp, I/O size, and transaction ID in the trace.
New transactional commands, when issued, may cause
a small overhead. For example, when a file system issues
aWriteAtomic command, the page numbers from the
command are copied to the TxFlash buffer and the new
transaction ID generated by the TxFlash is copied back
to the file system. The driver emulates such overheads to
a certain extent by copying data in the system memory.

4.3 TxExt3

Our initial goal was to build the transaction support in-
side Ext2 with the help of TxFlash. However, this re-
quires the abstraction of an in-core transaction that can
buffer writes for write-back caching. The journaling
module (jbd) of Ext3 already provides this abstraction
(in addition to the redo logging facility) and therefore,
instead of re-implementing the transaction abstraction in
Ext2, we reuse the jbd module and the Ext3 file system.

We modify the jbd module to use the WriteAtomic
interface to create the TxExt3 file system. Instead of
writing to the journal, the commit function uses the trans-
actional commands from the pseudo-device driver. In
TxExt3, there is no separate checkpointing process as
in Ext3. Therefore, once all the transactional writes are
over, TxExt3 releases the in-core buffers and proceeds
with the normal operations.

5 Evaluation

We evaluate our design and system through several
stages: first, we show that cyclic commit outperforms
traditional commit, both in terms of performance and
space overheads (§5.1); second, we compare TxFlash
against an SSD to estimate the overheads of transactional
support (§5.2); and finally, we run benchmarks on top a
real SSD to study the end-to-end file system performance
improvement (§5.3). Throughout this section, by trans-
action we refer to the transactional writes as issued by
the TxExt3 file system during its journal commit.

Workloads and Simulator Settings. We collect traces
from TxExt3 under both data and metadata journaling
modes by mounting it on top of the pseudo-device driver
and using the driver’s tracing framework. We run a
variety of benchmarks: [0zone [14] is a complex mi-
crobenchmark suite and it is run in auto mode with a
maximum file size of 512 MB; Linux-Build is a CPU
intensive workload and it copies, unpacks, and builds the
entire Linux 2.6.18 source tree; Maildir simulates the
widely used maildir format for storing e-mails [2] and
we run it with a distribution of 10,000 emails, whose
sizes vary from 4 KB to 1 MB; TPC-B [27] simulates
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a database stress test by issuing 10,000 credit-debit-like
operations on the TxExt3 file system. The TxExt3 file
system issues one transaction at a time, so there is lit-
tle concurrency in the workload. In our experiments, the
transaction size varies among the benchmarks and is de-
termined by the sync intervals. Since IOzone and Linux-
build do not issue any sync calls, their transaction sizes
are quite large (over 2 MB); Maildir and TPC-B issue
synchronous writes and therefore result in smaller trans-
actions (less than 100 KB).

Ext3 provides only a limited transaction abort func-
tionality. After a transaction abort, Ext3 switches to
a fail-stop mode where it allows only read operations.
To evaluate the performance of the cyclic commit under
transaction aborts, we use a synthetic workload genera-
tor, which can be configured to generate a wide variety
of transactions. The configuration parameters include the
total number of transactions, a distribution of transaction
sizes and inter-arrival times, maximum transaction con-
currency, percentage of transaction aborts, and a seed for
the random generator.

We configure our simulator to represent a 32 GB
TxFlash device with 8 fully-connected 4 GB flash pack-
ages and use the flash package parameters from the Sam-
sung data sheet [21]. The simulator reserves 15% of its
pages for handling garbage collection. I/O interleaving
is enabled, which lets the simulator schedule up to 4 I/O
operations within a single flash package concurrently.

Model Checking. We verify the cyclic commit al-
gorithm by specifying the SCC and BPCC protocols
in TLA+ and checking them with the TLC model
checker [10]. Our specifications model in-progress up-
dates, metadata records, page versions, aborts, garbage
collection, and the recovery process, but not issues such
as page allocation or I/O timing. Our specifications
check correctly up to 3 pages and 3 transactions per page;
state explosion prevents us from checking larger config-
urations. This work is published elsewhere [19].

