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Abstract
Deadlock immunity is a property by which programs,
once afflicted by a given deadlock, develop resistance
against future occurrences of that and similar deadlocks.
We describe a technique that enables programs to auto-
matically gain such immunity without assistance from
programmers or users. We implemented the technique
for both Java and POSIX threads and evaluated it with
several real systems, including MySQL, JBoss, SQLite,
Apache ActiveMQ, Limewire, and Java JDK. The results
demonstrate effectiveness against real deadlock bugs,
while incurring modest performance overhead and scal-
ing to 1024 threads. We therefore conclude that deadlock
immunity offers programmers and users an attractive tool
for coping with elusive deadlocks.

1 Introduction
Writing concurrent software is one of the most challeng-
ing endeavors faced by software engineers, because it re-
quires careful reasoning about complex interactions be-
tween concurrently running threads. Many programmers
consider concurrency bugs to be some of the most in-
sidious and, not surprisingly, a large number of bugs are
related to concurrency [16].

The simplest mechanism used for synchronizing con-
current accesses to shared data is the mutex lock. When
threads do not coordinate correctly in their use of locks,
deadlock can ensue—a situation whereby a group of
threads cannot make forward progress, because each one
is waiting to acquire a lock held by another thread in
that group. Deadlock immunity helps develop resistance
against such deadlocks.

Avoiding the introduction of deadlock bugs during de-
velopment is challenging. Large software systems are
developed by multiple teams totaling hundreds to thou-
sands of programmers, which makes it hard to main-
tain the coding discipline needed to avoid deadlock bugs.
Testing, although helpful, is not a panacea, because exer-
cising all possible execution paths and thread interleav-
ings is still infeasible in practice for all but toy programs.

Even deadlock-free code is not guaranteed to execute
free of deadlocks once deployed in the field. Depen-
dencies on deadlock-prone third party libraries or run-
times can deadlock programs that are otherwise cor-
rect. Upgrading these libraries or runtimes can introduce

new executions that were not covered by prior testing.
Furthermore, modern systems accommodate extensions
written by third parties, which can introduce new dead-
locks into the target systems (e.g., Web browser plugins,
enterprise Java beans).

Debugging deadlocks is hard—merely seeing a dead-
lock happen does not mean the bug is easy to fix.
Deadlocks often require complex sequences of low-
probability events to manifest (e.g., timing or workload
dependencies, presence or absence of debug code, com-
piler optimization options), making them hard to repro-
duce and diagnose. Sometimes deadlocks are too costly
to fix, as they entail drastic redesign. Patches are error-
prone: many concurrency bug fixes either introduce new
bugs or, instead of fixing the underlying bug, merely de-
crease the probability of occurrence [16].

We expect the deadlock challenge to persist and likely
become worse over time: On the one hand, software
systems continue getting larger and more complex. On
the other hand, owing to the advent of multi-core archi-
tectures and other forms of parallel hardware, new ap-
plications are written using more threads, while exist-
ing applications achieve higher degrees of runtime con-
currency. There exist proposals for making concurrent
programming easier, such as transactional memory [8],
but issues surrounding I/O and long-running operations
make it difficult to provide atomicity transparently.

In this paper, we introduce the notion of deadlock
immunity—a property by which programs, once afflicted
by a given deadlock, develop resistance against future oc-
currences of similar deadlocks. We describe Dimmunix,
a tool for developing deadlock immunity with no assis-
tance from programmers or users. The first time a dead-
lock pattern manifests, Dimmunix automatically cap-
tures its signature and subsequently avoids entering the
same pattern. Signatures can be proactively distributed
to immunize users who have not yet encountered that
deadlock. Dimmunix can be used by customers to de-
fend against deadlocks while waiting for a vendor patch,
and by software vendors as a safety net.

In the rest of the paper we survey related work (§2),
provide an overview of our system (§3-§4), give details of
our technique (§5), describe three Dimmunix implemen-
tations (§6), evaluate them (§7), discuss how Dimmunix
can be used in practice (§8), and conclude (§9).
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2 Related Work
There is a spectrum of approaches for avoiding dead-
locks, from purely static techniques to purely dynamic
ones. Dimmunix targets general-purpose systems, not
real-time or safety-critical ones, so we describe this spec-
trum of solutions keeping our target domain in mind.

Language-level approaches [3, 15] use powerful type
systems to simplify the writing of lock-based concurrent
programs and thus avoid synchronization problems alto-
gether. This avoids runtime performance overhead and
prevents deadlocks outright, but requires programmers
to be disciplined, adopt new languages and constructs, or
annotate their code. While this is the ideal way to avoid
deadlocks, programmers’ human limits have motivated a
number of complementary approaches.

Transactional memory (TM) [8] holds promise for
simplifying the way program concurrency is expressed.
TM converts the locking order problem into a thread
scheduling problem, thus moving the burden from pro-
grammers to the runtime, which we consider a good
tradeoff. There are still challenges with TM seman-
tics, such as what happens when programmers use large
atomic blocks, or when TM code calls into non-TM code
or performs I/O. Performance is still an issue, and [14]
shows that many modern TM implementations use lock-
based techniques to improve performance and are sub-
ject to deadlock. Thus, we believe TM is powerful, but it
cannot address all concurrency problems in real systems.

Time-triggered systems [13] and statically scheduled
real-time systems [22] perform task synchronization be-
fore the program runs, by deciding schedules a pri-
ori based on task parameters like mutual-exclusion con-
straints and request processing time. When such param-
eters are known a priori, the approach guarantees safety
and liveness; however, general-purpose systems rarely
have such information ahead of time. Event-triggered
real-time systems are more flexible and incorporate a pri-
ori constraints in the form of thread priorities; protocols
like priority ceiling [20], used to prevent priority inver-
sion, conveniently prevent deadlocks too. In general-
purpose systems, though, even merely assigning priori-
ties to the various threads is difficult, as the threads often
serve a variety of purposes over their lifetime.

Static analysis tools look for deadlocks at compile
time and help programmers remove them. ESC [7] uses
a theorem prover and relies on annotations to provide
knowledge to the analysis; Houdini [6] helps generate
some of these annotations automatically. [5] and [21] use
flow-sensitive analyses to find deadlocks. In Java JDK
1.4, the tool described in [21] reported 100,000 poten-
tial deadlocks and the authors used unsound filtering to
trim this result set down to 70, which were then manu-
ally reduced to 7 actual deadlock bugs. Static analyses
run fast, avoid runtime overheads, and can help prevent
deadlocks, but when they generate false positives, it is
ultimately the programmers who have to winnow the re-
sults. Developers under pressure to ship production code

fast are often reticent to take on this burden.
Another approach to finding deadlocks is to use model

checkers, which systematically explore all possible states
of the program; in the case of concurrent programs, this
includes all thread interleavings. Model checkers achieve
high coverage and are sound, but suffer from poor scal-
ability due to the “state-space explosion” problem. Java
PathFinder, one of the most successful model checkers,
is restricted to applications up to ∼10 KLOC [10] and
does not support native I/O libraries. Real-world ap-
plications are large (e.g., MySQL has >1 MLOC) and
perform frequent I/O, which restricts the use of model
checking in the development of general-purpose systems.

Further toward the dynamic end of the spectrum, [17]
discovers deadlocks at runtime, then wraps the corre-
sponding parts of the code in one “gate lock”; in subse-
quent executions, the gate lock must be acquired prior to
entering the code block. This approach is similar to [2],
except that the latter detects deadlocks statically, thus
exhibiting more false positives than [17]. In a dual ap-
proach to these two, [23] modifies the JVM to serialize
threads’ access to lock sets (instead of program code)
that could induce deadlocks. Dimmunix shares ideas
with these dynamic approaches, but uses added context
information to achieve finer grain avoidance and consid-
erably fewer false positives (as will be seen in §7.3).

