Network Imprecision: A New Consistency Metric for Scalable Monitoring

Navendu Jain', Prince Mahajan*, Dmitry Kit*, Praveen Yalagandulai, Mike Dahlin*, and Yin Zhang*

TMicrosoft Research

Abstract

This paper introduces a new consistency metric, Network
Imprecision (NI), to address a central challenge in large-
scale monitoring systems: safeguarding accuracy despite
node and network failures. To implement NI, an over-
lay that monitors a set of attributes also monitors its own
state so that queries return not only attribute values but
also information about the stability of the overlay—the
number of nodes whose recent updates may be missing
and the number of nodes whose inputs may be double
counted due to overlay reconfigurations. When NI indi-
cates that the network is stable, query results are guaran-
teed to reflect the true state of the system. But when the
network is unstable, NI puts applications on notice that
query results should not be trusted, allowing them to take
corrective action such as filtering out inconsistent results.
To scalably implement NI’s introspection, our prototype
introduces a key optimization, dual-tree prefix aggrega-
tion, which exploits overlay symmetry to reduce over-
heads by more than an order of magnitude. Evaluation
of three monitoring applications demonstrates that NI
flags inaccurate results while incurring low overheads,
and monitoring applications that use NI to select good
information can improve their accuracy by up to an or-
der of magnitude.

1 Introduction

Scalable system monitoring is a fundamental abstrac-
tion for large-scale networked systems. It enables opera-
tors and end-users to characterize system behavior, from
identifying normal conditions to detecting unexpected or
undesirable events—attacks, configuration mistakes, se-
curity vulnerabilities, CPU overload, or memory leaks—
before serious harm is done. Therefore, it is a critical
part of infrastructures ranging from network monitor-
ing [10,23,30,32,54], financial applications [3], resource
scheduling [27, 53], efficient multicast [S1], sensor net-
works [25,27,53], storage systems [50], and bandwidth
provisioning [15], that potentially track thousands or mil-
lions of dynamic attributes (e.g., per-flow or per-object
state) spanning thousands of nodes.

Three techniques are important for scalability in mon-
itoring systems: (1) hierarchical aggregation [27,30,51,
53] allows a node to access detailed views of nearby in-
formation and summary views of global information, (2)
arithmetic filtering [30,31,36,42,56] caches recent re-

*The University of Texas at Austin

YHP Labs

ports and only transmits new information if it differs by
some numeric threshold (e.g., £ 10%) from the cached
report, and (3) temporal batching [32,36,42,51] com-
bines multiple updates that arrive near one another in
time into a single message. Each of these techniques can
reduce monitoring overheads by an order of magnitude
or more [30,31,42,53].

As important as these techniques are for scalability,
they interact badly with node and network failures: a
monitoring system that uses any of these techniques risks
reporting highly inaccurate results.

e In a hierarchical monitoring system, the impact
of failures is made worse by the amplification ef-
fect [41]: if a non-leaf node fails, then the entire
subtree rooted at that node can be affected. For ex-
ample, failure of a level-3 node in a degree-8 aggre-
gation tree can interrupt updates from 512 (8?) leaf
node sensors.

e When a monitoring system uses arithmetic filter-
ing, if a subtree or node is silent over an interval,
the system must distinguish two cases: (a) the sub-
tree or node has sent no updates because the inputs
have not significantly changed from the cached val-
ues or (b) the inputs have significantly changed but
the subtree or node is unable to transmit its report.

e Under temporal batching there are windows of time
in which a short disruption can block a large batch
of updates.

These effects can be significant. For example, in an 18-
hour interval for a PlanetLab monitoring application, we
observed that more than half of all reports differed from
the ground truth at the inputs by more than 30%. These
best effort results are clearly unacceptable for many ap-
plications.

To address these challenges, we introduce Network
Imprecision (NI), a new consistency metric suitable for
large-scale monitoring systems with unreliable nodes or
networks. Intuitively, NI represents a “stability flag”
indicating whether the underlying network is stable or
not. More specifically, with each query result, NI pro-
vides (1) the number of nodes whose recent updates may
not be reflected in the current answer, (2) the number of
nodes whose inputs may be double counted due to over-
lay reconfiguration, and (3) the total number of nodes

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 87

in the system. A query result with no unreachable or
double counted nodes is guaranteed to reflect reality, but
an answer with many of either indicates a low system
confidence in that query result—the network is unstable,
hence the result should not be trusted.

We argue that NI's introspection on overlay state is
the right abstraction for a monitoring system to provide
to monitoring applications. On one hand, traditional
data consistency algorithms [56] must block reads or
updates during partitions to enforce limits on inconsis-
tency [19]. However, in distributed monitoring, (1) up-
dates reflect external events that are not under the sys-
tem’s control so cannot be blocked and (2) reads de-
pend on inputs at many nodes, so blocking reads when
any sensor is unreachable would inflict unacceptable un-
availability. On the other hand, “reasoning under uncer-
tainty” techniques [48] that try to automatically quan-
tify the impact of disruptions on individual attributes are
expensive because they require per-attribute computa-
tions. Further, these techniques require domain knowl-
edge thereby limiting flexibility for multi-attribute mon-
itoring systems [42, 51, 53], or use statistical models
which are likely to be ineffective for detecting unusual
events like network anomalies [26]. Even for applica-
tions where such application-specific or statistical tech-
niques are appropriate, NI provides a useful signal telling
applications when these techniques should be invoked.