5.1 Cyclic Commit vs. Traditional Commit

In order to find the real performance benefits of the com-
mit protocols, we must compare them only under trans-
actional writes, as all of them work similarly under non-
transactional writes. Therefore, in the following section,
we only use traces from the data journaling mode or from
the synthetic transaction generator.

Impact of Transaction Size. First, we compare cyclic
commit with traditional commit to see whether avoid-
ing one write per transaction improves the performance.
The relative benefits of saving one commit write must
be higher for smaller transactions. Figure 6 compares
the transaction throughput of BPCC and TC under dif-
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Figure 6: Impact of Transaction Size. Transaction throughput vs.
transaction size. TC uses a 4 KB commit record.
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Figure 7: Performance Improvement in Cyclic Commit. Trans-
action throughput in BPCC, normalized with respect to the throughput
in TC. The throughput of 10zone, Linux-build, Maildir, and TPC-B in
TC are 31.56, 37.96, 584.89, and 1075.27 transactions/s. The average
transaction size is reported on top of each bar.

ferent transaction sizes. The TxFlash simulator is driven
with the trace collected from a sequential writer, which
varies its sync interval to generate different transaction
sizes. Note that the performance numbers are the same
for both SCC and BPCC, as they differ only when there
are aborted transactions. For small transactions, all the
page writes can be simultaneously issued among multi-
ple flash packages and therefore, while BPCC takes time
t to complete, TC takes 2¢ because of the additional com-
mit write and write ordering, and this leads to a 100% im-
provement in transaction throughput. From the Figure,
we observe that the performance improvement is about
95% when the transaction is of the order of 100 KB, and
drops with larger transactions. Even larger transactions
benefit from BPCC, for example, throughput improves
by about 15% for transactions of size 1000 KB. For sin-
gle page transactions, both the protocols perform simi-
larly (not shown).

Performance Improvement and Space Overhead.
Next, we compare the commit protocols under macro
benchmarks. Figure 7 plots the transaction throughput in
TxFlash with BPCC and it is normalized with respect to
the throughput in TC under various macro benchmarks.
Since I0zone and Linux-build run asynchronously with
large transactions, BPCC does not offer any benefit (less
than 2% improvement in transaction throughput). On the
other hand, Maildir and TPC-B stress the storage system
with a large number of small transactions that cause high
commit overhead in TC; under these cases, BPCC of-
fers about 22% and 49% performance improvement for
Maildir and TPC-B respectively. SCC performs similarly
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| 10zone | Linux-build | Maildir | TPC-B
Space overhead | 0.23% | 0.15% | 729% | 57.8%

Table 2: Space Overhead in Traditional Commit. Space overhead
(ratio of the number of commit to the number of valid pages) for differ-
ent macro benchmarks under TC.
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Figure 8: Performance Under Aborts. Transaction time and re-
covery time of cyclic commit protocols under different percentages of
transaction aborts. Y-axis is normalized with respect to the correspond-
ing time in TC, which is around 1.43 ms and 2.4 s for the transaction
time and recovery time, respectively.

under all workloads.

Table 2 presents the space overhead due to the addi-
tional commit record in TC. The space overhead is mea-
sured as the ratio of the number of commit pages to the
valid pages in the system. The space overhead can in-
crease significantly if there are small transactions updat-
ing different pages in the system (e.g., Maildir and TPC-
B). For large transactions, this overhead is quite small as
evident from the IOzone and Linux-build entries.

Performance Under Aborts. Our next experiment com-
pares the commit protocols under transaction aborts. We
use the synthetic workload generator to create 20,000
transactions, each with an average size of 250 KB and
measure the normal and recovery performance under dif-
ferent degrees of transactions aborts. Figure 8 presents
the results, where for the normal performance we plot
the average transaction time, and for the recovery we plot
the time to read the stable storage and find the consistent
versions. During recovery, only the per-block summary
pages are scanned from the stable storage. The results
are normalized with respect to TC.