Finally, there are purely dynamic approaches, like
Rx [18]. Upon deadlock, Rx can roll back a program
to a checkpoint and retry the execution in a modified en-
vironment; new timing conditions could prevent dead-
lock reoccurrence. However, Rx does not (and was not
meant to) build up resistance against future occurrences
of the deadlock, so the system as a whole does not “im-
prove” itself over time. The performance overhead in-
duced by repeated re-executions can be unpredictable (in
the extreme case of a deterministic deadlock, Rx cannot
go past it) and retried executions cannot safely span I/O.
In contrast, Dimmunix actively prevents programs from
re-encountering previously seen deadlock patterns.

Deadlock immunity explores a new design point on
this spectrum of deadlock avoidance solutions, combin-
ing static elements (e.g., control flow signatures) with
dynamic approaches (e.g., runtime steering of thread
schedules). This combination makes Dimmunix embody
new tradeoffs, which we found to be advantageous when
avoiding deadlocks in large, real, general-purpose sys-
tems.

3 System Overview
Programs augmented with a deadlock immunity system
develop “antibodies” matching observed deadlock pat-
terns, store them in a persistent history, and then alter
future thread schedules in order to avoid executing pat-
terns like the ones that were previously seen. With every
new deadlock pattern encountered by the program, its re-
sistance to deadlocks is improved.
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When buggy code runs and deadlocks, we refer to an
approximate suffix of the call flow that led to deadlock as
a deadlock pattern—this is an approximation of the con-
trol flow that turned the bug into a deadlock. A runtime
instantiation of a deadlock pattern constitutes a deadlock
occurrence. Thus, a deadlock bug begets a deadlock pat-
tern, which in turn begets a deadlock occurrence. One
deadlock pattern can generate a potentially unbounded
number of runtime deadlock occurrences, e.g., because
lock identities vary across different manifestations of the
same deadlock pattern. Dimmunix automatically avoids
previously seen deadlock patterns, in order to reduce the
number of deadlock occurrences. To recognize repeated
deadlock patterns, it saves “fingerprints” of every new
pattern; we call these deadlock signatures. Runtime con-
ditions can cause a deadlock pattern to not always lead
to deadlock, in which case avoiding the pattern results in
a false positive (more details in §5.5).

The Dimmunix architecture is illustrated in Figure 1.
There are two parts: avoidance instrumentation code
prevents reoccurrences of previously encountered dead-
locks and a monitor thread finds and adds deadlock in-
formation to the persistent deadlock history. Avoidance
code can be directly instrumented into the target binary
or can reside in a thread library. This instrumentation
code intercepts the lock/unlock operations in target pro-
grams and transfers control to Dimmunix any time lock
or unlock is performed; Dimmunix itself runs within the
address space of the target program.

At the beginning of a lock call, a request method in
the avoidance instrumentation decides whether to allow
the lock operation to proceed. This decision can be GO,
if locking is allowed, or YIELD, if not. In the case of a
yield, the thread is forced by the instrumentation code to
yield the CPU, and the lock attempt is transparently re-
tried later. When the program finally acquires the lock,
the instrumentation code invokes acquired. Unlock op-
erations are preceded by a call to release.

The avoidance code enqueues request, go, yield, ac-
quired, and release events onto a lock-free queue that is
drained by the monitor thread. The monitor wakes up pe-
riodically and updates a resource allocation graph (RAG)
according to received events, searches for deadlock cy-
cles, and saves the cycle signatures to the persistent his-
tory. The delay between the occurrence of a deadlock
and its detection by the asynchronous monitor has an up-
per bound determined by the wakeup frequency.

Dimmunix uses the RAG to represent a program’s syn-
chronization state. Most edges are labeled with the call
stack of the origin thread, representing an approximation
of that thread’s recent control flow. When a deadlock is
found, Dimmunix archives a combination of the involved
threads’ stacks into a deadlock signature.

Avoiding deadlocks requires anticipating whether the
acquisition of a lock would lead to the instantiation of a
signature of a previously-encountered deadlock pattern.
For a signature with call stacks {S1, S2,...} to be instan-
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Figure 1: Dimmunix architecture.

tiated, there must exist threads T1, T2,... that either hold
or are allowed to wait for locks L1, L2,... while hav-
ing call stacks S1, S2,... An instantiation of a signature
captures the corresponding thread-lock-stack bindings:
{(T1, L1, S1), (T2, L2, S2), ...}.

The way in which a deadlocked program recovers is
orthogonal to Dimmunix and, in practice, would most
likely be done via restart. Dimmunix can provide a hook
in the monitor thread for programs to define more so-
phisticated deadlock recovery methods; the hook can be
invoked right after the deadlock signature is saved. For
instance, plugging Rx’s checkpoint/rollback facility [18]
into this application-specific deadlock resolution hook
could provide application-transparent deadlock recovery.

Any scheduling-based approach to deadlock avoid-
ance faces the risk of occasionally reaching starvation
states, in which threads are actively yielding, waiting
in vain for synchronization conditions to change. In
Dimmunix, this is handled automatically: when induced
starvation occurs, Dimmunix saves the signature of the
starvation state, breaks the starvation by canceling the
yield for the starved thread holding most locks, and al-
lows the freed thread to pursue its most recently re-
quested lock. Dimmunix will subsequently be able to
avoid entering this same starvation condition again.

We recommend Dimmunix for general-purpose sys-
tems, such as desktop and enterprise applications, server
software, etc.; in real-time systems or safety-critical sys-
tems, Dimmunix can cause undue interference (§5.7).
Systems in which even the very first occurrence of a
deadlock cannot be tolerated are not good targets for
Dimmunix; such systems require more programmer-
intensive approaches if they want to run deadlock-free.

Dimmunix can be used by software vendors and end
users alike. Faced with the current impossibility of ship-
ping large software that is bug-free, vendors could instru-
ment their ready-to-ship software with Dimmunix and
get an extra safety net. Dimmunix will keep users happy
by allowing them to use the deadlock-prone system while
developers try to fix the bugs. Also, users frustrated with
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deadlock-prone applications can use Dimmunix on their
own to improve their user experience. We do not ad-
vocate deadlock immunity as a replacement for correct
concurrent programming—ultimately, concurrency bugs
need to be fixed in the design and the code—but it does
offer a “band-aid” with many practical benefits.

4 An Example
We now illustrate how Dimmunix works with an exam-
ple of two deadlock-prone threads.

    main {

s1:   update(A,B)

s2:   update(B,A)

    }

    update(x,y) {

s3:   lock(x)

s4:   lock(y)

      unlock(y)

      unlock(x)

    }

...

...

The pseudocode on the right
accesses two global shared
variables A and B, each
protected by its own mutex.
s1, s2,... are the equivalent of
goto labels. For simplicity, we
assume there are no pointers.

If two different threads Ti

and Tj run the code concur-
rently, they may attempt to
lock A and B in opposite order, which can lead to
deadlock, i.e., if Ti executes statement s1 and then s3,
while Tj executes s2 followed by s3. The call flow can
be represented abstractly as <Ti:[s1, s3], Tj:[s2, s3]>.
There exist other execution patterns too, such as
<Ti:[s1, s3], Tj :[s1, s3]> that do not lead to deadlock.

