FlightPath: Obedience vs. Choice in Cooperative Services

Harry C. Li!, Allen Clement!, Mirco Marchetti?, Manos Kapritsos!, Luke Robison',
Lorenzo Alvisi', and Mike Dahlin!
I'The University of Texas at Austin, 2University of Modena and Reggio Emilia

Abstract: We present FlightPath, a novel peer-to-peer
streaming application that provides a highly reliable
data stream to a dynamic set of peers. We demon-
strate that FlightPath reduces jitter compared to previ-
ous works by several orders of magnitude. Further-
more, FlightPath uses a number of run-time adaptations
to maintain low jitter despite 10% of the population be-
having maliciously and the remaining peers acting self-
ishly. At the core of FlightPath’s success are approx-
imate equilibria. These equilibria allow us to design
incentives to limit selfish behavior rigorously, yet they
provide sufficient flexibility to build practical systems.
We show how to use an €-Nash equilibrium, instead of
a strict Nash, to engineer a live streaming system that
uses bandwidth efficiently, absorbs flash crowds, adapts
to sudden peer departures, handles churn, and tolerates
malicious activity.

1 Introduction

We develop a novel approach to designing cooperative
services. In a cooperative service, peers controlled by
different entities work together to achieve a common
goal, such as sharing files [13, 24] or streaming me-
dia [22, 26, 29]. Such a decentralized approach has sev-
eral advantages over a traditional client-server one be-
cause peer-to-peer (p2p) systems can be highly robust,
scalable, and adaptive. However, a p2p system may not
see these benefits if it does not tolerate Byzantine peers
that may disrupt the service or selfish peers that may use
the service without contributing their fair share [3].

We propose approximate equilibria [11] as a rigorous
and practical way to design cooperative services. Us-
ing these equilibria, we can design flexible mechanisms
to tolerate Byzantine peers. More importantly, approxi-
mate equilibria guide how we design systems to incen-
tivize selfish (or rational) peers to obey protocols.

Recent deployed systems [13, 24] and research pro-
totypes [1, 3, 26, 29, 34] build incentives into their pro-
tocols because they recognize the need to curb rational
deviations. These works fall into two broad categories.

The first set includes works that use incentives infor-
mally to argue that rational peers will obey a protocol.
This approach provides system designers the freedom to

engineer efficient and practical solutions. KaZaA [24]
and BitTorrent [13] are examples of this approach.
However, informally arguing correctness leaves systems
open to subtle exploits in adversarial environments. For
example, users can receive better service quality in the
KaZaA network by running KaZaA Lite [25], a hacked
binary that falsifies users’ contributions. In a BitTorrent
swarm, Sirivianos et al. [38] demonstrate how to free-
ride by connecting to many more peers than prescribed,
thereby increasing the probability to be optimistically
unchoked.

The second set of works emphasizes rigor by using
game theory to design a protocol’s incentives and pun-
ishments so that obeying the protocol is each rational
peer’s best strategy. This approach focuses on crafting a
system to be a Nash equilibrium [35], in which no peer
has an incentive to deviate unilaterally from its assigned
strategy. The advantage of this more formal technique is
that the resulting system is provably resilient to rational
manipulation. The disadvantage is that strict equilib-
rium solutions limit the freedom to design practical so-
lutions, yielding systems with several unattractive qual-
ities. For example, BAR-Backup [3], BAR Gossip [29],
and Equicast [26] do not allow dynamic membership,
require nodes to waste network bandwidth by sending
garbage data to balance bandwidth consumption, and
provide little flexibility to adapt to changing system con-
ditions.

The existing choices—practical but informal or rigor-
ous but impractical—are discouraging, but approximate
equilibria offer an alternative. These equilibria let us
give a limited degree of choice to peers, departing from
the common technique of eliminating choice to make a
cooperative service a strict equilibrium.

In FlightPath specifically, approximate equilibria let
us use run-time adaptations to tame the randomness of
our gossip-based protocol, making it suitable for low jit-
ter media streaming while retaining the robustness and
load balancing of traditional gossip. The key techniques
enabled by this flexibility include allowing a bounded
imbalance between peers, redirecting load away from
busy peers, avoiding trades with unhelpful peers, and
arithmetic coding of data to provide more opportunities

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 355



for fruitful trades.

As a result of these dynamic adaptations, FlightPath
is a highly efficient and robust media streaming service
that has several attractive properties:

High quality streaming: FlightPath provides good
service to every peer, not just good average service.
In our experiments with over 500 peers, 98% of
peers deliver every packet of an hour long video.
100% of peers miss less than 6 seconds.

Broad deployability: FlightPath uses a novel block se-
lection algorithm to cap the peak upload bandwidth
so that the protocol is accessible to users behind ca-
ble or ADSL connections.

Rational-tolerant: FlightPathisa %—Nash equilibrium
under a reasonable cost model, meaning that ratio-
nal peers have provably little incentive to deviate
from the protocol. We define an e-Nash equilib-
rium in Section 2.

Byzantine-tolerant: FlightPath provides good stream-
ing quality despite 10% of peers acting maliciously
to disrupt it.

Churn-resilient: FlightPath maintains good streaming
quality while over 30% of the peer population may
churn every minute. Further, it easily absorbs flash
crowds and sudden massive peer departures.

Compared to our previous work [29], the above prop-
erties represent both a qualitative and quantitative im-
provement. We reduce jitter by several orders of magni-
tude and decrease the overhead of our protocol by 50%
compared to BAR Gossip. Additionally, we allow peers
to join and leave the system without disrupting service.

Although approximate equilibria provide weaker
guarantees than strict ones, they can be achieved with-
out relying on the strong assumptions needed by the
existing systems that implement strict Nash equilibria.
BAR Gossip assumes that rational participants only pur-
sue short-sighted strategies, ignoring more sophisticated
ones that might pay off in the long term. Equicast [26]
assumes that a user is hurt by an infinite amount if it
loses any packet of a stream. FlightPath does away with
such assumptions, relying instead on the existence of a
threshold below which few rational peers find it worth-
while to deviate.

We organize the rest of the paper as follows. Section 2
defines the live streaming problem and the model in
which we are working. Section 3 describes FlightPath’s
basic trading protocol and discusses how to add flexi-
bility to improve performance significantly and handle
churn. We evaluate our prototype in Section 4 which
looks at FlightPath without churn, with churn, and under

attack. In Section 5, we analyze the incentives a ratio-
nal peer may have to cheat. Finally, Section 6 highlights
related work and Section 7 concludes this paper.

2 Problem & Model

We explore approximate equilibria in the context of
streaming a live event over the Internet. A tracker
maintains the current set of peers that subscribe to the
live event. A source divides time into rounds that are
Flen Seconds long. In each round, the source gener-
ates num_ups unique stream packets that expire after
deadline rounds. The source multicasts each packet to a
small fraction f of peers. All peers work together to dis-
seminate those packets throughout the system. When a
stream packet expires, all peers that possess that packet
deliver it to their media application. If a peer deliv-
ers fewer than num_ups stream updates in a round, we
consider that round jittered and our goal is to minimize
such rounds. Our jitter metric is analogous to Secure-
Stream’s [22] continuity index—the ratio of packets de-
livered on time to total number of packets—when ap-
plied to rounds instead of just packets. We assume that
the source and tracker nodes run as specified and do not
fail, although we could relax this assumption using stan-
dard techniques for fault-tolerance [9, 39]. Peers, how-
ever, may fail.