From Figure 8, we draw the following conclusions.
First, because SCC must erase an aborted page before
letting another transaction write to the same logical page,
its performance suffers as transaction aborts increase.
BPCC does not incur any such overhead. Second, SCC
has better recovery time than BPCC and TC because dur-
ing recovery it considers only the top 2 versions for every
page rather than paying the cost of analyzing all the page
versions. In the presence of aborts and failures, the re-
covery time of BPCC also includes the time to find the
appropriate straddle responsibility sets. This results in
a small overhead when compared to TC (less than 1%).
The recovery time can be improved through several tech-
niques. For example, TxFlash can periodically check-
point the remap table in the flash memory.

TxFlash
SSD | +TC | +SCC | +BPCC
LOC | 7621 | 9094 [ 9219 | 9495

Table 3: Implementation Complexity. Lines of code in SSD and
TxFlash variants.
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Figure 9: TxFlash Overhead. I/O response time of BPCC and TC,
normalized with respect to that of an SSD. The I/O response times of
10zone, Linux-build, Maildir, and TPC-B in an SSD are (0.72, 0.71),
(0.70, 0.68), (0.59, 0.62), and (0.42, 0.39) ms in data and metadata

Journaling modes.

Protocol Complexity. Although beneficial, cyclic com-
mit, specifically BPCC, is more complex than TC. In
Table 3, we list the lines of code (LOC) for the regu-
lar SSD and TxFlash with different commit protocols.
Treating the LOC as an estimator of complexity, TxFlash
adds about 25% additional code complexity to the SSD
firmware. Among the three commit protocols, TC is rel-
atively easier to implement than the other two; BPCC is
the most complex and most of its complexity is in the
recovery and garbage collection modules.

5.2 TxFlash vs. SSD

Our next step is to measure the overhead of TxFlash
when compared to a regular SSD under the same work-
loads. We use the traces collected from TxExt3 and run
them on the TxFlash and SSD simulators. When running
on the SSD simulator, we remove the WriteAtomic
calls from the trace. Note that an SSD does not provide
any transactional guarantees to the TxExt3 traces and we
just measure the read-write performances.

Performance Overhead. Figure 9 presents the average
I/O response time of TxFlash and SSD under various
workloads in both data and metadata journaling modes.
We configure TxFlash to run BPCC, but it performs sim-
ilarly under SCC. From the Figure, we can notice that
TxFlash with BPCC imposes a very small overhead (less
than 1%) when compared to a regular SSD, essentially
offering the transactional capability for free. This small
overhead is due to the additional WriteAtomic com-
mands for TxFlash. However, in TxFlash with TC, the
additional commit writes can cause a noticeable perfor-
mance overhead, especially if there are a large number of
small transactions; for example, in Maildir and TPC-B
under data journaling, TxFlash with TC incurs an addi-
tional overhead of 3% and 12%, respectively.
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Figure 10: End-to-End Performance. Benchmark run times on
TxExt3-with-TxFlash under the data and metadata journaling modes,
normalized with respect to their corresponding run times in Ext3-with-
SSD. 10zone, Linux-build, Maildir, and TPC-B take (94.16, 43.38),
(267.51, 264.40), (115.77, 146.79), and (82.73, 121.73) seconds in
data and metadata journaling modes on Ext3.

Memory Requirements. An SSD stores its remap ta-
ble, free-blocks list, block-specific, and package-specific
metadata in volatile memory (this is in addition to the
memory that may be used for read or write buffering).
For our configuration, an SSD requires about 4 MB per
4 GB flash package for its volatile structures. In addition,
TxFlash needs memory to keep track of the in-progress
and aborted transactions, to store the extra metadata per
page, and to maintain the straddlers (only in BPCC). This
requirement can vary depending on the maximum size
of a transaction, the number of concurrent transactions,
and the number of aborts. For a 4 GB flash package, to
support a maximum of 100 concurrent transactions, with
each having a maximum size of 4 MB, and an average
of 1 abort per 100 transactions, we need an additional
1 MB of memory per 4 GB flash package. That is, for
this configuration, TxFlash need 25% more memory than
a regular SSD to support transactions.