The first time the code enters a deadlock, Dimmunix
will see it as a cycle in the RAG and save its signature
based on the threads’ call stacks at the time of their lock
acquisitions. When Ti acquires the lock on A, the re-
turn addresses on its stack are [s1, s3], because it called
update() from s1 and lock() from s3; similarly, when Tj

acquires the lock on B, Tj’s call stack is [s2, s3]. Upon
deadlock, the <Ti:[s1, s3], Tj:[s2, s3]> call pattern is
saved to history as deadlock signature {[s1, s3], [s2, s3]}.
Signatures do not include thread or lock identities, thus
making them portable from one execution to the next.

Consider now a subsequent run of the program, in
which some thread Tk executes s2 followed by s3, ac-
quires the lock on B, and then some other thread Tl ex-
ecutes s1 and then makes the call to lock(x) in statement
s3, in order to acquire A. If Dimmunix were to allow this
lock operation to proceed, this execution could deadlock.

  main:s2

update:s3

...
  main:s1

update:s3

...

T ’s call stackk T ’s call stackl
Dimmunix infers the
deadlock danger by
matching the threads’
call stacks (shown on
right) to the signature.

Given that there is a match, Dimmunix decides to
force Tl to yield until the lock that Tk acquired at s3 is
released. After B is released, Tl is allowed to lock A and
proceed. In this way, the program became immune to the
deadlock pattern {[s1, s3], [s2, s3]}.

Note that Dimmunix does not merely serialize code
blocks, as would be done by wrapping update() in a Java
synchronized{...} block or as was done in prior work. For

instance, on the above example, [17] would add a “gate
lock” around the code for update() and serialize all calls
to it, even in the case of execution patterns that do not
lead to deadlock, such as {[s1, s3], [s1, s3]}. [23] would
add a “ghost lock” for A and B, that would have to be
acquired prior to locking either A or B.

Dimmunix achieves finer grain avoidance by (a)
using call path information to distinguish between
executions—of all paths that end up at s3, Dimmunix
avoids only those that executed a call path previously
seen to lead to deadlock—and (b) using runtime informa-
tion about which locks are held by other threads to avoid
these paths only when they indeed seem dangerous.

5 Deadlock and Starvation Avoidance
We now present selected details of Dimmunix: the core
data structure (§5.1), detection (§5.2), construction of
signatures (§5.3), runtime avoidance of archived signa-
tures (§5.4), calibration of signature matching precision
(§5.5), auxiliary data structures (§5.6), and a synopsis of
Dimmunix’s properties and limitations (§5.7).

5.1 Capturing Synchronization State

Dimmunix conceptually uses a resource allocation graph
(RAG) to represent the synchronization state of a pro-
gram. In practice, the RAG is built on top of several
performance-optimized data structures (details in §5.6).

The RAG is a directed graph with two types of ver-
tices: threads T and locks L. There are three types of
edges connecting threads to locks and one type of edges
connecting threads to threads. Request edges indicate
that a thread T wants to acquire lock L, allow edges in-
dicate that thread T has been allowed by Dimmunix to
block waiting for L, and hold edges indicate that T has
acquired and presently holds lock L. If the avoidance
code decides to not allow a thread T ’s lock request, it
will force T to yield. This state is reflected in the RAG
by a yield edge connecting thread T to T ′, indicating that
T is currently yielding because of locks that T ′ acquired
or was allowed to wait for. Dimmunix reschedules the
paused thread T whenever lock conditions change in a
way that could enable T to acquire the desired lock. Fig-
ure 2 illustrates a subgraph of a real RAG.

A hold edge, like L7

Sy

→T13, always points from a lock
to a thread and indicates that the lock is held by that
thread; it also carries as label a simplified version Sy of
the call stack that the thread had at the time it acquired

the lock. A yield edge, like T13

Sx

→ T22, always points
from a thread to another thread; it indicates that T13 has
been forced to yield because T22 acquired a lock with call
stack Sx that would cause T13 to instantiate a signature
if it was allowed to execute lock().

In order to support reentrant locks, as are standard in
Java and available in POSIX threads, the RAG is a multi-
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Figure 2: Fragment of a resource allocation graph.

set of edges; it can represent locks that are acquired mul-
tiple times by the same holder and, thus, have to be re-
leased as many times as acquired before becoming avail-
able to other threads.

Finally, the RAG does not always provide an up-to-
date view of the program’s synchronization state, since
it is updated lazily by the monitor. This is acceptable
for cycle detection, but the avoidance code needs some
information to always be current, such as the mapping
from locks to owners. Therefore, the avoidance instru-
mentation also maintains a simpler “cache” of parts of
the RAG (in the form of simplified lock-free data struc-
tures) to make correct yield/allow decisions.

5.2 Detecting Deadlocks and Starvation

The monitor thread wakes up every τ milliseconds,
drains all events from the lock-free event queue, and up-
dates the RAG according to these events; then it searches
for cycles. The monitor only searches for cycles involv-
ing edges that were added by the most recently processed
batch of events; there cannot be new cycles formed that
involve exclusively old edges. The value of τ is config-
urable, and the right choice depends on the application at
hand; e.g., in an interactive program, τ = 100 millisec-
onds would be reasonable.

Events enqueued by the same thread are correctly or-
dered with respect to each other. As far as other threads
are concerned, we need to ensure a partial ordering that
guarantees a release event on lock L in thread Ti will ap-
pear in the queue prior to any other thread Tj’s acquired
event on L. Given that the runtime (e.g., JVM) completes
lock(L) in Tj strictly after it completed unlock(L) in Ti,
and the release event in Ti precedes the unlock(L), and
the acquired event in Tj follows the lock(L), the required
partial ordering is guaranteed.

There are two cycle types of interest: deadlock cy-
cles and yield cycles. A thread T is in a deadlock iff
T is part of a cycle made up exclusively of hold, allow,
and request edges—this is similar to deadlock cycles in

standard wait-for graphs. Yield cycles are used to detect
induced starvation. Any yield-based deadlock avoidance
technique runs the risk of inducing one or more threads
to starve due to yielding while waiting for a thread that is
blocked. Thus, any dynamic scheduling-based deadlock
avoidance approach must also avoid induced starvation.

Consider Figure 3, which shows a RAG in which a
starvation state has been reached (nodes and edges not
used in the discussion are smaller and dotted; call stack
edge labels are not shown). For T1 to be starved, both
its yield edges T1→T2 and T1→T3 must be part of cy-
cles, as well as both of T4’s yield edges. If the RAG had
only the (T1, T2, ..., T1) and (T1, T3, L, T4, T6, ..., T1)
cycles, then this would not be a starvation state, be-
cause T4 could evade starvation through T5, allowing T1

to eventually evade through T3. If, as in Figure 3, cy-
cle (T1, T3, L, T4, T5, ..., T1) is also present, then neither
thread can make progress.

L

T2

T1
T3

T4

T5

T6
allow

hold
yield

Figure 3: Starved threads in a yield cycle.

We say that a thread T is involved in an induced star-
vation condition iff T is part of a yield cycle. A yield
cycle is a subgraph of the RAG in which all nodes reach-
able from a node T through T ’s yield edges can in turn
reach T . The graph in Figure 3 is a yield cycle.

Dimmunix uses cycle detection as a universal mech-
anism for detecting both deadlocks and induced starva-
tion: when the monitor encounters a yield cycle in the
RAG, it saves its signature to the history, as if it was a
deadlock. Dimmunix uses the same logic to avoid both
deadlock patterns and induced starvation patterns.

5.3 From Cycles to Signatures

The signature of a cycle is a multiset containing the call
stack labels of all hold edges and yield edges in that cy-
cle. The signature must be a multiset because different
threads may have acquired different locks while having
the same call stack, by virtue of executing the same code.

Figure 2 shows a simple yield cycle
(T13, T22, L7, T13), whose signature is {Sx, Sy}.
The signature is archived by the monitor into the history
that persists across program restarts.