NI allows us to construct PRISM (PRecision Inte-
grated Scalable Monitoring), a new monitoring system
that maximizes scalability via arithmetic filtering, tem-
poral batching, and hierarchy. A key challenge in PRISM
is implementing NI efficiently. First, because a given
failure has different effects on different aggregation trees
embedded in PRISM’s scalable DHT, the NI reported
with an attribute must be specific to that attribute’s tree.
Second, detecting missing updates due to failures, de-
lays, and reconfigurations requires frequent active prob-
ing of paths within a tree. To provide a topology-aware
implementation of NI that scales to tens of thousands
of nodes and millions of attributes, PRISM introduces a
novel dual-tree prefix aggregation construct that exploits
symmetry in its DHT-based aggregation topology to re-
duce the per-node overhead of tracking the n distinct NI
values relevant to n aggregation trees in an n-node DHT
from O(n) to O(logn) messages per time unit. For a
10K-node system, dual tree prefix aggregation reduces
the per node cost of tracking NI from a prohibitive 1000
messages per second to about 7 messages per second.

Our NI design separates mechanism from policy and
allows applications to use any desired technique to quan-
tify and minimize the impact of disruptions on system re-
ports. For example, in PRISM, monitoring applications
use NI to safeguard accuracy by (1) inferring an approxi-
mate confidence interval for the number of sensor inputs

Y Virtual Nodes (Internal Aggregation Points)
37 % L3

i

18 T\ 19 f\ L2
7 1ney 78 127 L1
3£ 21\9. éi\l. 94\3. Lo

4
000 100 010 110 001 101 O11 111
Physical Nodes (Leaf Sensors)

Figure 1: The aggregation tree for key 000 in an eight
node system. Also shown are the aggregate values for a
simple SUM() aggregation function.

contributing to a query result, (2) differentiating between
correct and erroneous results based on their NI, or (3)
correcting distorted results by applying redundancy tech-
niques and then using NI to automatically select the best
results. By using NI metrics to filter out inconsistent re-
sults and automatically select the best of four redundant
aggregation results, we observe a reduction in the worst-
case inaccuracy by up to an order of magnitude.

This paper makes five contributions. First, we present
Network Imprecision, a new consistency metric that
characterizes the impact of network instability on query
results. Second, we demonstrate how different applica-
tions can leverage NI to detect distorted results and take
corrective action. Third, we provide a scalable imple-
mentation of NI for DHT overlays via dual-tree prefix
aggregation. Fourth, our evaluation demonstrates that NI
is vital for enabling scalable aggregation: a system that
ignores NI can often silently report arbitrarily incorrect
results. Finally, we demonstrate how a distributed moni-
toring system can both maximize scalability by combin-
ing hierarchy, arithmetic filtering, and temporal batching
and also safeguard accuracy by incorporating NI.

2 Scalability vs. correctness

As discussed in Section 1, large-scale monitoring sys-
tems face two key challenges to safeguarding result ac-
curacy. First, node failures, network disruptions, and
topology reconfigurations imperil accuracy of monitor-
ing results. Second, common scalability techniques—
hierarchical aggregation [5,44,47,53], arithmetic filter-
ing [30,31,36,38,42,51,56], and temporal batching [14,
32,36, 56]—make the problem worse. In particular, al-
though each technique significantly enhances scalability,
each also increases the risk that disruptions will cause the
system to report incorrect results.

For concreteness, we describe PRISM’s implementa-
tion of these techniques although the challenges in safe-
guarding accuracy are applicable to any monitoring sys-
tem that operates under node and network failures. We
compute a SUM aggregate for all the examples in this
section.

88

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

Disruption prevents updates Reconfiguration causes
from reaching root double counting
reports 37=18(cached)+19 reports 75=18(cached)+57
should report 57

Figure 2: Dynamically-constructed aggregation hierar-
chies raise two challenges for guaranteeing the accuracy
of reported results: the failure amplification effect and
double counting caused by reconfiguration.

Hierarchical aggregation. Many monitoring systems
use hierarchical aggregation [47,51] or DHT-based hi-
erarchical aggregation [5, 39, 44, 53] that defines a tree
spanning all nodes in the system. As Figure 1 illustrates,
in PRISM, each physical node is a leaf and each sub-
tree represents a logical group of nodes; logical groups
can correspond to administrative domains (e.g., depart-
ment or university) or groups of nodes within a domain
(e.g., a /28 IPv4 subnet with 14 hosts in the CS depart-
ment) [22,53]. An internal non-leaf node, which we call
a virtual node, is emulated by a physical leaf node of the
subtree rooted at the virtual node.

PRISM leverages DHTs [44,46,49] to construct a for-
est of aggregation trees and maps different attributes to
different trees for scalability. DHT systems assign a long
(e.g., 160 bits), random ID to each node and define a
routing algorithm to send a request for ID ¢ to a node
root; such that the union of paths from all nodes forms
atree DHTtree; rooted at the node root;. By aggregating
an attribute with ID ¢ = hash(attribute) along the aggrega-
tion tree corresponding to DHTtree;, different attributes
are load balanced across different trees. This approach
can provide aggregation that scales to large numbers of
nodes and attributes [5,44,47,53].

Unfortunately, as Figure 2 illustrates, hierarchical ag-
gregation imperils correctness in two ways. First, a fail-
ure of a single node or network path can prevent updates
from a large collection of leaves from reaching the root,
amplifying the effect of the failure [41]. Second, node
and network failures can trigger DHT reconfigurations
that move a subtree from one attachment point to another,
causing the subtree’s inputs to be double counted by the
aggregation function for some period of time.

Arithmetic Imprecision (AI). Arithmetic imprecision
deterministically bounds the difference between the re-
ported aggregate value and the true value. In PRISM,
each aggregation function reports a bounded numerical

Initial State

No Change No Reported Change
Sensors Not Network Disruption
Significantly Changed Prevents Propagation

Should be
@ 47,67
Should be
SEEBCIRENG

10 8 7 14 15 8 4 35

Figure 3: Arithmetic filtering makes it difficult to de-
termine if a subtree’s silence is because the subtree has
nothing to report or is unreachable.

range { Vinin, Vinas } that contains the true aggregate value
Vie., Viin <V < Viga.