We use the BAR model [3] to classify peer behaviors
as Byzantine, altruistic, or rational. The premise of the
BAR model is that when nodes can benefit by deviating,
it may be untenable to bound the number of deviations to
a small fraction. Thus, we desire to create protocols that
continue to function even if all participants are rational
and willing to deviate for a large enough gain.

While many nodes behave rationally, some may be
Byzantine and behave arbitrarily because of a bug, mis-
configuration, or ill-will. We assume that the fraction of
nodes that are Byzantine is bounded by Fj,, < 1. Altru-
istic peers obey the given protocol but may crash unex-
pectedly as can rational peers.

Non-Byzantine peers maintain clocks synchronized
with the tracker. Nodes communicate over synchronous
yet unreliable channels. We assume that each peer has
exactly one public key bound to a permanent id. In prac-
tice, we can discharge this assumption by using a certifi-
cate authority or by implementing recent proposals to
defend against Sybil attacks [16, 42].

We assume that cryptographic primitives—such as
digital signatures, symmetric encryption, and one-way
hashes—cannot be subverted. Our algorithms also re-
quire that private keys generate unique signatures [6].
We denote a message m signed by peer i as (m);.

356

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



Finally, we hold peers accountable for the messages
they send. We define a proof of misbehavior (POM) [3]
as a signed message that proves a peer has deviated from
the protocol. A POM against a peer is sufficient evi-
dence for the source and tracker to evict a peer from the
system, never letting that peer join a streaming session
with that tracker or source in the future. We assume that
eviction is a sufficient penalty to deter any rational peer
from sending a message that the receiver could present
as a POM.

2.1 Equilibrium Model

We analyze and evaluate FlightPath using €-Nash equi-
libria [11]. In such an equilibrium, rational players de-
viate if and only if they expect to benefit by more than
a factor of €. This assumption is reasonable if switching
protocols incurs a non-trivial cost such as effort to de-
velop a new protocol, effort to install new software, or
risk that new software will be buggy or malicious. Un-
der such circumstances, it may not be worth the trouble
to develop or use an alternate protocol. In FlightPath, we
assume that protocols that bound the gain from cheating
toe< ﬁ are sufficient to discourage rational deviations.

FlightPath is the first peer-to-peer system that is based
on an approximate equilibrium. Other works [11, 14]
have used approximate equilibria only when the strict
versions have been computationally hard to calculate.
To our knowledge, FlightPath is the first work to explore
how these equilibria can be used to trade off resilience
to rational manipulation against performance.

A peer’s utility: We assume that a rational peer benefits
from receiving a jitter-free stream, and that that bene-
fit decreases as jitter increases. We also assume that
a peer’s cost increases proportionally with the upload
bandwidth consumed. Although FlightPath is not tied
to any specific utility function that combines these ben-
efits and costs, we provide one here for concreteness:
u = (1 — j)Pp —wxk, where j is the average number of jit-
ter events per minute, w is the average bandwidth used in
kilobits per second, P is the benefit received from a jitter
free data stream, and K is the cost for each 1 kbps of up-
load bandwidth consumed. In Section 5, we show how
the ratio of benefit to cost affects the € we can bound in
an €-Nash equilibrium.

3 FlightPath Design

We discuss FlightPath’s design in three iterations. In the
first, we give an overview of a basic structure, inspired
by BAR Gossip [29], that allows peers to trade updates
with one another. We design trades to force rational
peers to act faithfully in each trade until the last pos-

sible action, where deviating can save only negligible
cost. This basic protocol allows few opportunities for a
peer to game the system, but by the same token, it pro-
vides few options for dynamically adapting to phenom-
ena like bad links, malicious peers, or overload. There-
fore, in the second iteration, we describe how we add
controlled amounts of choice to the basic trading proto-
col to improve its performance dramatically. In the third
iteration, we show how to modify the protocol to deal
with changing membership.

Readers familiar with related works on rational peers
may be surprised to see that in the last two iterations we
do not argue step-by-step about incentives. This differ-
ence is due to the flexibility of approximate equilibria,
which allows optimizations that improve a user’s start-
to-finish benefits and costs, while still limiting any pos-
sible gains from cheating. In Section 5, we demonstrate
that FlightPath is a %-Nash equilibrium under reason-
able assumptions.

3.1 Basic Protocol

Prior to a live event, peers contact the tracker to join a
streaming session. After authenticating each peer, the
tracker assigns unique random member ids to peers and
posts a static membership list for the session.

In each round, the source sends two kinds of updates:
stream updates and linear digests. A stream update con-
tains the actual contents of the stream. A linear di-
gest [22] contains information that allows peers to check
the authenticity of received stream updates. Linear di-
gests are signed by the source and contain secure hashes
of stream updates. We use linear digests in place of dig-
itally signing every stream update to reduce the compu-
tational load and bandwidth necessary to run FlightPath.
The source sends each of the num_ups unique stream up-
dates for a round to a small fraction f of random peers in
the system. When the source multicasts stream updates
to selected peers at the beginning of every round, it also
sends them the appropriate linear digests.

In each round, peers initiate and accept trades from
their neighbors. As in BAR Gossip, a trade consists of
four phases: partner selection, history exchange, update
exchange, and key exchange. First, a peer selects a part-
ner using a verifiable pseudo-random algorithm [29].
Second, partners exchange histories describing which
updates they possess and which they still need. Part-
ners use the histories to compute deterministically the
exact updates they expect to receive and are obligated to
send, under the constraint that partners exchange equal
numbers of updates. Third, partners swap updates by en-
crypting them and sending the encrypted data in a brief-
case message. Immediately afterwards, a peer sends
a promise pledging that the contents of its briefcase

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 357



Client ¢ Client d
I
a
i S
—History request <
check selection g‘
(o]
History response—— 5
- ) a
“History divulge @

T | check history
il Il - c
~—Briefcase Briefcase~ 8
)
—Promise Promise— T
m
check briefcase check briefcase 3
=
check promise check promise 2
e . . k)
—Keys Keys—

X
@
<
m
decrypt briefcase decrypt briefcase &
3
=]
Q
[}

v v

Figure 1: Illustration of a trade in the basic protocol.

is legitimate and not garbage data. Promises are the
only digitally signed message in a trade; peers authenti-
cate other messages using message authentication codes
(MAGC:s). Fourth, once a peer receives a briefcase and a
matching promise message from its trading partner, that
peer sends the decryption keys necessary to unlock the
briefcase it sent.

These phases are similar to exchanges in BAR Gossip
and they provide a similar guarantee: a rational peer has
to upload the bulk of data in a trade to obtain any benefit
from the trade. By deferring gratification and holding
peers accountable via promise messages, we limit how
much a cheating strategy can gain over obeying the pro-
tocol [29]. The main difference between a trade in this
protocol compared to balanced exchanges in BAR Gos-
sip is the addition of the promise.