A signature contains one call stack per thread blocked
in the detected deadlock or starvation. The number of
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threads involved is bounded by the maximum number of
threads that can run at any given time, so a signature can
have no more than that number of call stacks. A call stack
is always of finite size (usually set by the OS or thread
library); thus, the size of a signature is finite. Signatures
are essentially permutations of “instruction addresses” in
the code, and there is a finite number of instructions in
an application; given that duplicate signatures are disal-
lowed, the signature history cannot grow indefinitely.

After saving a deadlock signature, the monitor can
wait for deadlock recovery to be performed externally, or
it can invoke an application-specific deadlock resolution
handler. After saving a starvation signature, the monitor
can break the starvation as described in §3.

Signatures abstract solely the call flow that led to dead-
lock or starvation; no program data (such as lock/thread
IDs or values of variables) are recorded. This ensures
that signatures preserve the generality of a deadlock pat-
tern and are fully portable from one execution to the next.
Program state can vary frequently within one run or from
one run to the next (due to inputs, load, etc.) and requir-
ing that this state also be matched, in addition to the call
flow, would cause Dimmunix to incur many false neg-
atives. The downside of the generality of patterns are
occasional false positives, as will be discussed in §5.5.

5.4 Avoiding Previously Seen Patterns

The avoidance code is split from the monitoring code,
so that expensive operations (cycle detection, history file
I/O, etc.) can be done asynchronously, outside the ap-
plication’s critical path. The deadlock history is loaded
from disk into memory at startup time and shared read-
only among all threads; the monitor is the only thread
mutating the history, both in-memory and on-disk.

As illustrated in Figure 1, Dimmunix intercepts all
lock and unlock calls in the target program or intercepts
them within a thread library. When the application per-
forms a lock, the instrumentation invokes the request
method, which returns a YIELD or GO answer. The GO
case indicates that Dimmunix considers it safe (w.r.t. the
history) for the thread to block waiting for the lock; this
does not mean the lock is available. When the lock is ac-
tually acquired, the instrumentation invokes an acquired
method in the avoidance code; when the lock is released,
it invokes a release method—both methods serve solely
to update the RAG, as they do not return any decision.

The request method determines whether allowing the
current thread T ’s lock request would take the program
into a situation that matches a previously seen deadlock
or starvation. For this, it tentatively adds the correspond-
ing allow edge to the RAG cache and searches for an
instantiation of a signature from history; this consists of
finding a set of (thread, lock, stack) tuples in the RAG
cache that provide an exact cover of the signature. All
thread-lock-stack tuples in the instance must correspond
to distinct threads and locks. Checking for signature in-

stantiation takes into consideration allow edges in addi-
tion to hold edges, because an allow edge represents a
commitment by a thread to block waiting for a lock.

If a potential deadlock instance is found, then the ten-
tative allow edge is flipped around into a request edge,
and a yield edge is inserted into the RAG cache from T
to each thread Ti �= T in the signature instance: these
threads Ti are the “causes” of T ’s yield. Each yield
edge gets its label from its yield cause (e.g., in Figure 2,

T13→T22 gets label Sx from hold edge L5

Sx

→T22). A
yield event is sent to the monitor and a YIELD decision
is returned to the instrumentation.

If no instance is found, then T ’s allow edge is kept, the
corresponding allow event is sent to the monitor, and a
GO decision is returned; any yield edges emerging from
the current thread’s node are removed.

When the acquired method is invoked, the correspond-
ing allow edge in the RAG cache is converted into a hold
edge and an acquired event is sent to the monitor. When
release is invoked, the corresponding hold edge is re-
moved and a release event is enqueued for the monitor.

Dimmunix provides two levels of immunity, each with
its pros and cons; they can be selected via a configuration
flag. By default, weak immunity is enforced: induced
starvation is automatically broken (after saving its signa-
ture) and the program continues as if Dimmunix wasn’t
present—this is the least intrusive, but may lead to re-
occurrences of some deadlock patterns. The number of
times the initially avoided deadlock pattern can reoccur
is bounded by the maximum nesting depth of locks in the
program. The intuitive reason behind this upper bound is
that avoiding a deadlock or starvation is always done at
least one nesting level above the one where the avoided
deadlock or starvation occurs. In strong immunity mode,
the program is restarted every time a starvation is en-
countered, instead of merely breaking the yield cycle—
while more intrusive, this mode guarantees that no dead-
lock or starvation patterns ever reoccur.

In our experience, one deadlock bug usually has one
deadlock pattern (see §7). In the ideal case, if there are
n deadlock bugs in the program, after exactly n occur-
rences of deadlocks the program will have acquired im-
munity against all n bugs. However, there could also be
k induced starvation cases and, in the worst case, each
new starvation situation will lead (after breaking) to the
deadlock that was being avoided. Thus, it will take n+k

occurrences of deadlocks to develop immunity against all
n deadlocks in the program. The exact values of n and k

depend on the specific program at hand.

5.5 Calibrating the Matching Precision

A signature contains the call stacks from the correspond-
ing RAG cycle, along with a “matching depth,” indicat-
ing how long a suffix of each call stack should be consid-
ered during matching. In the simplest case, this depth is
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set to a fixed value (4 by default). However, choosing too
long a suffix can cause Dimmunix to miss manifestations
of a deadlock bug, while choosing too short a suffix can
lead to mispredicting a runtime call flow as being headed
for deadlock (i.e., this is a false positive). In this section
we describe how Dimmunix can optionally calibrate the
matching depth at runtime.

First, Dimmunix must be able to heuristically deter-
mine whether it did not cause a false positive (FP), i.e.,
whether forcing a thread to yield indeed avoided a dead-
lock or not. After deciding to avoid a given signature X ,
Dimmunix performs a retrospective analysis: All lock
operations performed by threads involved in the poten-
tial deadlock are logged to the monitor thread, along with
lock operations performed by the blocked thread after it
was released from the yield. The monitor thread then
looks for lock inversions in this log; if none are found,
the avoidance was likely a FP, i.e., in the absence of
avoidance, there would have likely not been a deadlock.

Using this heuristic, Dimmunix estimates the FP rate
for each possible matching depth: when signature X is
created, depth starts at 1 and is kept there for the first
NA avoidances of X , then incremented for the next NA

avoidances of X , and so on until maximum depth is
reached. The NA parameter is 20 by default. Then
Dimmunix chooses the smallest depth d that exhibited
the lowest FP rate FPmin and sets X’s matching depth
to d.

False positives are not exclusively due to overly gen-
eral matching, but could also be caused by input or value
dependencies; e.g., pattern X may lead to deadlock for
some inputs but not for others, so avoiding X can have
false positives even at the most precise matching depth.
For this reason, FPmin can be non-zero, and multiple
depths can have the same FPmin rate; choosing the
smallest depth gives us the most general pattern.

The algorithm implemented in Dimmunix is slightly
more complex. For instance, to increase calibration
speed, when encountering a FP at depth k, Dimmunix
analyzes whether it would have performed avoidance had
the depth been k + 1, k + 2,... and, if yes, increments
the FP counts for those depths as well; this allows the
calibration to run fewer than NA iterations at the larger
depths. One could associate a per-stack matching depth
instead of a per-signature depth; while this would be the-
oretically more precise, we found the current heuristic to
be satisfactory for the systems discussed in §7.

Once X’s calibration is complete, Dimmunix stops
tracking FPs for X . After X has been avoided NT

times, Dimmunix performs a recalibration, in case pro-
gram conditions have changed (NT = 104 by default).