Allowing such arithmetic imprecision enables arith-
metic filtering: a subtree need not transmit an update
unless the update drives the aggregate value outside the
range it last reported to its parent; a parent caches last
reported ranges of its children as soft state. Numerous
systems have found that allowing small amounts of arith-
metic imprecision can greatly reduce overheads [30, 31,
36,42,51,56].

Unfortunately, as Figure 3 illustrates, arithmetic fil-
tering raises a challenge for correctness: if a subtree is
silent, it is difficult for the system to distinguish between
two cases. Either the subtree has sent no updates be-
cause the inputs have not significantly changed from the
cached values or the inputs have significantly changed
but the subtree is unable to transmit its report.

Temporal Imprecision (TI). Temporal imprecision bou-
nds the delay from when an event occurs until it is re-
ported. In PRISM, each attribute has a TI guarantee, and
to meet this bound the system must ensure that updates
propagate from the leaves to the root in the allotted time.

As Figure 4 illustrates, TT allows PRISM to use tem-
poral batching: a set of updates at a leaf sensor are con-
densed into a periodic report or a set of updates that ar-
rive at an internal node over a time interval are combined
before being sent further up the tree. Note that arith-
metic filtering and temporal batching are complemen-
tary: a batched update need only be sent if the combined
update drives a subtree’s attribute value out of the range
previously reported up the tree.

Of course, an attribute’s T guarantee can only be en-
sured if there is a good path from each leaf to the root.
A good path is a path whose processing and propagation
times fall within some pre-specified delay budget. Un-
fortunately, failures, overload, or network congestion can
cause a path to no longer be good and prevent the system
from meeting its TI guarantees. Furthermore, when a

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 89

Internal nodes
gbatch updates

Figure 4: Temporal batching allows leaf sensors to con-
dense a series of updates into a periodic report and al-
lows internal nodes to combine updates from different
subtrees before transmitting them further.

system batches a large group of updates together, a short
network or node failure can cause a large error. For ex-
ample, suppose a system is enforcing TI=60s for an at-
tribute, and suppose that an aggregation node near the
root has collected 59 seconds worth of updates from its
descendents but then loses its connection to the root for a
few seconds. That short disruption can cause the system
to violate its TI guarantees for a large number of updates.

3 NI Abstraction and Application

To cope with the sources of error just described, we in-
troduce a new consistency metric, Network Imprecision
(NI), that addresses the needs of large-scale monitoring
systems in environments where networks or nodes can
fail.

This section defines NI and argues that it is the right
abstraction for a monitoring system to provide to moni-
toring applications. The discussions in this section as-
sume that NI is provided by an oracle. Section 4 de-
scribes how to compute the NI metrics accurately and
efficiently.

3.1 NI metrics

The definition of NI is driven by four fundamental prop-
erties of large-scale monitoring systems. First, updates
reflect real-world events that are outside of the system’s
control. Second, updates can occur at large numbers of
sensor nodes. Third, systems may support monitoring
of large numbers of attributes. Fourth, different applica-
tions are affected by and may react to missing updates in
different ways.

The first two properties suggest that traditional data
consistency algorithms that enforce guarantees like causal
consistency [33] or sequential consistency [34] or lin-

earizability [24] are not appropriate for large-scale moni-
toring systems. To enforce limits on inconsistency, tradi-
tional consistency algorithms must block reads or writes
during partitions [19]. However, in large-scale monitor-
ing systems (1) updates cannot be blocked because they
reflect external events that are not under the system’s
control and (2) reads depend on inputs at many nodes,
so blocking reads when any sensor is unreachable will
result in unacceptable availability.

We therefore cast NI as a monitoring system’s intro-
spection on its own stability. Rather than attempt to en-
force limits on the inconsistency of data items, a mon-
itoring overlay uses introspection on its current state to
produce an NI value that exposes the extent to which sys-
tem disruptions may affect results.

In its simplest form, NI could be provided as a simple
stability flag. If the system is stable (all nodes are up,
all network paths are available, and all updates are prop-
agating within the delays specified by the system’s tem-
poral imprecision guarantees), then an application knows
that it can trust the monitoring system’s outputs. Con-
versely, if the monitoring system detects that any of these
conditions is violated, it could simply flag its outputs as
suspect, warning applications that some sensors’ updates
may not be reflected in the current outputs.

Since large systems may seldom be completely sta-
ble and in order to allow different applications sufficient
flexibility to handle system disruptions, instead of an all-
or-nothing stability flag, our implementation of the NI
abstraction quantifies the scope of system disruptions. In
particular, we provide three metrics: Ngj, Nycachables
and Ngyp.

e N, estimates the number of nodes in the system.

o N,cachable 18 @ lower bound on the number of nodes
whose recent input values are guaranteed to be re-
flected in the query result. Recency is defined by
the TI guarantees the system provides for the at-
tribute. For example, if the TI is 60 seconds, then
Nait — Nyeachable 18 the number of inputs whose
values may be stale by more than 60 seconds.

e Ngyp provides an upper bound on the number of
nodes whose input contribution to an aggregate may
be repeated. Repeated inputs can occur when a topol-
ogy reconfiguration causes a leaf node or a subtree
to switch to a new parent while its old parent re-
tains the node’s or subtree’s input as soft state until
a timeout.

These three metrics characterize the consistency of a query
result. If Nycochabie = Nau and Ng,p, = 0, then query
results are guaranteed to meet the Al and TI bounds
specified by the system. If N,cqchapie 1S close to Ny
and Ng,,, is low, the results reflect most inputs and are

90

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

Ny =5 Ny =4
Neachable =4 Should Neachable = 4

Ny=5 Ny= 5 Ny= 5 Should

Neachabie =5 Neachable = 4 Neachable = be 18

up

dup =

(a) Fault-free (b) Node disconnect

(c) Amplification

) P

(e) Reconfig 2

e

(d) Reconfig 1

Figure 5: The evolution of N,.cachabie, Nair, and Ny, during failures and reconfigurations. The values in the center
of each circle illustrate an example SUM aggregate. The vertical bars show the virtual nodes corresponding to a given

physical leaf node.

likely to be useful for many applications. Conversely,
query answers with high values of Ny;; — Nycachable OF
Ngup suggest that the network is unstable and the results
should not be trusted.