We structure promises so that for each briefcase there
is exactly one matching promise. Further, if a briefcase
contains garbage data, then the matching promise is a
proof of misbehavior (POM). Briefcases and promises
provide this property because of how we intertwine
these two kinds of messages. For each update u that
a peer is obligated to send, that peer includes the pair
(u.id,uy,) in the briefcase it sends, where uy, de-
notes update u encrypted with a hash of itself. For each
entry in the briefcase, the matching promise message
contains a pair (u.id, #(u,)). Therefore, if a briefcase
holds garbage data, then the matching promise message
would serve as a POM since that promise would contain
at least one pair in which the hash for a self-encrypted
update is wrong. Of course, a peer could upload garbage
data in its briefcase but send a legitimate promise mes-
sage to avoid sending a POM, but then the briefcase and
promise would not match and that peer’s partner would
refuse to send the decryption keys.

<—* Basic 1
\.,~—— w/ Reservations, Splitting Need, Erasure Coding

H w/ Reservations etc., Tail Inv., Imb. Ratio
w/ All Techniques

80 |

60

% of peers

40t

20

Jitter (%)

Figure 2: Reverse cumulative distribution of jitter.

100 ; —— ‘
i Average bandwidths
i Basic

w/ Reservations, Splitting Need,
80 - }

Coding

w/ ations etc., Tail Inv.,
J Imbalance Ratio
w/ All T i
o 60
Q
@
Q
“—
[s]
® 40t
Peak bandwidths
Basic
w/ Reservations, Splitting Need,
20 - Coding

w/ Reservations etc., Tail Inv.,
Imbalance Ratio

; / w/ All T¢
0 200 400 600 800 1000 1200 1400 1600
Bandwidth (Kbps)

Figure 3: Cumulative distribution of average and peak
bandwidths.

3.2 Taming Gossip

Gossip protocols are well-known for their robustness [7,
15] and are especially attractive in a BAR environment
because their robustness helps tolerate Byzantine peers.
However, while gossip’s pair-wise interactions make
crafting incentives easier than in a tree-based streaming
system, it is reasonable to question whether that very
randomness may make gossip inappropriate for stream-
ing live data in which updates must be propagated to all
nodes by a hard deadline.

In this section, we explain how the flexibility of ap-
proximate equilibria allows us to tame gossip’s random-
ness by dynamically adapting run-time decisions. For
concreteness, we show in Figures 2 and 3 how poorly the
basic protocol performs when disseminating a 200 Kbps
stream to 517 clients. In this experiment, the source gen-
erates num_ups = 50 unique stream updates per round
and sends each one to a random f= 5% of the peers. Up-
dates expire deadline = 10 rounds from the time round
in which they are sent. As the figure shows, the first
three of the modifications we are about to discuss—

358

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



reservations, splitting need, and erasure coding—help in
capping the peak bandwidth used by the protocol but, by
reining in gossip’s largesse with bandwidth, make jitter
worse. The next three—tail inversion, imbalance ratio,
and a trouble detector—reduce jitter by several orders of
magnitude.

Reservations: One of the problems of using random
gossip to stream live data is the widely variable num-
ber of trading partners a peer may have in any given
round. In particular, although the expected number of
trades in which a peer participates in each round is 2, the
actual number varies widely, occasionally going past 8.
Such high numbers of concurrent trades are undesirable
for two reasons. First, a peer can be overwhelmed and
be unable to finish all of its concurrent trades within a
round. Figure 3 illustrates this problem as a high peak
bandwidth in the basic protocol, making it impractical
in bandwidth-constrained environments. Second, a peer
is likely to waste bandwidth by trading for several du-
plicate updates when participating in many concurrent
trades.

Rather than accept all incoming connections, Flight-
Path distributes the number of concurrent trades more
evenly by providing a limited amount of flexibility in
partner selection. The idea is simple. A peer c reserves
a trade with a partner d before the round r in which
that trade should happen. If d has already accepted a
reservation for r, then ¢ looks for a different partner.
This straight-forward approach significantly reduces the
probability of a peer committing to more than 2 concur-
rent trades in a round. At the same time, reservations
also reduce the probability that a peer is only involved
in the trade it initiates. The challenge in implementing
reservations is how to give peers verifiable flexibility in
their trading partners.

FlightPath provides each peer a small set of potential
partners in each round. We craft this set carefully to ad-
dress three requirements: peers need to select partners in
a sufficiently random way to retain gossip’s robustness,
each peer needs enough choice to avoid overloaded or
Byzantine peers, and these sets should be relatively un-
changed if the population does not change much. Dy-
namic membership is discussed in Section 3.3, but its
demands constrain the partner selection algorithm we
describe here.

We force each peer to communicate with at least
|logn| distinct neighbors by partitioning the member-
ship list of n peers into |logn| bins and requiring a
peer to choose a partner from a verifiable pseudoran-
domly chosen bin each round. Leitao et al. demonstrate
that a set of gossip partners that grows logarithmically
with system size can tolerate severe disruptions [28]. In

0.3

0.25 |

n =100

02|

0.15 |

Probability

0.1

0.05 |

0 5 10 15 20 25
Number of partners in each bin

Figure 4: Distribution of view sizes in each bin for dif-
ferent membership list sizes. Graphs are calculated with
Fyy: = 20%.

round r, peer ¢ seeds a pseudo-random generator with
(r)c, and uses the generator to select a bin; note that any
peer can verify any other peer’s bin selection.

Within a bin, we further restrict the nodes with whom
a peer can communicate by giving each peer a cus-
tomized view of each bin’s membership based upon a
peer’s id. We define c’s view to be all peers d such
that the hash of ¢’s member id with d’s member id is
less than some p. The tracker adjusts p according to
inequality (1) so that almost every peer is expected to
have at least one non-Byzantine partner in every bin. In

the inequality, the expression [1 — p(1 — Fy;)] ogr] s
the probability that for a given bin, a peer either has no
partners or the partners it has are all Byzantine. Figure 4
gives an intuition for how this inequality affects a peer’s
choices as the system scales up.

=1 = p(1 = Byl > 1= L
n

A peer c can use the choice provided by the combina-
tion of bins and views to reserve trades. A peer d that
receives such a reservation verifies that ¢’s view contains
d and that (r); maps to the bin that contains d’s entry in
the membership list. If these checks pass, then d can
either accept or reject the reservation.

As a general rule, peer d accepts a reservation only
if it has not already accepted another reservation for the
same round. Otherwise, d rejects the reservation, and
c attempts a reservation with a different peer. Peer ¢
can be exempt from this rule by setting a plead flag in
its reservation, indicating that ¢ has few options left. In
this case, d accepts the reservation unless it has already
committed to 4 trades in round .

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 359



Splitting need: Reservations are effective in ensuring
that peers are never involved in more than 4 concurrent
trades. However, a peer that is involved in concurrent
trades may still be overwhelmed with more data than
it can handle during a round and may still receive too
much duplicate data.

For example, consider a peer c involved in concurrent
trades with peers dy,d;,d>, and d3. Peer c is missing 8
updates for a given round. The basic protocol may over-
whelm ¢ and waste bandwidth by having peers dp—d3
each send those 8 updates to c. Something more intelli-
gent is for ¢’s need to be split evenly across its trading
partners, limiting each partner to send at most 2 updates.
Note that while this scheme may be less wasteful than
before, ¢ now risks not receiving the 8 updates it needs
since it is unlikely that its partners each independently
select disjoint sets of 2 updates to exchange.

There seems to be a fine line between being conserva-
tive and receiving many duplicate updates to avoid jitter
or taking a risk to save resources. We sidestep this trade-
off by using erasure coding [4, 30].