Dynamic calibration is a way to heuristically choose a
deadlock pattern that is more balanced than if we chose a
fixed-length suffix of the call stacks. This optional cali-
bration algorithm is orthogonal to the rest of Dimmunix,
since avoiding an execution pattern that matches par-
tially a signature will cause all executions that match the

signature fully (i.e., the precise deadlock pattern) to be
avoided. Calibration merely makes Dimmunix more ef-
ficient at avoiding deadlocks similar to the ones already
encountered, without incurring undue false positives.

5.6 Auxiliary Data Structures

The RAG is extended with several other data structures,
which serve to improve both asymptotic and actual per-
formance. For example, we achieve O(1) lookup of
thread and lock nodes, because they are kept in a pre-
allocated vector and a lightly loaded hash table, respec-
tively. In the case of library-based Dimmunix, the RAG
nodes are embedded in the library’s own thread and mu-
tex data structures. Moreover, data structures necessary
for avoidance and detection are themselves embedded in
the thread and lock nodes. For example, the set yield-
Cause containing all of a thread T ’s yield edges is di-
rectly accessible from the thread node T .

Dimmunix uses a hash table to map raw call stacks to
our own call stack objects. Matching a call stack con-
sists of hashing the raw call stack and finding the cor-
responding metadata object S, if it exists. From S, one
can directly get to, e.g., the Allowed set, containing han-
dles to all the threads that are permitted to wait for locks
while having call stack S; Allowed includes those threads
that have acquired and still hold the locks. When check-
ing for signature instantiations, a thread will check the
Allowed sets for all call stacks Si from the signature to
be matched. In most cases, at least one of these sets is
empty, meaning there is no thread holding a lock in that
stack configuration, so the signature is not instantiated.

Complexity of the request method in the avoidance
code is O(D · H · T ! · G

T ), where D is the maximum
depth at which Dimmunix can match a call stack, H is
the number of signatures in history, T is the maximum
number of threads that can be involved in a deadlock, and
G is the maximum number of locks acquired or waited
for at the same time by threads with the exact same call
stack. In practice, D is a constant and T is almost always
two [16], bringing complexity closer to O(H · G2).

Most accesses to the history and RAG cache are
thread-safe, because they mutate allow and hold edges
that involve the current thread only, so no other thread
could be changing them at the same time. The request
and release methods are the only ones that need to both
consult and update the shared Allowed set. To do so
safely without using locks, we use a variation of Peter-
son’s algorithm for mutual exclusion generalized to n

threads [9].
To find cycles in the RAG, we use the Colored DFS al-

gorithm, whose theoretical complexity is O(NE + NT ·
(|V |+ |E|)), where the RAG is a graph [V, E], the max-
imum number of threads issuing lock requests at any one
time is NT , and the maximum number of events in the
asynchronous lock-free event queue is NE .
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5.7 Dimmunix Properties and Limitations

In this section, we summarize the most important prop-
erties of the algorithms presented so far. A formal de-
scription of an earlier version of the algorithm and its
properties can be found in [12].

Dimmunix can never affect a deadlock-free program’s
correctness. Dimmunix saves a signature only when a
deadlock actually happens, i.e., when there is a cycle
in the RAG. A program that never deadlocks will have
a perpetually empty history, which means no avoidance
will ever be done.

Dimmunix must know about all synchronization
mechanisms used in the system. In programs that
mix Dimmunix-instrumented synchronization with non-
instrumented synchronization, Dimmunix can interfere
with the mechanisms it is unaware of (e.g., a program
that combines non-instrumented busy-wait loops with
instrumented POSIX threads locks could be starved).
Thus, Dimmunix requires that the non-instrumented syn-
chronization routines be indicated in a configuration file,
similar to the way RacerX [5] does; Dimmunix will then
ignore the avoidance decision whenever a call to the for-
eign synchronization is encountered.

Some deadlock patterns are too risky to avoid. Say
there is an operation W that is implemented such that all
possible execution paths are deadlock-prone. Dimmunix
essentially prunes those paths that have deadlocked in the
past, leaving only those that have not deadlocked; for W ,
this could mean eventually pruning all execution paths,
leading to the loss of W ’s functionality. Although we
have never noticed such functionality loss in thousands
of executions of several instrumented desktop and server
programs, it is possible in principle, so Dimmunix offers
two options when running in “weak immunity” mode:

First, Dimmunix allows users to disable signatures.
Every time Dimmunix avoids a signature, it logs the
avoidance action in a field of the signature in the his-
tory. Now consider the following use scenario: a user is
in front of their Web browser and, every time a suspected
deadlock is avoided, Dimmunix beeps, the way pop-up
blockers do. Say the user clicks on a menu item and
s/he just hears a beep but nothing happens—the menu
has been disabled due to avoidance. The user can now
instruct Dimmunix to disable the last avoided signature,
the same way s/he would enable pop-ups for a given site.
The signature will never be avoided again and the menu
is usable again (but it may occasionally deadlock, since
the deadlock pattern is not being avoided).

Second, if users cannot be directly involved in
detecting such starvation-based loss of functionality,
Dimmunix has a configurable system-wide upper bound
(e.g., 200 msec) for how long Dimmunix can keep a
thread waiting in order to avoid a deadlock pattern; once
this maximum is reached, the thread is released from the
yield. Once a particular pattern has accumulated a large
number of such aborts, it can be automatically disabled,

or a warning can be issued instead to the user indicating
this deadlock pattern is too risky to avoid.

Dimmunix cannot induce a non-real-time program to
produce wrong outputs, even with strong immunity, be-
cause Dimmunix works solely by altering thread sched-
ules. Schedulers in general-purpose systems (like a com-
modity JVM) do not provide strong guarantees, so the
correctness of a program’s outputs cannot reasonably de-
pend on the scheduler. Starvation, as described above, is
a liveness issue in a non-real-time system, so it cannot
lead to the generation of incorrect outputs, i.e., it cannot
violate safety.

Dimmunix never adds a false deadlock to the history,
since it detects and saves only signatures of true dead-
lock patterns. Without a real deadlock, there cannot be a
deadlock cycle in the RAG, hence the signature database
cannot contain the signature of a deadlock pattern that
never led to deadlock.

6 Dimmunix for Java and POSIX Threads
We currently have three implementations of Dimmunix:
one for Java programs and two for programs using
POSIX threads (pthreads): one for FreeBSD libthr and
the other for Linux NPTL. They can be downloaded from
http://dimmunix.epfl.ch/. The Java version has
∼1400 lines of Java code. The FreeBSD version has
∼1100 lines of C++ code plus ∼20 lines changed in
libthr, while the Linux version has ∼1700 lines of C++
code plus ∼30 lines changed in NPTL. The latter’s extra
code is to support both 32-bit and 64-bit platforms.

The implementations illustrate two different ap-
proaches: the Java version directly instruments the tar-
get bytecode, while the pthreads implementations rely on
modified pthreads libraries. Neither approach requires
access to a program’s source code nor does it ask pro-
grammers to changes how they write their code.

Java provides three main synchronization primitives:
monitors, explicit locks, and wait queues; our imple-
mentation currently supports the first two. Monitors are
declared using a synchronized(x) {...} statement, which
translates, at the bytecode level, into monitorenter(x),
followed by the code block, followed by monitorexit(x);
an additional monitorexit(x) is placed on the exception
path. If a thread attempts to enter a monitor it is already
in, the call returns immediately; the thread will have to
exit that monitor the same number of times it entered it
before the monitor becomes available to others.