Mechanism vs. policy. This formulation of NI explic-
itly separates the mechanism for network introspection
of a monitoring system from application-specific policy
for detecting and minimizing the effects of failures, de-
lays, or reconfigurations on query results. Although it is
appealing to imagine a system that not only reports how a
disruption affects the overlay but also how the disruption
affects each monitored attribute, we believe that NI pro-
vides the right division of labor between the monitoring
system and monitoring applications for three reasons.

First, the impact of omitted or duplicated updates is
highly application-dependent, depending on the aggrega-
tion function (e.g., some aggregation functions are insen-
sitive to duplicates [12]), the variability of the sensor in-
puts (e.g., when inputs change slowly, using a cached up-
date for longer than desired may have a modest impact),
the nature of the application (e.g., an application that at-
tempts to detect unusual events like network anomalies
may reap little value from using statistical techniques for
estimating the state of unreachable sensors), and appli-
cation requirements (e.g., some applications may value
availability over correctness and live with best effort an-
swers while others may prefer not to act when the accu-
racy of information is suspect).

Second, even if it were possible to always estimate the
impact of disruptions on applications, hard-wiring the
system to do such per-attribute work would impose sig-
nificant overheads compared to monitoring the status of
the overlay.

Third, as we discuss in Section 3.3, there are a broad
range of techniques that applications can use to cope with
disruptions, and our definition of NI allows each applica-
tion to select the most appropriate technique.

3.2 Example

Here, we illustrate how NI’s three metrics characterize
system state using a simple example.
Consider the aggregation tree across 5 physical nodes

in Figure 5(a). For simplicity, we compute a SUM ag-
gregate under an Al filtering budget of zero (i.e., update
propagation is suppressed if the value of an attribute has
not changed), and we assume a TI guarantee of T I};,,:¢
=30 seconds (i.e., the system promises a maximum stal-
eness of 30 seconds). Finally, to avoid spurious garbage
collection/reconstruction of per-attribute state, the under-
lying DHT reconfigures its topology if a path is down for
a long timeout (e.g., a few minutes), and internal nodes
cache inputs from their children as soft state for slightly
longer than that amount of time.

Initially, (a) the system is stable; the root reports the
correct aggregate value of 25 with Nyj; = Nycachable =
5 and Ny, = 0 indicating that all nodes’ recent inputs
are reflected in the aggregate result with no duplication.

Then, (b) the input value changes from 7 to 6 at a leaf
node, but before sending that update, the node gets dis-
connected from its parent. Because of soft state caching,
the failed node’s old input is still reflected in the SUM ag-
gregate, but recent changes at that sensor are not; the root
reports 25 but the correct answer is 24. As (b) shows, NI
exposes this inconsistency to the application by chang-
ing Nycachaple to 4 within T'Ij;,,,; = 30 seconds of the
disruption, indicating that the reported result is based on
stale information from at most one node.

Next, we show how NI exposes the failure amplifi-
cation effect. In (c), a single node failure disconnects
the entire subtree rooted at that node. NI reveals this
major disruption by reducing N,.cqchable to 2 since only
two leaves retain a good path to the root. The root still
reports 25 but the correct answer (i.e., what an oracle
would compute using the live sensors’ values as inputs)
is 18. Since only 2 of 5 nodes are reachable, this report
is suspect. The application can either discard it or take
corrective actions such as those discussed in Section 3.3.

NI also exposes the effects of overlay reconfiguration.
After a timeout, (d) the affected leaves switch to new par-
ents; NI exposes this change by increasing Ny cqchabie tO
4. But since the nodes’ old values may still be cached,
Ngup increases to 2 indicating that two nodes’ inputs are
double counted in the root’s answer of 34.

Finally, NI reveals when the system has restabilized.

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 91

In (e), the system again reaches a stable state—the soft
state expires, Ny, falls to zero, N, becomes equal to
Nyeachabie of 4, and the root reports the correct aggregate
value of 18.

3.3 Using NI

As noted above, NI explicitly separates the problem of
characterizing the state of the monitoring system from
the problem of assessing how disruptions affect appli-
cations. The NI abstraction is nonetheless powerful—it
supports a broad range of techniques for coping with net-
work and node disruptions. We first describe four stan-
dard techniques we have implemented: (1) flag incon-
sistent answers, (2) choose the best of several answers,
(3) on-demand reaggregation when inconsistency is high,
and (4) probing to determine the numerical contribution
of duplicate or stale inputs. We then briefly sketch other
ways applications can use NI.

Filtering or flagging inconsistent answers. PRISM’s
first standard technique is to manage the trade-off be-
tween consistency and availability [19] by sacrificing ava-
ilability: applications report an exception rather than re-
turning an answer when the fraction of unreachable or
duplicate inputs exceeds a threshold. Alternatively, ap-
plications can maximize availability by always returning
an answer based on the best available information but
flagging that answer’s quality as high, medium, or low
depending on the number of unreachable or duplicated
inputs.

Redundant aggregation. PRISM can aggregate an at-
tribute using £ different keys so that one of the keys is
likely to find a route around the disruption. Since each
key is aggregated using a different tree, each has a dif-
ferent NI associated with it, and the application chooses
the result associated with the key that has the best NI. In
Section 6, we show that using a small value of k (k = 4)
reduces the worst-case inaccuracy by nearly a factor of
five.