Erasure codes: Erasure coding has been used in prior
works to improve content distribution [2, 12, 18, 27], but
never to support live streaming in a setting with Byzan-
tine participants. The source codes all of the stream data
in a given round into m > num_ups stream updates such
that any num_ups blocks are necessary and sufficient to
reconstruct the original data. A peer stops requesting
blocks for a given round once it has a sufficient number.
Erasure coding reduces the probability that concurrent
trades involve the same block.

In our experiments, we erasure code num_ups stream
updates into m = 2num_ups blocks and modify the
source to send each one to % of the peers. In Figures 2
and 3, the source generates 2num_ups = 100 blocks and
sends each one to a random 2.5% of the peers.

The modifications introduced so far reduce the pro-
tocol’s peak bandwidth significantly, but at the cost of
making jitter worse. We now describe three techniques
that together nearly eliminate jitter without compromis-
ing the steps we have taken to keep the protocol from
overwhelming any peer.

Tail inversion: As in many gossip protocols, the basic
trading protocol biases recent updates over older ones to
disseminate new data quickly. However, in a streaming
setting, peers may sometimes value older updates over
younger ones, for example when a set of older updates
is about to expire and a peer desires to avoid jitter.

The drawback in preferring to trade for updates of an
old round is that the received updates may not be use-
ful in future exchanges because many peers may already

possess enough updates to reconstruct the data streamed
in that round. Indeed, an oldest-first bias performs very
poorly in our prototype. Therefore, Flightpath provides
a peer with the flexibility to balance recent updates that
it can leverage in future exchanges against older updates
that it may be missing. Instead of requesting updates
in most-recent-first order, a peer has the option to re-
ceive updates from the two oldest rounds first and then
updates in most-recent-first order. Alas, this particular
ranking is not the fruit of deep insight—it is simply the
one, out of the several we tried, that had the largest im-
pact on reducing jitter: better rankings may well exist.

Imbalance ratio: The basic protocol balances trades so
that a peer receives no more than it contributes in any
round. Such equity can make it difficult for a peer that
has fallen behind to recover.

FlightPath uses an imbalance ratio a to introduce
flexibility into how much can be traded. Each peer
tracks the number of updates sent to and received from
its neighbors, ensuring that its credits and debits for each
partner are within a of each other. We find that the im-
balance ratio’s most dramatic effect is that it allows in-
dividual trades to be very imbalanced if peers have long-
standing relationships.

When a is set to 1, the trading protocol behaves like
a traditional unbalanced gossip protocol, vulnerable to
free-riding behavior [29]. When a is set to 0, every trade
is balanced, offering little for rational peers to exploit,
but also allowing unlucky peers to suffer significant jit-
ter. We would like to set a to be as low as possible while
maintaining low jitter; we found a = 10% to be a good
tradeoff between these competing concerns.

Trouble Detector: Our final improvement takes advan-
tage of the flexibility in selecting partners that our reser-
vation mechanism offers. Each peer monitors its own
performance by tracking how many updates it still needs
for each round. If its performance falls below a thresh-
old, then that peer can proactively initiate more than one
trade in a round to avoid jitter. Peers treat this option as a
safety net, as increasing the average number of concur-
rent trades also increases the average number of bytes
uploaded to trade for each unique update.

We implement a simple detection module that in-
forms a peer whether reserving more trades may be ad-
visable. We assume that after each round a peer expects
to double the number of updates that have not yet ex-
pired up to the point of possessing num_ups updates for
each round. In practice, we find that peers typically
gather updates more quickly than just doubling them. If
a peer ¢ notices that it possesses fewer updates than the

360

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



detection module advises, ¢ schedules additional trades.
Note that this is a local choice, based only on how many
packets the peer has received for that round.

Figures 2 and 3 demonstrate the effectiveness of tail
inversion, the imbalance ratio, and the trouble detector.

3.3 Flexibility for Churn

We now explain how to augment the protocol to handle
churn. In FlightPath, the main challenge is in allow-
ing peers to join an existing streaming session. Gossip’s
robustness to benign failures lends FlightPath a natu-
ral resilience to departures. However, the tracker still
monitors peers to discover if any have left the system
abruptly. Currently, we employ a simple pinging proto-
col, although we could use more sophisticated mecha-
nisms as in Fireflies [40].

When a peer attempts to join a session, it expects to
begin reliably receiving a stream without a long delay.
As system designers, we have to balance that expecta-
tion against the resources available to get that peer up to
speed. In particular, dealing with a flash crowd where
the ratio of new peers to old ones is high presents a
challenge. Moreover, in a BAR environment, we have
to be careful in providing benefit to any peer who has
not earned it. For example, if a single peer joins a sys-
tem consisting of 50 peers, it may be desirable for all 50
to aid the new participant using balanced trades so that
the new peer cannot free-ride off the system. However,
consider the case when instead of 1 peer joining, 200
or 400 join. It is unreasonable to expect the original 50
to support a population of 400 peers who initially have
nothing of value to contribute.

Below, we describe two mechanisms for allowing
peers to join the system. The first allows the tracker to
modify the membership list and to disseminate that list
to all relevant peers. The second lets a new peer imme-
diately begin trading so that it does not have to wait in
silence until the tracker’s list takes effect.

Epochs: A FlightPath tracker periodically updates the
membership list to reflect joins and leaves. The tracker
defines a new membership list at the beginning of each
epoch, where the first epoch contains the first e,
rounds, the second epoch contains the next e, rounds
and so on. If a peer joins in epoch e, the tracker places
that peer into the membership list that will be used in
epoch e+ 2.

At the boundary between epochs e and e + 1, the
tracker shuffles the membership list for epoch e +2 and
notifies the source of the shuffled list. Shuffling prevents
Byzantine peers from attempting to position themselves
at specific indices of the membership list, so as to take
over a bin. Recall that we construct each peer’s mem-

bership view to be independent of these indices so as not
to end long-standing relationships prematurely.

After the tracker notifies the source of the next
epoch’s membership list, the source divides that list into
pieces and places each piece into a third kind of update:
a partial membership list. The source signs these lists
and distributes them to peers as it would a stream up-
date. Peers can trade partial membership lists just like
they trade linear digests and stream updates. The only
difference is that partial membership lists are given pri-
ority over all other updates in a trade and only expire
when the epoch corresponding to that list ends. Once a
peer obtains every partial membership list for an epoch,
that peer can reconstruct the original membership list
and use it to select trading partners.

Tub Algorithm: As described, a new peer would have to
wait at least one epoch before it appears in the member-
ship list and can begin to trade. FlightPath augments the
static partner selection algorithm that uses bins with an
online one that allows new peers to begin trading imme-
diately without overwhelming the existing peers in the
system. This algorithm also allows every peer to ver-
ify partner selections without global knowledge of how
many peers joined nor of when they did so. Intuitively,
our algorithm organizes all peers into fubs such that the
first tub contains the peers in the current epoch’s mem-
bership list and subsequent tubs contain peers who have
recently joined. A peer selects partners from its own tub
and also from any tub preceding its own. However, the
probability that a peer from tub 7 selects from a tub ¢’ < ¢
decreases geometrically with  —¢’. This arrangement
ensures that the load on a peer from all subsequent tubs
is bound by a constant regardless of how many peers
join. Figure 5 illustrates our algorithm.