In order to intercept the monitor entry/exit and explicit
lock/unlock requests, we use an aspect-oriented com-
piler, AspectJ [1], to directly instrument target programs
at either bytecode or source level. The instrumented Java
bytecode can be executed in any standard Java 1.5 VM or
later. We implemented the avoidance code as aspects that
get woven into the target program before and after every
monitorenter and lock bytecode, as well as before every
monitorexit and unlock bytecode. The aspects intercept
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the corresponding operations, update all necessary data
structures, and decide whether to allow a lock request or
to pause the thread instead. Call stacks are vectors of
<methodName, file:line#> strings. The monitor thread
is started automatically when the program starts up.

Dimmunix pauses a thread by making a Java wait
call from within the instrumentation code; we do not
use Thread.yield, because we found wait to scale con-
siderably better. There is one synchronization object,
yieldLock[T], dedicated to each thread T and, when
T is to yield, the instrumentation code calls yield-
Lock[t].wait(). When a thread T ′ frees a lock L′ ac-
quired with call stack S′, then all threads Ti for which
(T ′, L′, S′) ∈ yieldCause[Ti] (see §5.6) have no more
reason to yield, so they are woken up via a call to
yieldLock[Ti].notifyAll().

For POSIX threads, we modified the libthr li-
brary in FreeBSD and the Native POSIX Threads Library
(NPTL) in Linux, which is part of glibc. The modified li-
braries are 100% compatible drop-in replacements. Port-
ing to other POSIX threads libraries is straightforward.
The pthreads-based implementations are similar to the
Java implementation, with a few exceptions:

The basic synchronization primitive in POSIX threads
is the mutex, and there are three types: normal mu-
tex, recursive mutex (equivalent to Java’s reentrant lock),
and error-checking mutex, which returns EDEADLK if
a thread attempts to lock a non-recursive locked mutex
and thus self-deadlock. Dimmunix does not watch for
self-deadlocks, since pthreads already offers the error-
checking mutex option.

We instrumented all the basic mutex management
functions. Locks associated with conditional variables
are also instrumented. Having direct access to the thread
library internals simplifies data access; for example, in-
stead of keeping track of locks externally (as is done in
the Java version), we can simply extend the original li-
brary data structures. Call stacks are unwound with back-
trace(), and Dimmunix computes the byte offset of each
return address relative to the beginning of the binary and
stores these offsets in execution-independent signatures.

Java guarantees that all native lock() operations are
blocking, i.e., after a successful request the thread will
either acquire the lock or become blocked on it. This is
not the case for pthreads, which allows a lock acquisition
to time out (pthread mutex timedlock) or to return imme-
diately if there is contention (pthread mutex trylock). To
support trylocks and timedlocks, we introduced a new
event in pthreads Dimmunix called cancel, which rolls
back a previous lock request upon a timeout.

7 Evaluation
In this section we answer a number of practical ques-
tions. First and foremost, does Dimmunix work for real
systems that do I/O, use system libraries, and interact
with users and other systems (§7.1)? What performance

overhead does Dimmunix introduce, and how does this
overhead vary as parameters change (§7.2)? What is the
impact of false positives on performance (§7.3)? What
overheads does Dimmunix introduce in terms of resource
consumption (§7.4)?

We evaluated Dimmunix with several real systems:
MySQL (C/C++ open-source database), SQLite (C open-
source embedded database), Apache ActiveMQ (Java
open-source message broker for enterprise applications),
JBoss (Java open-source enterprise application server),
Limewire (Java peer-to-peer file sharing application), the
Java JDK (provider of all class libraries that implement
the Java API), and HawkNL (C library specialized for
network games). These are widely-used systems within
their category; some are large, such as MySQL, which
has over 1 million lines of code excluding comments.

For all experiments reported here, we used strong im-
munity, with τ=100 msec; in the microbenchmarks we
used a fixed call stack matching depth of 4. Measure-
ments were obtained on 8-core computers (2x4-core Intel
Xeon E5310 1.6GHz CPUs), 4GB RAM, WD-1500 hard
disk, two NetXtreme II GbE interfaces with dedicated
GbE switch, running Linux and FreeBSD, Java HotSpot
Server VM 1.6.0, and Java SE 1.6.0.

7.1 Effectiveness Against Real Deadlocks

In practice, deadlocks arise from two main sources: bugs
in the logic of the program (§7.1.1) and technically per-
missible, but yet inappropriate uses of third party code
(§7.1.2); Dimmunix addresses both.

7.1.1 True Deadlock Bugs

To verify effectiveness against real bugs, we reproduced
deadlocks that were reported against the systems de-
scribed above. We used timing loops to generate “ex-
ploits,” i.e. test cases that deterministically reproduced
the deadlocks. It took on average two programmer-days
to successfully reproduce a bug; we abandoned many
bugs, because we could not reproduce them reliably. We
ran each test 100 times in three different configurations:
First, we ran the unmodified program, and the test always
deadlocked prior to completion. Second, we ran the pro-
gram instrumented with full Dimmunix, but ignored all
yield decisions, to verify that timing changes introduced
by the instrumentation did not affect the deadlock—
again, each test case deadlocked in every run. Finally,
we ran the program with full Dimmunix, with signatures
of previously-encountered deadlocks in the history—in
each case, Dimmunix successfully avoided the deadlock
and allowed the test to run to completion.

The results are centralized in Table 1. We include
the number of yields recorded during the trials with full
Dimmunix as a measure of how often deadlock patterns
were encountered and avoided. For most cases, there is
one yield, corresponding to the one deadlock reproduced
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System Bug # Deadlock Between ... # Yields per Trial Dlk Patterns
Min Avg Max # Depth

MySQL 6.0.4 37080 INSERT and TRUNCATE in two different threads 1 1 4 1 4
SQLite 3.3.0 1672 Deadlock in the custom recursive lock implementation 1 1 1 1 3
HawkNL 1.6b3 n/a nlShutdown() called concurrently with nlClose() 10 10 10 1 2
MySQL 5.0 JDBC 2147 PreparedStatement.getWarnings() and Connection.close() 1 1 1 1 3
MySQL 5.0 JDBC 14972 Connection.prepareStatement() and Statement.close() 1 1 1 1 4
MySQL 5.0 JDBC 31136 PreparedStatement.executeQuery() and Connection.close() 1 1 1 1 3
MySQL 5.0 JDBC 17709 Statement.executeQuery() and Connection.prepareStatement() 1 1 1 1 3
Limewire 4.17.9 1449 HsqlDB TaskQueue cancel and shutdown() 15 15 15 2 10,10
ActiveMQ 3.1 336 Listener creation and active dispatching of messages to consumer 1 181079 221292 1 2
ActiveMQ 4.0 575 Queue.dropEvent() and PrefetchSubscription.add() 11252 80387 113652 3 2,2,2

Table 1: A few reported deadlock bugs avoided by Dimmunix in popular server and desktop applications.

by the test case. In some cases, however, the number
of yields was much higher, because avoiding the initial
deadlock enabled the test to continue and re-enter the
same deadlock pattern later. For all but the ActiveMQ
tests there were no false positives; in the case of Ac-
tiveMQ, we could not accurately determine if any of the
reported yields were false positives.

We also inspected the code for each bug, to determine
how many different deadlock patterns can be generated
by the bug. The last two columns in Table 1 indicate the
number of deadlock patterns (“#” column) and the size
of the pattern (“Depth” column). Depth corresponds to
the type of matching depth discussed in §5.5. Dimmunix
correctly detected, saved, and avoided all patterns, except
in the case of ActiveMQ #575, where we were able to
only reproduce one of the three patterns, so Dimmunix
only witnessed, saved and avoided that one.

7.1.2 Invitations to Deadlock

When using third party libraries, it is possible to use the
offered APIs in ways that lead to deadlock inside the li-
brary, despite there being no logic bug in the calling pro-
gram. For example, several synchronized base classes in
the Java runtime environment can lead to deadlocks.