On-demand reaggregation. Given a signal that cur-
rent results may be affected by significant disruptions,
PRISM allows applications to trigger a full on-demand
reaggregation to gather current reports (without Al cach-
ing or TI buffering) from all available inputs. In partic-
ular, if an application receives an answer with unaccept-
ably high fraction of unreachable or duplicated inputs, it
issues a probe to force all nodes in the aggregation tree to
discard their cached data for the attribute and to recom-
pute the result using the current value at all reachable leaf
inputs.

Determine Vdup or Vstale- When Ndup or Nall 7Nreachable

is high, an application knows that many inputs may be
double counted or stale. An application can gain addi-
tional information about how the network disruption af-

fects a specific attribute by computing Vi, or Vg for
that attribute. Vg, is the aggregate function applied to
all inputs that indicate that they may also be counted in
another subtree; for example in Figure 5(d), Vg, is 9
from the two nodes on the left that have taken new par-
ents before they are certain that their old parent’s soft
state has been reclaimed. Similarly, Vg4 is the aggre-
gate function applied across cached values from unreach-
able children; in Figure 5(c) Viiq1e is 16, indicating that
16/25 of the sum value comes from nodes that are cur-
rently unreachable.

Since per-attribute Vg, and Vg provide more in-
formation than the NI metrics, which merely characterize
the state of the topology without reference to the aggre-
gation functions or their values, it is natural to ask: Why
not always provide Vy,,;, and V. and dispense with the
NI metrics entirely? As we will show in Section 4, the
NI metrics can be computed efficiently. Conversely, the
attribute-specific Vg, and Ve metrics must be com-
puted and actively maintained on a per-attribute basis,
making them too expensive for monitoring a large num-
ber of attributes. Given the range of techniques that can
make use of the much cheaper NI metrics, PRISM pro-
vides NI as a general mechanism but allows applications
that require (and are willing to pay for) the more detailed
Viup and V41 information to do so.

Other techniques. For other monitoring applications, it
may be useful to apply other domain-specific or applica-
tion-specific techniques. Examples include

e Duplicate-insensitive aggregation. Some applica-
tions can be designed with duplicate-insensitive ag-
gregation functions where nodes can transmit copies
of aggregate values along different paths to guard
against failures without affecting the final result. E.g.,
MAX is inherently duplicate-insensitive [36], and
duplicate-insensitive approximations of some other
functions exist [12,37,41].

e [ncreasing reported TI. Short bursts of reduced
Niyeachable mean that an aggregated value may not
reflect some recent updates. Rather than report a re-
sult with low TT staleness but a high NI, the system
can report a result with a low NI but an explicitly
increased TI staleness bound.

o Statistical Data Analysis. Some applications can
combine application-level redundancy and statisti-
cal inference to estimate missing values, as well
as estimating the process parameters for the model
generating those values. E.g., Bayesian infer-
ence [48] has been used in a one-level tree to es-
timate missing sensor inputs and model parameters
in an environmental sensor network.

92

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

These examples are illustrative but not comprehensive.
Armed with information about the likely quality of a given
answer, applications can take a wide range of approaches
to protect themselves from disruptions.

4 Computing NI metrics

The three NI metrics are simple, and implementing them
initially seems straightforward: N, Nyecachabie, and Ny,
are each conceptually aggregates of counts across nodes,
which appear to be easy to compute using PRISM’s stan-
dard aggregation features. However, this simple picture
is complicated by two requirements on our solution:

1. Correctness despite reconfigurations. PRISM must
cope with reconfiguration of dynamically constructed
aggregation trees while still guaranteeing the invari-
ants that (a) query results reflect current (to the lim-
its of each attribute’s TI bounds) inputs from at least
Nyeachabie nodes and (b) query results reflect at most
N gup duplicate inputs due to topology reconfigura-
tions.

2. Scalability. PRISM must scale to large numbers of
nodes despite (a) the need for active probing to mea-
sure liveness between each parent-child pair and (b)
the need to compute distinct NI values for each of
the distinct aggregation trees in the underlying DHT
forest. Naive implementations of NI would incur
excessive monitoring overhead as we show in Sec-
tion 4.3.

In the rest of this section, we first provide a simple al-
gorithm for computing N,;; and Nyeqcnanie for a single,
static tree. Then, in Section 4.2, we explain how PRISM
computes Ng,,;, to account for dynamically changing ag-
gregation topologies. Later, in Section 4.3 we describe
how to scale the approach to a large number of distinct
trees constructed by PRISM’s DHT framework.

4.1 Single tree, static topology

This section considers calculating Ng;; and Nyeqchable
for a single, static-topology aggregation tree.

Ny is simply a count of all nodes in the system, which
serves as a baseline for evaluating N,.cqchabie and Ngyyp.
Ny is easily computed using PRISM’s aggregation ab-
straction. Each leaf node inserts 1 to the V,;; aggregate,
which has SUM as its aggregation function.

Nyecachable for a subtree is a count of the number of
leaves that have a good path to the root of the subtree,
where a good path is a path whose processing and net-
work propagation times currently fall within the system’s
smallest supported TI bound 7'1,,,;,,. The difference N
— Nyeachable thus represents the number of nodes whose
inputs may fail to meet the system’s tightest supported

staleness bound; we will discuss what happens for at-
tributes with TI bounds larger than 7'1,,,;,, momentarily.
Nodes compute N, .cqchable iN tWO steps:

1. Basic aggregation: PRISM creates a SUM aggre-
gate and each leaf inserts local value of 1. The root
of the tree then gets a count of all nodes.

2. Aggressive pruning: Nyegchable Must immediately
change if the connection to a subtree is no longer
a good path. Therefore, each internal node periodi-
cally probes each of its children. If a child ¢ is not
responsive, the node removes the subtree ¢’s contri-
bution from the N,¢qchabie aggregate and immedi-
ately sends the new value up towards the root of the
Nycachable aggregation tree.