5.3 End-to-End Improvement

While we use the simulator to understand the device-
specific characteristics, we want to find out the end-to-
end file system performance when running on a TxFlash.
We run the pseudo-device driver on top of a 32 GB real
SSD and export the pseudo-device to TxExt3 and Ext3.
All our results are collected with the SSD cache disabled.
Our previous evaluation from §5.2 shows that TxFlash
(running either BPCC or SCC) adds little overhead when
compared to SSD, and even this small overhead is emu-
lated by the pseudo-device driver. For Ext3, the pseudo-
device driver just forwards the I/O requests to the SSD.
We run the benchmarks on TxExt3 and Ext3 mounted
on the pseudo-device under both data and metadata jour-
naling, and the results are presented in Figure 10, which
plots the run time of each benchmark normalized with
respect to the corresponding run time on Ext3. TxExt3
with TxFlash outperforms Ext3 for two reasons: first, on
each transaction, a commit write is saved and this can re-
sult in large savings for small transactions, even in meta-

data journaling (for example, in Maildir and TPC-B);
second, Ext3 performs checkpointing, where it rewrites
the information from the log into its fixed-location, and
for data journaling this overhead can be significant (for
example, in IOzone). Both the absence of commit write
and checkpointing combine to reduce the run time by as
much as around 65% (for TPC-B). However, Linux-build
is compute intensive and the improvements are less than
1% because the transactions are large and most of the
checkpointing happens in the background.

File system complexity can be reduced by using the
transactional primitives from the storage system. For ex-
ample, the journaling module of TxExt3 contains about
3300 LOC when compared to 7900 LOC in Ext3. Most
of the reduction were due to the absence of recovery and
revoke features and journal-specific abstraction.

5.4 Discussion and Summary

Another possible evaluation would be to compare a file
system implementing cyclic commit and running on a
regular SSD with TxExt3 running on TxFlash. This
would let us find out if there are performance benefits
in keeping the transactional features in the file system.
However, we face several limitations in building the
cyclic commit inside a file system. First, current SSDs
do not export the metadata portion of physical pages. As
a result, cyclic commit may not be implemented as effi-
ciently as described in this paper and therefore, the com-
parison would not be meaningful. Second, SSDs do not
expose their garbage collection policies and actions. But,
in BPCC, it is important to collect the obsolete pages in
certain order and unfortunately, this control is not avail-
able to the file systems. Finally, if cyclic commit is im-
plemented in a file system, it must use a variant of CoW
and as a result, multiple indirection maps will be present
in the system (one in the file system and the other in the
SSD) that may lead to performance and space overheads.
In summary, we derive the following conclusions.
First, in comparison with traditional commit, cyclic com-
mit has the potential to improve the transaction through-
put (by as much as 100%) and reduce the space overhead
for small transactions, while matching the traditional per-
formance for large transactions. Second, TxFlash with
cyclic commit can provide transactional features with
negligible overhead. Finally, a file system running on
TxFlash can eliminate the write ordering problem and
cut down the number of writes to half, resulting in large
improvements for I/O intensive workloads.

6 Related Work

Mime [5] provides transaction support on disk drives
using shadow copies. Mime offers the new function-
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alities through visibility groups, which are used to en-
sure isolation between concurrent transactions. In ad-
dition to the standard read and write calls, Mime
provides a richer set of APIs such as barriers. In con-
trast, TxFlash provides a simple WriteAtomic call,
motivated by minimal complexity and file system sup-
port. Mime and TxFlash run on the storage controllers
and share some of the implementation techniques, e.g.,
CoW, block remapping, and recording data version in
metadata. However, the underlying protocols are quite
different. Mime uses the standard checkpointing and op-
eration logging, whereas TxFlash uses cyclic commit.

Atomic recovery unit (ARU) [9] is an abstraction pro-
vided by the Logical Disk [6], which exports a gen-
eral abstraction of a logical block interface to separate
disk management from file system management. ARU
operates at a higher level than TxFlash, which runs
on the SSD controller. ARU allows both read and
write operations in transactions (TxFlash, in contrast,
supports only writes) and offers a more general isola-
tion semantics for reads; however, the concurrency con-
trol for write operations must be implemented by the
clients, whereas TxFlash provides isolation among mul-
tiple WriteAtomic operations. Blocks allocated un-
der an uncommitted ARU must be identified and released
during recovery, which is similar to the garbage collec-
tion requirements in TxFlash.