Consider two vectors v1, v2 in a multithreaded
program—since Vector is a synchronized class, program-
mers allegedly need not be concerned by concurrent ac-
cess to vectors. However, if one thread wants to add all
elements of v2 to v1 via v1.addAll (v2), while another
thread concurrently does the reverse via v2.addAll (v1),
the program can deadlock inside the JDK, because under
the covers the JDK locks v1 then v2 in one thread, and v2

then v1 in the other thread. This is a general problem for
all synchronized Collection classes in the JDK.

Table 2 shows deadlocks we reproduced in JDK 1.6.0;
they were all successfully avoided by Dimmunix. While
not bugs per se, these are invitations to deadlock. Ide-
ally, APIs should be documented thoroughly, but there
is always a tradeoff between productivity and pedantry
in documentation. Moreover, programmers cannot think
of every possible way in which their API will be used.
Runtime tools like Dimmunix provide an inexpensive al-

ternative to this dilemma: avoid the deadlocks when and
if they manifest. This requires no programmer interven-
tion and no JDK modifications.

PrintWriter class: With w a PrintWriter, concurrently call w.write()
and CharArrayWriter.writeTo(w)
Vector: Concurrently call v1.addAll(v2) and v2.addAll(v1)
Hashtable: With h1 a member of h2 and h2 a member of h1, con-
currently call h1.equals(foo) and h2.equals(bar)
StringBuffer: With StringBuffers s1 and s2, concurrently call
s1.append(s2) and s2.append(s1)
BeanContextSupport: concurrent propertyChange() and remove()

Table 2: Java JDK 1.6 deadlocks avoided by Dimmunix.

7.2 Performance Overhead
In this section we systematically quantify Dimmunix’s
impact on system performance, using request throughput
and latency as the main metrics. First, we report in §7.2.1
end-to-end measurements on real systems and then use
synthetic microbenchmarks to drill deeper into the per-
formance characteristics (§7.2.2).

7.2.1 Real Applications

To measure end-to-end overhead, we ran standard per-
formance benchmarks on “immunized” JBoss 4.0 and
MySQL 5.0 JDBC. For JBoss, we used the RUBiS e-
commerce benchmark [19], for MySQL JDBC we used
JDBCBench [11]. For HawkNL, Limewire, and Ac-
tiveMQ we are unaware of any benchmarks.

We took the measurements for various history sizes, to
see how overhead changes as more signatures accumu-
late. Since we had insufficient real deadlock signatures,
we synthesized additional ones as random combinations
of real program stacks with which the target system per-
forms synchronization. From the point of view of avoid-
ance overhead, synthesized signatures have the same ef-
fect as real ones. Figure 4 presents the results.

The cost of immunity against up to 128 deadlock sig-
natures is modest in large systems with hundreds of
threads in realistic settings—e.g., JBoss/RUBiS ran with
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Figure 4: Performance overhead introduced in real sys-
tems, computed on the benchmark-specific metric. Max-
imum overhead is 2.6% for JBoss and 7.17% for MySQL
JDBC.

3000 clients, a mixed read/write workload, and per-
formed on average ∼500 lock operations per second
while running 280 threads. We did not witness a statisti-
cally meaningful drop in response time for either system.
In light of these results, it is reasonable to suggest that
users encountering deadlocks be offered the option of us-
ing Dimmunix right away to cope, while the respective
development teams fix the underlying bugs. The devel-
opment teams themselves could also provide deadlock
signatures to customers until fixes for the bugs become
available.

7.2.2 Microbenchmarks

To dissect Dimmunix’s performance behavior and under-
stand how it varies with various parameters, we wrote a
synchronization-intensive microbenchmark that creates
Nt threads and has them synchronize on locks from a
total of Nl locks shared among the threads; a lock is
held for δin time before being released and a new lock
is requested after δout time; the delays are implemented
as busy loops, thus simulating computation done inside
and outside the critical sections. The threads call multi-
ple functions within the microbenchmark so as to build
up different call stacks; which function is called at each
level is chosen randomly, thus generating a uniformly
distributed selection of call stacks.

We also wrote a tool that generates synthetic dead-
lock history files containing H signatures, all of size S;
for a real application, H represents the number of dead-
lock/starvation signatures that have accumulated in the
history, and a signature’s size indicates the number of
threads involved in that deadlock. Generated signatures
consist of random stack combinations for synchroniza-
tion operations in the benchmark program—not signa-
tures of real deadlocks, but avoided as if they were.

Overhead as a function of the number of threads:
Figure 5 shows how synchronization throughput (in
terms of lock operations) varies with the number of
threads in Java and pthreads, respectively. We chose
δin=1 microsecond and δout=1 millisecond, to simulate
a program that grabs a lock, updates some in-memory

shared data structures, releases the lock, and then per-
forms computation outside the critical section.

64 sigs, siglen 2, 8 locks, δin=1 µsec, δout=1 msec
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Figure 5: Dimmunix microbenchmark lock throughput
as a function of number of threads. Overhead is 0.6% to
4.5% for FreeBSD pthreads and 6.5% to 17.5% for Java.

We observe that Dimmunix scales well: for up to 1024
threads, the pthreads implementation exhibits maximum
4.5% overhead, while the Java implementation maxi-
mum 17.5%. The difference between the implementa-
tions is, we believe, primarily due to Java-specific over-
heads (such as returning the call stack as a vector of
strings vs. mere pointers in C, or introducing extra mem-
ory fences around synchronized{} blocks, that pthreads
does not do). As the benchmark approaches the behavior
we see in real applications that perform I/O, we would
expect the overhead to be further absorbed by the time
spent between lock/unlock operations. To validate this
hypothesis, we measured the variation of lock through-
put with the values of δin and δout—Figure 6 shows the
results for Java; pthreads results are similar.

The overhead introduced by Dimmunix is highest
when the program does nothing but lock and unlock (i.e.,
δin=δout=0). This is not surprising, because Dimmunix
intercepts the calls to lock/unlock and performs addi-
tional computation in the critical path. lock/unlock are
generally fast operations that take a few machine instruc-
tions to perform, so adding 10× more instructions in the
path will cause the overhead to be 10×. However, as the
interval between critical sections (δout) or inside critical
sections (δin) increases, the throughput difference be-
tween the immunized vs. non-immunized microbench-
mark decreases correspondingly. For most common sce-
narios (i.e., inter-critical-section intervals of 1 millisec-
ond or more), overhead is modest.
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Figure 6: Variation of lock throughput as a function of
δin and δout for Java; the pthreads version is similar.

Note that a direct comparison of overhead between
Dimmunix and the baseline is somewhat unfair to
Dimmunix, because non-immunized programs deadlock
and stop running, whereas immunized ones continue run-
ning and doing useful work.

Impact of history size and matching depth: The per-
formance penalty incurred by matching current execu-
tions against signatures from history should increase
with the size of the history (i.e., number of signatures) as
well as the depth at which signatures are matched with
current stacks. Average length of a signature (i.e., aver-
age number of threads involved in the captured deadlock)
also influences matching time, but the vast majority of
deadlocks in practice are limited to two threads [16], so
variation with signature size is not that interesting.

In addition to the matching overhead, as more and
more deadlocks are discovered in the program, the pro-
gram must be serialized increasingly more in order to be
deadlock-safe (i.e., there are more deadlocks to avoid)—
our overhead measurements include both effects.

We show in Figure 7 the performance overhead intro-
duced by varying history size from 2-256 signatures. The
overhead introduced by history size and matching depth
is relatively constant across this range, which means that
searching through history is a negligible component of
Dimmunix overhead.