To ensure that N,.cqchabie 1S @ lower bound on the num-
ber of nodes whose inputs meet their TI bounds, PRISM
processes these probes using the same data path in the
tree as the standard aggregation processing: a child sends
a probe reply only after sending all queued aggregate up-
dates and the parent processes the reply only after pro-
cessing all previous aggregate updates. As a result, if
reliable, FIFO network channels are used, then our al-
gorithm introduces no false negatives: if probes are pro-
cessed within their timeouts, then so are all aggregate
updates. Note that our prototype uses FreePastry [46],
which sends updates via unreliable channels, and our
experiments in Section 6 do detect a small number of
false negatives where a responsive node is counted as
reachable even though some recent updates were lost by
the network. We also expect few false positives: since
probes and updates travel the same path, something that
delays processing of probes will likely also affect at least
some other attributes.

Supporting temporal batching. If an attribute’s T bou-
nd is relaxed to 11,4 > T'1,,in, PRISM uses the extra
time 11,4 — 11y to batch updates and reduce load.
To implement temporal batching, PRISM defines a nar-
row window of time during which a node must propa-
gate updates to its parents (assume clocks with bounded
drift but not synchronized); details appear in an extended
technical report [31]. However, an attribute’s subtree that
was unreachable over the last T1,;;, could have been un-
lucky and missed its window even though it is currently
reachable.

To avoid having to calculate a multitude of N;cqchabie
values for different TI bounds, PRISM modifies its tem-
poral batching protocol to ensure that each attribute’s
promised TI bound is met for all nodes counted as reach-
able. In particular, when a node receives updates from
a child marked unreachable, it knows those updates may
be late and may have missed their propagation window.
It therefore marks such updates as NODELAY. When

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 93

a node receives a NODELAY update, it processes the
update immediately and propagates the result with the
NODELAY flag so that temporal batching is temporarily
suspended for that attribute. This modification may send
extra messages in the (hopefully) uncommon case of a
link performance failure and recovery, but it ensures that
Nyeachabie Only counts nodes that are meeting all of their
TI contracts.

4.2 Dynamic topology

Each virtual node in PRISM caches state from its chil-
dren so that when a new input from one child arrives,
it can use local information to compute new values to
pass up. This information is soft state—a parent dis-
cards it if a child is unreachable for a long time, similar
to IGMP [28].

As a result, when a subtree chooses a new parent, that
subtree’s inputs may still be stored by a former parent
and thus may be counted multiple times in the aggregate
as shown in Figure 5(d). Ng,, exposes this inaccuracy
by bounding the number of leaves whose inputs might be
included multiple times in the aggregate query result.

The basic aggregation function for Ny, is simple: if
a subtree root spanning [leaves switches to a new parent,
that subtree root inserts the value [into the Ng,,, aggre-
gate, which has SUM as its aggregation function. Later,
when sufficient time has elapsed to ensure that the node’s
old parent has removed its soft state, the node updates its
input for the Ny, aggregate to 0.

Our Ny, implementation must deal with two issues.

1. First, for correctness, we ensure that Ng,;, bounds
the number of nodes whose inputs are double counted
despite failures and network delays. We ensure this
invariant by constructing a hierarchy of leases on a
node’s right to cache its descendent’s soft state such
that the leases granted by a node to its parents are
always shorter than the leases the node holds from
any child whose inputs are reflected in the aggre-
gates maintained by the node.

2. Second, for good performance, we minimize the scope

of disruptions when a tree reconfigures using early
expiration: a node at level ¢ of the tree discards the
state of an unresponsive subtree (maxLevels - 1)
* tearly before its lease expires. Early expiration
thereby minimizes the scope of a reconfiguration
by ensuring that the parent of a failed subtree dis-
connects that subtree before any higher ancestor is
forced to disconnect a larger subtree.

We provide further details on these aspects of the imple-
mentation in an extended technical report [31].

4 g0 L3
\ ”,f”” /IK
oA | Ay L2
Pl /4 1 4 ’3 1
7K 7K

7] 1N 7] N Ll
2 1l |2 ol i
1 1 1 1 1 1 1 LO
000 100 010 110 | 001 101 011 111

Figure 6: The failure of a physical node has different
effects on different aggregations depending on which
virtual nodes are mapped to the failed physical node.
The numbers next to virtual nodes show the value of
Nyeachapie for each subtree after the failure of physical
node 001, which acts as a leaf for one tree but as a level-2
subtree root for another.

4.3 Scaling to large systems

Scaling NI is a challenge. To scale attribute monitor-
ing to a large number of nodes and attributes, PRISM
constructs a forest of trees using an underlying DHT and
then uses different aggregation trees for different attributes
[5,39,44,53]. As Figure 6 illustrates, a failure affects
different trees differently. The figure shows two aggre-
gation trees corresponding to keys 000 and 111 for an
8-node system. In this system, the failure of the physical
node with key 001 removes only a leaf node from the tree
111 but disconnects a 2-level subtree from the tree 000.
Therefore, quantifying the effect of failures requires cal-
culating the NI metrics for each of the n distinct trees in
an n-node system. Making matters worse, as Section 4.1
explained, maintaining the NI metrics requires frequent
active probing along each edge in each tree.

As a result of these factors, the straightforward algo-
rithm for maintaining NI metrics separately for each tree
is not tenable: the DHT forest of n degree-d aggregation
trees with n physical nodes and each tree having T:i;g
edges (d > 1), has ©(n?) edges that must be monitored;
such monitoring would require ©(n) messages per node
per probe interval. To put this overhead in perspective,
consider a n=1024-node system with d=16-ary trees (i.e.,
a DHT with 4-bit correction per hop) and a probe interval
p = 10s. The straightforward algorithm then has each
node sending roughly 100 probes per second. As the
system grows, the situation deteriorates rapidly—a 16K-
node system requires each node to send roughly 1600
probes per second.