For clarity, we describe our online algorithm assum-
ing all peers have a global list that enumerates every peer
in the system. Later, we show that this knowledge is un-
necessary. The first n indices in this global list corre-
spond to the n indices of the current epoch’s member-
ship list. The rest of the global list is sorted according
to the order in which peers joined. We divide the global
list into fubs where the first tub corresponds to the first
n indices of the global list, the second tub to the next n
indices, and so forth.

A peer ¢’s membership view depends on its position
in the global list. If ¢ is in the first tub, its view and
how it selects partners is unchanged from the static case
(Section 3.2). If cisinatub ¢t > 1, ¢’s view obeys three
constraints:

1. Peer d is in ¢’s view only if d precedes c in the list.

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 361



=1/4 r

L A

n

Tub 1 Tub 2

Il

bin2 bin3 bin 4

(LA

bin5 bin6 bin7

bin 1

Tub 3 Tub 4

Figure 5: Tllustration of the tub protocol from peer ¢’s perspective. Shaded entries represent peers that ¢ can contact
for a trade when appropriate. Note that ¢ only uses bins for its own tub and the immediately preceding one.

2. Ifdisintub ¢t or t — 1, then d is in c's view iff
the hash of concatenating ¢’s member id with d’s
member id is less than p (see inequality 1).

3. Ifdisinatubt <t—1, then d is in ¢’s view iff
the hash of concatenating ¢’s member id and d’s
member id is less than a parameter p’.

The tracker adjusts p’ according to inequality (2) so
that almost every peer is expected to have at least one
non-Byzantine partner in every tub.

[1 *P,(l *Fbyz)]n < (2

S| =

A new peer cin tub 7. > 1 selects a trading partner for
round r using two verifiable pseudo-random numbers,
rand, and rand,. First, ¢ uses rand; to select a tub,
exponentially weighting the selection towards its own
tub. If ¢ selects a tub < 7. — 1, then ¢ can trade with any
peer in tub ¢ that is also in ¢’s view. If ¢ selects either its
own tub or the one immediately preceding its tub, then
c uses rand, to make the final selection. ¢ maps rand,
to a bin starting from the first bin in tub  — 1 and ending
with ¢’s own bin. From the selected bin, ¢ can trade with
any peer in its view.

If every peer knew the global list, then it would be
straight-forward to select and verify trading partners.
Fortunately, this global knowledge is unnecessary: to
select trading partners, a newly joined peer only needs
to know the peers in its own view, the epoch in which
those peers joined the system, and the indices of those
peers in the global list. When a peer ¢ joins the system,
c obtains such information directly from the tracker.

To verify that a peer ¢ selects a partner d appropri-
ately, d needs to know ¢’s index in the global member-
ship list. The tracker encodes such information in a join
token that it gives to ¢ when c joins the system. The join
token specifies ¢’s index in the global list for the two
epochs until ¢ is part of an epoch’s membership list. ¢
includes its join token in its reservation message to d.

4 Evaluation

We now show that FlightPath is a robust p2p live stream-
ing protocol. Through experiments on over 500 peers,
we demonstrate that FlightPath:

e Reduces jitter by several orders of magnitude com-
pared to BAR Gossip

e Caps peak bandwidth usage to within the con-
straints of a cable or ADSL connection

e Maintains low jitter and efficiently uses bandwidth
despite flash crowds

e Recovers quickly from sudden peer departures
o Continues to deliver a steady stream despite churn

o Tolerates up to 10% of peers acting maliciously

4.1 Methodology

We use FlightPath to disseminate a 200 Kbps data
stream to several hundred peers distributed across
Utah’s Emulab and UT Austin’s public Linux machines.
In most experiments, we use 517 peers, but drop to 443
peers in the churn and Byzantine experiments as the
availability of Emulab machines declined. We run each
experiment 3 times. When we present cumulative distri-
butions, we combine points from all three experiments.
We include standard deviation when doing so keeps fig-
ures readable.

In our experiments, rounds last 2 seconds and epochs
last 40 rounds. In each round, the source sends 100
Reed-Solomon coded stream updates and 2 linear di-
gests. 50 stream updates are necessary and sufficient
to reconstruct the original data. Stream updates expire
10 rounds after they are sent. The source sends each
stream update to a random 2.5% of peers. Stream up-
dates are 1072 bytes long, while linear digests are 1153
bytes long.

We implement FlightPath in Python using MDS5 for
secure hashes and RSA-FDH with 512 bit keys for dig-
ital signatures. Peers exchange public certificates and

362

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



Average Jitter (%)

0.5 - BAR Gossip

FlightPath 1

0

Figure 6: Average jitter in FlightPath and BAR Gossip
peers. (n=517)

agree on secret keys for MACs a few seconds before re-
serving trades with one another. Peers also set the bud-
get for how many updates they are willing to upload in
around to 4 = 100, which is split evenly across concur-
rent trades.

Steady State Operation: In the first experiment, we run
FlightPath on 517 peers to assess its performance un-
der a relatively well-behaved and static environment.
Figure 6 shows that the average jitter of FlightPath is
orders of magnitude lower than BAR Gossip. Of the
three experiments we ran for one hour, the worst jitter
was in an experiment in which 1 peer missed 6 sec-
onds of video, 5 peers missed 4 seconds, and 3 peers
missed 2 seconds. All jitter events occurred during the
first minute. Figure 7 confirms that peers use approxi-
mately 250 Kbps on average and also depicts cumulative
distributions tracing the peak bandwidth of each peer
along with curves for the 99 and 95 percentile band-
width curves. As in Section 3.2, the combination of
reservations, splitting a peer’s need and erasure coding
is effective in capping peak bandwidth.

Joins: We now evaluate how well FlightPath handles
joins into the system. In particular, we stress the tub
algorithm, described in Section 3.3, to handle large pop-
ulations of peers who seek to join a streaming session
all at once. In this experiment, we start a session with
50 peers. In round 40, varying numbers of peers si-
multaneously attempt to join the system. As Figure 8
illustrates, the average bandwidth of the original peers
noticeably spikes immediately after round 40 and set-
tles to a higher level than before. In round 120, when
new peers are integrated into the membership list, aver-
age bandwidth of the original 50 drops back to its pre-
vious levels. As shown, FlightPath peers are relatively
unaffected by joining events. None of the original 50

100 — :
average
8 95 percentile ---------
0 99 percentile - 1
peak
® 60 - B
I
i
Q
k] [
® 40 + P 1
20 - [ ,
0 . . . L .
0 100 200 300 400 500 600

Bandwidth (Kbps)

Figure 7: Distributions of peers’ average, 95 percentile,
99 percentile, and peak bandwidths. (n =517)

500

Peak bandwidth ——
50 peers joining -
100 peers joining -
200 peers joining
4 400 peers joining -----
join event  fi%

400

300 1%,

Average Bandwidth (kbps)

100

20 40 60 80 100 120 140 160
Rounds

o

Figure 8: Bandwidth of peers already in the system with
different sized flash crowds. (n = 50)

peers experienced a jitter event during any of these ex-
periments. Also note that the peak bandwidth across all
three runs of each experiment was 482.5 Kbps.