Breakdown of overhead: Having seen the impact of
number of threads, history size, and matching depth,
we profiled the overhead, to understand which parts of
Dimmunix contribute the most. For this, we selec-
tively disabled parts of Dimmunix and measured the lock
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Figure 7: Lock throughput as a function of history size
and matching depth for pthreads. Java results are similar.

throughput. First we measured the overhead introduced
by the base instrumentation, then we added the data
structure lookups and updates performed by request in
the avoidance code, then we ran full Dimmunix, includ-
ing avoidance.
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The results for Java are shown in Figure 8—the bulk of
the overhead is introduced by the data structure lookups
and updates. For pthreads, the trend is similar, except
that the dominant fraction of overhead is introduced by
the instrumentation code. The main reason is that the
changes to the pthreads library interfere with the fastpath
of the pthreads mutex: it first performs a compare-and-
swap (CAS) and only if that is unsuccessful does it make
a system call. Our current implementation causes that
CAS to be unsuccessful with higher probability.

7.3 False Positives

Any approach that tries to predict the future with the pur-
pose of avoiding bad outcomes suffers from false posi-
tives, i.e., wrongly predicting that the bad outcome will
occur. Dimmunix is no exception. False positives can
arise when signatures are matched too shallowly, or when
the lock order in a pattern depends on inputs, program
state, etc. Our microbenchmark does not have the latter
type of dependencies.
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In a false positive, Dimmunix reschedules threads
in order to avoid an apparent impending deadlock that
would actually not have occurred; this can have negative
or positive effects on performance, the latter due to re-
duced contention. We concern ourselves here with the
negative effects, which result from a loss in parallelism:
Dimmunix serializes “needlessly” a portion of the pro-
gram execution, which causes the program to run slower.

In our microbenchmark, let D be the program’s maxi-
mum stack depth (we set D=10) and let k be the depth at
which we match signature stacks in the avoidance code.
We consider a true positive to be an avoidance triggered
by a match at depth D; a false positive occurs when a
signature is matched to depth k but would not match to
depth D. If k=D, there are no false positives, because
the signatures are matched exactly, but if k<D, then we
can get false positives, because several different runtime
stacks produce a match on the same signature.

In order to determine the overhead induced by false
positives, we compare the lock throughput obtained
while matching at depths k<D (i.e., in the presence of
false positives) to that obtained while matching at depth
D (no false positives)—the difference represents the time
wasted due to false positives. To measure the overhead
introduced by Dimmunix itself, separate from that in-
troduced by false positives, we measure the overhead
of Dimmunix when all its avoidance decisions are ig-
nored (thus, no false positives) and subtract it from the
baseline. Calibration of matching precision is turned off.
Figure 9 shows the results—as the precision of matching
is increased, the overhead induced by false positives de-
creases. There are hardly any false positives for depths of
8 and 9 because the probability of encountering a stack
that matches at that depth and not at depth 10 is very low.
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We ran this same experiment using the technique
based on gate locks [17], the best hybrid dynamic/static
deadlock avoidance we know of. To avoid the 64 dead-
locks represented in history, 45 gate locks were required;
since [17] does not use call stacks, matching depth is
irelevant. Throughput overhead with gate locks was
70%—more than an order of magnitude greater than
Dimmunix’s 4.6% overhead for stack depth≥8 and close

to Dimmunix’s 61.2% overhead at stack depth 1. There
were 561,627 false positives with gate locks; in contrast,
Dimmunix’s false positives ranged from 0 (at depth 10)
to 573,912 (at depth 1). This is consistent with the fact
that, for stack depth 1, the two approaches are similar.

As mentioned in §5.7, false positives can also dis-
able functionality. We did not encounter such loss dur-
ing any of the thousands of executions of the various
server and desktop applications described in this paper,
but Dimmunix does provide two resolutions for these sit-
uations: manual or automatic disabling of signatures.

7.4 Resource Utilization

The final aspect of Dimmunix we wish to measure is
how many additional resources it requires, compared to
non-immunized programs. Dimmunix uses CPU time
for computation, memory for its data structures, and disk
space for the history. The latter is insignificant: on the or-
der of 200-1000 bytes per signature, amounting to tens of
KBs for a realistic history. CPU overhead was virtually
zero in all our measurements; in fact, delaying some of
the threads can even lead to negative overhead, through
the reduction of contention.

In measurements ranging from 2-1024 threads, 8-32
shared locks, and a history of 64 two-thread signatures,
the pthreads implementations incurred a memory over-
head of 6-25 MB, and the Java implementation 79-127
MB. As described in §5.6, we use preallocation to reduce
performance overhead, and the data structures them-
selves have redundancy, to speed up lookups. We expect
a Dimmunix version optimized for memory footprint to
have considerably less memory overhead.

8 Using Dimmunix in Practice
Dimmunix helps programs develop resistance against
deadlocks, without assistance from programmers (i.e.,
no annotations, no specifications) or from system users.
Dimmunix can be used as a band-aid to complement all
the other development and deployment tools for soft-
ware systems, such as static analyzers and model check-
ers. In systems that have checkpoint facilities [18] or are
microrebootable [4], strong immunity can offer strong
guarantees at low cost; in other general-purpose systems,
weak immunity lends progressively stronger resistance
to deadlocks, without incurring additional recoveries.

Aside from achieving immunity, Dimmunix can also
be used as an alternative to patching and upgrading: in-
stead of modifying the program code, it can be “patched”
against deadlock bugs by simply inserting the corre-
sponding bug’s signature into the deadlock history and
asking Dimmunix to reload the history; the target pro-
gram need not even be restarted. Similarly, vendors
could ship their software with signatures for known
deadlocks, as an alternative to fixing them in the released
code when doing so is too expensive or risky.
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When upgrading a system, the signature history also
needs to be updated. First, code locations captured in the
signatures’ call stacks may have shifted or disappeared;
static analysis can be used to map from old to new code
and “port” signatures from one revision to the next, thus
accounting for refactoring, addition/removal of code, etc.
Second, at a higher semantic level, deadlock behaviors
may have been modified by the upgrade (e.g., by fixing
a bug), thus rendering some signatures obsolete, regard-
less of porting. The calibration of matching precision
(§5.5) is therefore re-enabled after every upgrade for all
signatures, and any signatures that encounter 100% false
positive rate after this recalibration can be automatically
discarded as obsolete.

Dimmunix currently does not take into account the pri-
orities of threads when making scheduling decisions; the
server applications we are familiar with do not use thread
priorities, but perhaps other applications do. We believe
support for priorities can easily be added.

Although Dimmunix does not introduce new bugs,
avoiding deadlocks could trigger latent program bugs
that might otherwise not manifest, in much the same way
an upgrade of the JVM, system libraries, or kernel could
do. While this is not a limitation per se, it is a factor to
be considered when using Dimmunix in practice.

9 Conclusion
In this paper we described a technique for augment-
ing software systems with an “immune system” against
deadlocks. Unlike pure deadlock avoidance, deadlock
immunity is easier to achieve in practical settings and ap-
pears to be almost as useful as ideal pure avoidance. The
essence of our approach is to “fingerprint” control flows
that lead to deadlock, save them in a persistent history,
and avoid them during subsequent runs.

We showed empirically that real systems instrumented
with Dimmunix can develop resistance against real dead-
locks, without any assistance from programmers or
users, while incurring modest overhead. Dimmunix
scales gracefully to large software systems with up
to 1024 threads and preserves correctness of general-
purpose programs. We conclude that deadlock im-
munity is a practical approach to avoiding deadlocks,
that can improve end users’ experience with deadlock-
prone systems and also keep production systems running
deadlock-free despite the bugs that lurk within.
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