Our solution, described below, reduces active monitor-
ing work to @(dl—o"i—n) probes per node per second. The
1024-node system in the example would require each
node to send about 5 probes per second; the 16K-node
system would require each node to send about 7 probes
per second.

94

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 O111 1111

Figure 7: Plaxton tree topology is an approximate but-
terfly network. Virtual node 00* in a 16-node network
uses the dual tree prefix aggregation abstraction to ag-
gregate values from a tree below it (solid bold lines) and
distribute the results up a tree above it (dotted bold lines).

Dual tree prefix aggregation. To make it practical to
maintain the NI values, we take advantage of the under-
lying structure of our Plaxton-tree-based DHT [44] to
reuse common sub-calculations across different aggre-
gation trees using a novel dual tree prefix aggregation
abstraction.

As Figure 7 illustrates, this DHT construction forms
an approximate butterfly network. For a degree-d tree,
the virtual node at level ¢ has an id that matches the keys
that it routes in ¢ * log d bits. It is the root of exactly one
tree, and its children are approximately d virtual nodes
that match keys in (i — 1) % logd bits. It has d parents,
each of which matches different subsets of keys in (i +
1) * log d bits. But notice that for each of these parents,
this tree aggregates inputs from the same subtrees.

Whereas the standard aggregation abstraction computes
a function across a set of subtrees and propagates it to
one parent, a dual tree prefix aggregation computes an
aggregation function across a set of subtrees and propa-
gates it to all parents. As Figure 7 illustrates, each node
in a dual tree prefix aggregation is the root of two trees:
an aggregation tree below that computes an aggregation
function across nodes in a subtree and a distribution tree
above that propagates the result of this computation to
a collection of enclosing aggregates that depend on this
subtree for input.

For example in Figure 7, consider the level 2 virtual
node 00* mapped to node 0000. This node’s N,cqchabie
count of 4 represents the total number of leaves included
in that virtual node’s subtree. This node aggregates this
single Ny.cqchable count from its descendants and propa-
gates this value to both of its level-3 parents, 0000 and
0010. For simplicity, the figure shows a binary tree; by
default PRISM corrects 4 bits per hop, so each subtree is
common to 16 parents.

S Case-study applications

We have developed a prototype of the PRISM monitor-
ing system on top of FreePastry [46]. To guide the sys-
tem development and to drive the performance evalua-
tion, we have also built three case-study applications us-
ing PRISM: (1) a distributed heavy hitter detection ser-

vice, (2) a distributed monitoring service for Internet-
scale systems, and (3) a distribution detection service for
monitoring distributed-denial-of-service (DDoS) attacks
at the source-side in large-scale systems.

Distributed Heavy Hitter detection (DHH). Our first
application is identifying heavy hitters in a distributed
system—for example, the 10 IPs that account for the
most incoming traffic in the last 10 minutes [15,30]. The
key challenge for this distributed query is scalability for
aggregating per-flow statistics for tens of thousands to
millions of concurrent flows in real-time. For example, a
subset of the Abilene [1] traces used in our experiments
include 260 thousand flows that send about 85 million
updates in an hour.

To scalably compute the global heavy hitters list, we
chain two aggregations where the results from the first
feed into the second. First, PRISM calculates the to-
tal incoming traffic for each destination address from all
nodes in the system using SUM as the aggregation func-
tion and hash(HH-Step1, destIP) as the key. For exam-
ple, tuple (H = hash(HH-Step1, 128.82.121.7), 700 KB)
at the root of the aggregation tree T indicates that a total
of 700 KB of data was received for 128.82.121.7 across
all vantage points during the last time window. In the sec-
ond step, we feed these aggregated total bandwidths for
each destination IP into a SELECT-TOP-10 aggregation
function with key hash(HH-Step2, TOP-10) to identify
the TOP-10 heavy hitters among all flows.

PRISM is the first monitoring system that we are aware
of to combine a scalable DHT-based hierarchy, arithmetic
filtering, and temporal batching, and this combination
dramatically enhances PRISM’s ability to support this
type of demanding application. To evaluate this appli-
cation, we use multiple netflow traces obtained from the
Abilene [1] backbone network where each router logged
per-flow data every 5 minutes, and we replay this trace by
splitting it across 400 nodes mapped to 100 Emulab [52]
machines. Each node runs PRISM, and DHH application
tracks the top 100 flows in terms of bytes received over a
30 second moving window shifted every 10 seconds.

Figure 8(a) shows the precision-performance results as
the Al budget is varied from 0% (i.e., suppress an up-
date if no value changes) to 20% of the maximum flow’s
global traffic volume and as TI is varied from 10 seconds
to 5 minutes. We observe that Al of 10% reduces load
by an order of magnitude compared to Al of O for a fixed
TI of 10 seconds, by (a) culling updates for large num-
bers of “mice” flows whose total bandwidth is less than
this value and (b) filtering small changes in the remain-
ing elephant flows. Similarly, TI of 5 minutes reduces
load by about 80% compared to TI of 10 seconds. For
DHH application, Al filtering is more effective than TI
batching for reducing load because of the large fraction
of mice flows in the Abilene trace.

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 95

1000 1000

Al=0
L » L
100 Al 1% 100
1)
Al=10%
10 | 1 qol
Al =20%

Bandwidth per node (Kbps)

1000 |

Al=0 1100 b

Al=1%]

0 50 100 150 200 250 300 0 50 100
TI (seconds)

E\B\S\‘]
X Al =10%
=20% 1r
1 N A

TI (seconds)

150 200 250 300 0 50 100 150 200 250 300
Tl (seconds)

Figure 8: Load vs. Al and TI for (a) DHH, (b) PrMon, and (c) DDoS detection. AI and TI significantly reduce the
monitoring load for the three applications; y-axis is on a log scale.