Figure 9 depicts the number of rounds a peer may
have to wait before it begins to deliver a stream reliably.
We define the round in which a peer reliably begins to
deliver a stream as the first round in which a peer expe-
riences no jitter for three rounds. Interestingly, we see
that if more peers join, performance improves. This ef-
fect can be explained by our tub algorithm. The peers in
the last tub are contacted the least. In the experiment in
which only 50 peers join, all of the newly joined peers
are in the last tub. The last tub in the experiment with
400 peers joining has a similar problem, but the last tub
is masked by the success of the preceding 7 tubs.

Departures: Figure 10 shows FlightPath’s resilience to
large fractions of a population suddenly departing. De-
parting peers exit abruptly without notifying the tracker
or completing reserved trades. The figure shows the per-
centage of peers jittered after a massive departure event

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 363



100

80

400 peers joining —+—
200 peers joining -~
100 peers joining -
50 peers joining &

% of peers

40 -

20 +

Rounds

Figure 9: CDF of join delays for different size joining
crowds. (n =50)

10

8 r Massive peer departure

% of peers jittered

i <=—75% leave
““j\ / 70% leave

0 50 100 150 200 250 300
Rounds

Figure 10: Jitter during massive departure. (n = 517)

of 70% and 75% of random peers. We chose these frac-
tions because smaller fractions had little observable ef-
fect with respect to jitter. The figure shows that there ex-
ists a threshold between 70% and 75% in which Flight-
Path cannot tolerate any more departures.

FlightPath’s resilience to such massive departures is
a consequence of a few traits. First, peers discover very
quickly whether potential partners have left or not via
the reservation system. Second, peers have choice in
their partner selection, so they can avoid recently de-
parted peers. Finally, each peer’s trouble detector helps
in reacting quickly to avoid jitter. Figure 11 shows the
effect of the trouble predictor. Average bandwidth of re-
maining peers drops dramatically after the leave event,
but then spikes sharply to make up for missed trading
opportunities.

Churn: We now evaluate how FlightPath performs un-
der varying amounts of churn. In our experiments,
peers join and then leave after an exponentially random
amount of time. Because short-lived participants are
proportionally more affected by their start-up transients,

400

70% leave
75% leave ---------

350

2
2
£
5
=

© 4
c
©
o

“é, 150 Massive peer departure q
8

z 100 i

50 :

0 ‘ ‘
0 50 100 150 200
Rounds
Figure 11: Average bandwidth after a massive

departure.(n = 517)

>10seconds ———

Average Jitter (%)

> 160 seconds

051 > 640 seconds

0 5 10 15 20 25 30 35 40
% Churn per Minute

Figure 12: Average jitter as churn increases.(n = 443)

our presentation segregates peers by the amount of time
they remain in the system. Figure 12 shows average jit-
ter as we increase churn. The average jitter of peers who
join the system for at least 10 seconds steadily increases
with churn. Peers who stay in the system for at least
640 seconds experience very little jitter even when 37%
of peers churn every minute. Further experiments (not
included) show that there is a non-negligible probability
of being jittered during the first two minutes after join-
ing a streaming session. Afterwards, the chance of being
jittered falls to nearly O.

Figure 13 shows that churn does manifest as increas-
ing join delays for new peers. We see that the time
needed to join a session is unacceptable under high
amounts of churn. This quality points to a weakness
of FlightPath and suggests a need for a bootstrapping
mechanism for new peers. However, care needs to be
exercised in not allowing peers to game the system by
abusing the bootstrapping mechanism to obtain updates
without uploading.

364

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



100

80

% of Peers

40 - 9% churn per minute —+—

12% churn per minute ----x---
18% churn per minute -
27% churn per minute &

20 34% churn per minute ---#--

20 25 30 35 40
Rounds

Figure 13: Join delay under churn.(n = 443)

Malicious attack: In this experiment, we evaluate
FlightPath’s ability to deliver a stream reliably in the
presence of Byzantine peers. While any peer whose util-
ity function is unknown is strictly speaking Byzantine in
our model, we are especially interested in understanding
how FlightPath behaves under attack, when Byzantine
peers behave maliciously.

Although Byzantine peers cannot make a non-
Byzantine peer deliver an inauthentic update, they can
harm the system by degrading its performance. We
have studied the effect on jitter of several malicious
strategies—we report here the results for the one that
appeared to cause the greatest harm. According to this
scheme, malicious peers act normally for the first 100
rounds of the protocol. However, starting in round 100,
they initiate as many trades as they can and respond pos-
itively to all trade reservations, seeking to monopolize
as many trades in the system as possible. The Byzan-
tine peers participate in the history exchange phase of a
trade but in no subsequent phase. In a history exchange,
a Byzantine peer reports that it has all the updates that
are less than 3 rounds old and is missing all the other
updates. This strategy commits a large amount of its
partners bandwidth to the exchange. Ultimately, how-
ever, non-Byzantine peers find trades with Byzantine
ones useless.

Figure 14 shows the percentage of peers jittered when
12%, 14%, and 16% of peers behave in this malicious
way. We elide the experiment in which 10% of peers are
Byzantine because no peer suffered jitter in those exper-
iments. Figure 15, which depicts the average bandwidth
of non-Byzantine peers, is similar to the one in which
peers abruptly leave the system. The subtle difference
is that the average bandwidth used remains higher with
more Byzantine peers.

Wide Area Network: Finally, we evaluate how Flight-
Path performs under wide area network conditions. In

4 + Attack start

% of peers jittered

Byzantine = 16%
Byzantine = 14%
1r Byzantine = 12%

aoy
0 50 100 150 200
Rounds

Figure 14: Jitter with malicious peers. (n = 443)

400

Attack start

350

300

250

Byzantine = 16%
Byzantine = 14%

150 Byzantine =12% |

100

Average Bandwidth (Kbps)
n
o
o

50

.
0 50 100 150 200
Rounds

Figure 15: Bandwidth with malicious peers. (n = 443)

this experiment, we use 300 clients on a local area net-
work but delay all packets between clients according to
measured Internet latencies. We assign each client a ran-
dom identity from the 1700+ hosts listed in the King
data set of Internet latencies [19]. We use the data set to
delay every packet according to its source and destina-
tion.

As in the case without added delays, all jitter events
occurred in the first minute of the experiments. Fig-
ure 16 depicts the average percentage of peers jittered
in the first minute, the average upload bandwidth, and
the peak upload bandwidth for our experiments with the
added delays and without. Aside from a slight increase
(almost 10 Kbps) in average upload bandwidth, peak up-
load bandwidth rose by approximately 40 Kbps. These
increases are the result of some exchanges not complet-
ing by the end of a round, requiring peers involved to
make up for the loss in subsequent rounds.

5 Equilibria Analysis
In contrast to previous rigorous approaches to dissuade

rational deviation, FlightPath does not ensure that ev-
ery step of the protocol is in every peer’s best interest.

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 365



6 600

peak

5 peak 4 500
Q
E]
2
€ 4t 1400 _
- [}
172 Q
= Ee)
= X
£ ~

F=

9 3t 300 £
8 avg avg ]
= o
E <
g 2t {200 ®
Q
& jitter jittel

1t 100

0 0

FlighPath LAN FlightPath WAN

Figure 16: Bandwidth under WAN conditions. (rn = 300)

Indeed, it is easy to imagine circumstances in which a
peer might benefit from deviating, for example, by set-
ting the plead flag early to increase the likelihood that a
selected peer will accept its invitation. Instead, Flight-
Path ensures an €-Nash equilibrium in which no peer
can significantly improve its overall utility regardless of
how it makes these individual choices.