Stasis [22] is a library that provides a wide-range
of highly flexible transactional storage primitives using
WAL for applications that require transactional support
but cannot use a database. Stasis is more flexible than
TxFlash: it supports user-level operations, enables redo
or undo logging, provides different concurrency control
mechanisms, and supports atomic updates to large ob-
jects. We consider TxFlash and cyclic commit as com-
plementary to Stasis. For example, Stasis can implement
cyclic commit as one of the commit protocols.

One of the main differences between TxFlash and
other disk-based transactional systems like Mime and
ARU is that disk-based systems must reorganize the data
for improved read performance, whereas TxFlash does
not. In fact, it is harder to reorganize data in certain sys-
tems because the logical relationship between two disk
blocks is not known at the disk controller.

Rio file cache is a recoverable area of main mem-
ory and Vista is a user-level library, and together, they
provide light-weight transactional features that can be
used to eliminate costlier synchronous disk I/O opera-
tions [11]. Rio Vista delivers excellent performance by
avoiding the redo log and system calls and by using only
one memory copy. TxFlash and Rio Vista operate at dif-
ferent layers of storage hierarchy; since Rio operates at
a higher level (main memory), it works only for work-
ing sets that fit in main memory. Moreover, Rio does not

provide isolation, while TxFlash offers this guarantee.

Park et al. [15] propose an atomic write interface for
flash devices, taking advantage of the non-overwrite na-
ture of flash pages. They store the transaction IDs on all
the pages and write a commit record with the transaction
ID to ensure atomicity. They modify the FAT file system
to use the new interface and run it on top of an emulator.
Since file system buffering can complicate the construc-
tion of transactions, their modified FAT file system runs
synchronously. In contrast, we use the cyclic commit and
modify Ext3, which already buffers transactions.

Transactional Flash File System (TFFS) [8] is built for
NOR-based flash devices on embedded microcontrollers
and provides transactional guarantees with a richer set
of APIs. Unlike TxFlash, TFFS supports both reads and
writes within a transaction, but write operations are all
synchronous. Similar to other systems, TFES uses an in-
direction called logical pointers and a variant of CoW
called versioned tree structures to implement transac-
tions. TFFS also allows non-transactional operations but
does not guarantee any serializability.

Other flash-based file systems, such as JFFS2 [17] and
YAFFS2 [12], have been designed for embedded devices.
They use variations of log-structured design [20] and run
directly on top of flash, sidestepping the FTL to avoid the
cost of double-layering. Unlike TxFlash, which reads
only the summary pages, JFFS2 scans the entire flash
memory to rebuild its data structures; YAFFS2 carefully
avoids this using checkpoints. None of these file systems
provide transactional support.

Since file systems have higher-level semantic knowl-
edge, e.g., whether a page is free or not, they can do
better garbage collection than a storage controller. Such
information can be quite useful in TxFlash, not only in
garbage collection, but also to quickly recover by not ex-
amining free pages.

7 Conclusion

In this paper, we revisit the concept of transactional
support in the storage device in light of a new storage
medium, the flash memory. The unique properties of the
medium demand new designs in order to provide better
performance and space benefits. The main contribution
of this work is the novel cyclic commit protocol, which
ensures atomicity by using the additional metadata on
physical pages, thereby removing the overheads asso-
ciated with a separate commit record. We design and
implement two variants of the cyclic commit, SCC and
BPCC, and both perform better than the traditional com-
mit, especially for small transactions.

We learned a few things along the way. First, model
checking our protocols helped us not only verify their
correctness, but also understand why the protocols are

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 159



correct. Moreover, the model checker pointed out flaws
in the alternative designs we investigated, which we
would have missed otherwise. Second, actual implemen-
tation can bring out issues that are otherwise missed. For
example, we came across complex interactions between
garbage collection, block allocation, and in-progress
transactions in our simulation (we did not model check
some of them for simplicity reasons) and fixed those cor-
ner cases. Finally, we believe that hardware innovations
can often bring new software designs; this is true in the
case of cyclic commit, which was motivated by develop-
ing a commit protocol for flash memory.
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