The high level argument is simple. A peer can only
increase its utility by obtaining more benefit (receiv-
ing less jitter) or reducing cost (uploading fewer bytes).
Since we engineered FlightPath to provide very low jit-
ter in a wide range of environments, a peer has very little
ability to obtain more benefit. With respect to decreas-
ing costs, we structure trades so that a rational peer has
to pay at least (ﬁ} of the cost of uploading x updates
in order to receive x updates, where a is the imbalance
ratio.

We now develop this argument more formally to
bound the added utility that can be gained by a peer that
deviates. We analyze FlightPath in the steady state case
and ignore transient start-up effects or end game sce-
narios, which would matter little in the overall utility of
watching something as long as a movie.

We begin by revisiting the utility function u = (1 —
J)B —wk. Recall that j is the average number of jit-
ter events per minute, B is the benefit from watching
a jitter-free stream, w is the average upload bandwidth
used in Kbps, and x is the cost per Kbps. If we let
the expected utility of an optimal cheating strategy be
u, = (1—j,)P — wok and the expected utility of obey-
ing the protocol be u, = (1 — j,)p — w.X, then we can
express € as follows:

e — Uo — Ue _ (je_jo)B._ (Wo_we)K 3)
U (1—Jjo)p—wex

We simplify equation 3 with the following assump-
tions: i) the benefit of running FlightPath exceeds the

| Parameter | Description

num_ups | num stream updates per round needed
m num stream updates per round
f fraction of updates received from source
budget max num of updates sent in a round
a imbalance ratio

Table 1: Summary of the analysis parameters.

1

FlightPath ——
09 |

0.8
0.7
0.6
0.5

Epsilon

04
0.3 -
02 c=3.36

0.1

0

0 2 4 6 8 10
Benefit to Cost Ratio (c)

Figure 17: € as a function of the benefit to cost ratio.

cost, ii) the optimal cheating strategy receives no jit-
ter, and iii) the optimal cheating strategy uses a fraction
b < 1 of the bandwidth of running the protocol. These
assumptions let us express € as a function of the benefit-
to-cost ratio ¢, the expected number of jitter events per
minute j., and the proportional savings in cost 1 — b.

Ce
e e +(1-b) @)
c—1

As the jitter expected is an empirical phenomenon, we
use our evaluation to determine j., which after the first
minute is 0. We then establish a lower bound on b using
parameters specific to our system, listed in Table 1.

In the steady state, a peer p following a hypothetical
optimal strategy participates on average in at least one
trade every ¢ = LW%J rounds. Furthermore, the
average number of updates that it needs in each trade is
needed = t(num_ups —mf). Assuming that p is lucky
or clever enough to upload no more updates than it has
to in all trades, then p still uploads at least min_up =
[%W updates on average in each trade.

Let ybe the fixed cost in kilobits of a trade and let p be
the increase in cost of a trade for each update p uploads.
Then the average cost that p has to pay for each trade
is Y+ min_up x p. Given the message encodings in our
prototype, the fixed cost of a trade is 305 bytes and the

increase for each uploaded update is 1104 bytes. These

366

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



values correspond to Y= 2.44 and p = 8.832. Our goal is
to ensure that the net utility of the optimal strategy is not
significantly more than for FlightPath’s strategy. For € =
1—10, solving for ¢ in Equation 3 indicates that FlightPath
isa ll—o-Nash equilibrium as long as the user values the
stream at least 3.36 times as much as the bits uploaded
to participate in the system. Figure 17 illustrates the €
value FlightPath provides for each benefit-to-cost ratio.

6 Related Work

This work builds on a broad set of approaches for con-
tent dissemination and Byzantine or rational-tolerant
protocols.

Clearly, BAR Gossip [29] is the work most closely
related to FlightPath. We explain how it is similar and
different from FlightPath throughout this paper, and in
particular in Section 3.

Several tree-based overlays [10, 23] have been de-
vised to disseminate streaming data. Ngan et al. [36]
suggest that restructuring Splitstream [10] trees can
guard against free-riders by periodically changing
the parent-child relationships among peers, a com-
munication pattern that begins to resemble gossip.
Chunkyspread [41] uses a multi-tree based approach to
multicast. Chunkyspread builds random trees using low
overhead bloom filters and allows peers to make local
decisions to tune the graph for better performance.

In Araneola [33], Melamed and Keidar construct ran-
dom overlay graphs to multicast data. They show
that Araneola’s overlay structure achieves mathemati-
cal properties important for low-latency, load balancing,
and resilience to benign failures.

Demers et al. introduced gossip protocols to man-
age consistency in Xerox’s Clearinghouse servers [15].
Years later, Birman et al. [7] used gossip to build a
probabilistic multicast—a middle ground between ex-
isting reliable multicast and best effort multicast proto-
cols. Since then, many have explored ways to improve
gossip’s throughput and robustness [8, 17, 20, 21, 28].

None of the above works consider Byzantine peers
who can harm the system by spreading false messages.
One can guard against such attacks by using techniques
that avoid digital signatures [31, 32], but signatures can
dramatically simplify protocols and are used in many
practical gossip implementations [8, 22, 29, 40].

Haridasan and van Renesse [22] build a Byzantine
fault-tolerant live streaming system over the Fireflies
system. Their system, SecureStream, introduces [lin-
ear digests to efficiently authenticate stream packets.
As in CoolStreaming [43] and Chainsaw [37], Secure-
Stream also uses a pull-based gossip protocol to reduce
the number of redundant sends.

Badishi et al. [5] show in DRUM how gossip proto-
cols can resist Denial-of-Service (DoS) attacks by re-
source bounding public ports and port hopping. We
could integrate DRUM’s techniques into FlightPath.

To our knowledge, Equicast [26] is the first work
to address formally rational behavior in multicast pro-
tocols. Equicast organizes peers into a random graph
over which it disseminates content. The authors prove
Equicast is an equilibrium, but assume that rational
peers lack the expertise to modify the protocol beyond
tuning the cooperation level. Currently, Equicast is a
purely theoretical work, making an empirical compari-
son with FlightPath difficult.

BAR-Backup [3] is a p2p backup system for Byzan-
tine and rational peers. Peers implement a replicated
state machine that moderates interactions between peers
to ensure that peers behave appropriately.

7 Conclusion

We present approximate equilibria as a new way to de-
sign cooperative services. We show that approximate
equilibria allow us to provably limit how much selfish
participants can gain by deviating from a protocol. At
the same time, these equilibria provide enough freedom
to engineer practical solutions that are flexible enough
to handle many adverse situations, such as churn and
Byzantine peers.

We use €-Nash equilibria, an example of an approxi-
mate equilibrium, to design FlightPath, a novel p2p live
streaming system. FlightPath improves on the existing
state-of-the-art both qualitatively and quantitatively, re-
ducing jitter by several orders of magnitude, using band-
width efficiently, handling churn, and adapting to at-
tacks. More broadly, FlightPath demonstrates that we
do not have to sacrifice rigor to engineer Byzantine and
rational-tolerant systems that perform well and operate
efficiently.

8 Acknowledgements

The authors would like to thank the anonymous review-
ers and our shepherd, Dejan Kosti¢. Special thanks to
Petros Maniatis and Taylor Riché for their comments on
earlier versions of this work. This project was supported
in part by NSF grant CSR-PDOS 0509338.

References

[1] 1. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed
computing meets game theory: robust mechanisms for rational
secret sharing and multiparty computation. In Proc. 25th PODC,
pages 53-62, July 2006.

[2] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung. Network in-
formation flow. [Information Theory, IEEE Transactions on,
46(4):1204-1216, Jul 2000.

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 367



[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and
C. Porth. BAR fault tolerance for cooperative services. In Proc.
20th SOSP, pages 45-58, Oct. 2005.

N. Alon, J. Edmonds, and M. Luby. Linear time erasure codes
with nearly optimal recovery. In FOCS ’95, page 512, Washing-
ton, DC, USA, 1995. IEEE Computer Society.

G. Badishi, I. Keidar, and A. Sasson. Exposing and eliminating
vulnerabilities to denial of service attacks in secure gossip-based
multicast. In Proc. DSN-2004, page 223, Washington, DC, USA,
2004. IEEE Computer Society.

M. Bellare and P. Rogaway. Random oracles are practical: a
paradigm for designing efficient protocols. In Proc. Ist CCC,
pages 62—73, New York, NY, USA, 1993. ACM Press.

K. P. Birman, M. Hayden, O. Oskasap, Z. Xiao, M. Budiu, and
Y. Minsky. Bimodal multicast. ACM TOCS, 17(2):41-88, May
1999.

K. P. Birman, R. van Renesse, and W. Vogels. Spinglass: Secure
and scalable communications tools for mission-critical comput-
ing. In DARPA DISCEX-2001, 2001.

T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tol-
erance. ACM TOCS, 14(1):80-107, 1996.

M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Row-
stron, and A. Singh. SplitStream: high-bandwidth multicast in
cooperative environments. In Proc. 19th SOSP, pages 298-313.
ACM Press, 2003.

S. Chien and A. Sinclair. Convergence to approximate nash
equilibria in congestion games. In SODA ’07, pages 169-178,
Philadelphia, PA, USA, 2007. Society for Industrial and Applied
Mathematics.

P. A. Chou, Y. Wu, and K. Jain. Practical network coding. In
ACCCCO03, October 2003.

B. Cohen. Incentives build robustness in BitTorrent. In
P2PECON 03, June 2003.

C. Daskalakis, A. Mehta, and C. Papadimitriou. A note on ap-
proximate nash equilibria. In WINE *06, 2006.

A. Demers, D. Greene, C. Houser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epidemic
algorithms for replicated database maintenance. In Proc. 11th
SOSP, Aug. 1987.

J. R. Douceur. The Sybil attack. In Proc. Ist IPTPS, pages 251—
260. Springer-Verlag, 2002.

P. Eugster, S. Handurukande, R. Guerraoui, A. Kermarrec, and
P. Kouznetsov. Lightweight probabilistic broadcast. In DSN 01,
pages 254-269, July 2001.

C. Gkantsidis and P. Rodriguez. Network coding for large scale
content distribution. INFOCOM, 4:2235-2245 vol. 4, March
2005.

K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: estimating
latency between arbitrary internet end hosts. SIGCOMM Com-
put. Commun. Rev., 32(3):11-11, 2002.

I. Gupta, K. Birman, and R. van Renesse. Fighting fire with
fire: using randomized gossip to combat stochastic scalability
limits. Journal of Quality and Reliability Engineering Interna-
tional, 18(3):165-184, 2002.

I. Gupta, A.-M. Kermarrec, and A. J. Ganesh. Efficient and
adaptive epidemic-style protocols for reliable and scalable mul-
ticast. [EEE TPDS, 17(7):593-605, 2006.

(22]

(23]

(24]
(25]
[26]
[27]

(28]

(29]

(30]

[31]

(32]

[33]

[34]

(35]

[36]

(371

[38]

(39]

[40]

(41]

[42]

[43]

M. Haridasan and R. van Renesse. Defense against intrusion in
a live streaming multicast system. In Proceedings of P2P ’06,
pages 185-192, Washington, DC, USA, 2006. IEEE Computer
Society.

J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and
J. James W. O’Toole. Overcast: reliable multicasting with an
overlay network. In Proceedings of OSDI '00, pages 14-14,
Berkeley, CA, USA, 2000. USENIX Association.

Kazaa. http://www.kazaa.com.
Kazaa Lite. http://en.wikipedia.org/wiki/Kazaa Lite.

I. Keidar, R. Melamed, and A. Orda. Equicast: Scalable multi-
cast with selfish users. In PODC ’06, 2006.

D. Kosti¢, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:
high bandwidth data dissemination using an overlay mesh. In
SOSP ’03, pages 282-297, New York, NY, USA, 2003. ACM.
J. Leitao, J. Pereira, and L. Rodrigues. Hyparview: A member-
ship protocol for reliable gossip-based broadcast. In DSN 07,
pages 419-429, Washington, DC, USA, 2007. IEEE Computer
Society.

H. C. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisi, and
M. Dahlin. BAR Gossip. In Proceedings of OSDI '06, pages
191-204, Nov. 2006.

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spiel-
man, and V. Stemann. Practical loss-resilient codes. In STOC
'97, pages 150-159. ACM Press, 1997.

D. Malkhi, Y. Mansour, and M. K. Reiter. Diffusion without
false rumors: on propagating updates in a byzantine environ-
ment. 7CS, 299(1-3):289-306, 2003.

D. Malkhi, M. Reiter, O. Rodeh, and Y. Sella. Efficient update
diffusion in Byzantine environments. In Proc. 20th SRDS, 2001.
R. Melamed and I. Keidar. Araneola: A scalable reliable mul-
ticast system for dynamic environments. In Proc. of NCA "04,
pages 5-14, Washington, DC, USA, 2004. IEEE Computer So-
ciety.

T. Moscibroda, S. Schmid, and R. Wattenhofer. When selfish
meets evil: Byzantine players in a virus inoculation game. In
Proc. 25th PODC, pages 35-44, July 2006.

J. Nash. Non-cooperative games. The Annals of Mathematics,
54:286-295, Sept 1951.

T.-W. Ngan, D. S. Wallach, and P. Druschel. Incentives-
compatible peer-to-peer multicast. In P2ZPECON ’04, 2004.

V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. Mohr.
Chainsaw: Eliminating trees from overlay multicast. In /PTPS
’05, February 2005.

M. Sirivianos, J. H. Park, R. Chen, and X. Yang. Free-riding in
bittorrent networks with the large view exploit. In IPTPS 07,
February 2007.

R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible
group communication system. Comm. ACM, 39(4):76-83, 1996.
R. van Renesse, H. Johansen, and A. Allavena. Fireflies: Scal-
able support for intrusion-tolerant overlay networks. In EuroSys
’06, 2006.

J. Venkataraman, P. Francis, and J. Calandrino. Chunkyspread:
Multi-tree unstructured peer-to-peer multicast. In IPTPS ’06,
February 2006.

H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. Sybil-
guard: Defending against sybil attacks via social networks. In
ACM SIGCOMM 06, Sept.

X. Zhang, J. Liu, B. Li, and T. P. Yum. CoolStreaming/DONet:
A data-driven overlay network for live media streaming. In IEEE
INFOCOM, Mar. 2005.

368

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association