PrMon. The second case-study application is PrMon,
a distributed monitoring service that is representative of
monitoring Internet-scale systems such as PlanetLab [43]
and Grid systems that provide platforms for developing,
deploying, and hosting global-scale services. For instance,
to manage a wide array of user services running on the
PlanetLab testbed, system administrators need a global
view of the system to identify problematic services (e.g.,
any slice consuming more than, say, 10GB of memory
across all nodes on which it is running.) Similarly, users
require system state information to query for lightly-load-
ed nodes for deploying new experiments or to track and
limit the global resource consumption of their running
experiments.

To provide such information in a scalable way and in
real-time, PRISM computes the per-slice aggregates for
each resource attribute (e.g., CPU, MEM, etc.) along dif-
ferent aggregation trees. This aggregate usage of each
slice across all PlanetLab nodes for a given resource at-
tribute (e.g., CPU) is then input to a per-resource SELECT-
TOP-100 aggregate (e.g., SELECT-TOP-100, CPU) to
compute the list of top-100 slices in terms of consump-
tion of the resource.

We evaluate PrMon using a CoTop [11] trace from 200
PlanetLab [43] nodes at 1-second intervals for 1 hour.
The CoTop data provide the per-slice resource usage (e.g.,
CPU, MEM, etc.) for all slices running on a node. Using
these logs as sensor input, we run PrMon on 200 servers
mapped to 50 Emulab machines. Figure 8(b) shows the
combined effect of Al and TI in reducing PrMon’s load
for monitoring global resource usage per slice. We ob-
serve Al of 1% reduces load by 30x compared to Al of
0 for fixed TI of 10 seconds. Likewise, compared to
TI of 10 seconds and Al of 0, TI of 5 minutes reduces
overhead per node by 20x. A key benefit of PRISM’s
tunable precision is the ability to support new, highly-
responsive monitoring applications: for approximately
the same bandwidth cost as retrieving node state every
5 minutes (TI = 5 minutes, no Al filtering), PRISM pro-

vides highly time-responsive and accurate monitoring with
TI of 10 seconds and Al of 1%.

DDosS detection at the source. The final monitoring ap-
plication is DDoS detection to keep track of which nodes
are receiving a large number of traffic (bytes, packets)
from PlanetLab. This application is important to pre-
vent PlanetLab from being used maliciously or inadver-
tently to launch DDoS traffic (which has, indeed, oc-
curred in the past [2]). For input, we collect a trace
of traffic statistics—number of packets sent, number of
bytes sent, network protocol, source and destination IP
addresses, and source and destination ports—every 15
seconds for four hours using Netfilter’s connection track-
ing interface /proc/net/ip_conntrack for all slices
from 120 PlanetLab nodes. Each node’s traffic statis-
tics are fed into PRISM to compute the aggregate traffic
sent to each destination IP across all nodes. Each des-
tination’s aggregate value is fed, in turn, to a SELECT-
TOP-100 aggregation function to compute a top-100 list
of destination IP addresses that receive the highest aggre-
gate traffic (bytes, packets) at two time granularities: (1)
a 1 minute sliding window shifted every 15 seconds and
(2) a 15 minute sliding window shifted every minute.

Figure 8(c) shows running the application on 120 PRI-
SM nodes mapped to 30 department machines. The Al
budget is varied from 0% to 20% of the maximum flow’s
global traffic volume (bytes, packets) at both the 1 minute
and 15 minutes time windows, and T1I is varied from 15
seconds to 5 minutes. We observe that Al of 1% reduces
load by 30x compared to Al of 0% by filtering most flows
that send little traffic. Overall, Al and TI reduce load by
up to 100x and 8x, respectively, for this application.

6 Experimental Evaluation

As illustrated above, our initial experience with PRISM
is encouraging: PRISM’s load-balanced DHT-based hi-
erarchical aggregation, arithmetic filtering, and tempo-
ral batching provide excellent scalability and enable de-
manding new monitoring applications. However, as dis-

96

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

140 120

‘ ‘ ‘ " Nreachable ‘ " Nreachable 100 [T ‘ " Nreachable
® all —— all —— Nall
8 120 Ndup —— 1 100 A up —— 1 Ndup
E 80 L,
= 100]

S 80 B

@ 80|] //> 60 I
? 60 1

o 60 | | Failure disconnects

£ (a) 14 nodes and (b) 20 nodes 40 |
x 40 9

S 40t] \

2

% 20 | .AMM\ 1 20 1 20

| A=A A‘ ..._‘é VN 0 N AT ¥ aﬂ\ I

0 .
150 200 250 300 350 400 0 1 2 3 4 0O 2 4 6 8 10 12 14 16 18
Time (seconds) Time (hours) Time (hours)

(a) (b) (c)

Figure 9: NI metrics under system churn: (a) single node failure at 70 seconds for 108 Emulab nodes, (b) periodic

o

0

0 50 100

failures for 108 Emulab nodes, and (c) 85 PlanetLab nodes with no synthetic failures.

cussed in Section 2, this scalability comes at a price: the
risk that query results depart significantly from reality in
the presence of failures.

This section therefore focuses on a simple question:
can NI safeguard accuracy in monitoring systems that
use hierarchy, arithmetic filtering, or temporal batching
for scalability? We first investigate PRISM’s ability to
use NI to qualify the consistency guarantees promised
by Al and TI, then explore the consistency/availability
trade-offs that NI exposes, and finally quantify the over-
head in computing the NI metrics. Overall, our evalua-
tion shows that NI enables PRISM to be an effective sub-
strate for accurate scalable monitoring: the NI metrics
characterize system state and reduce measurement inac-
curacy while incurring low communication overheads.

6.1 Exposing disruption

In this section, we illustrate how PRISM uses NI to ex-
pose overlay disruptions that could significantly affect
monitoring applications.

We first illustrate how NI metrics reflect network state
in two controlled experiments in which we run 108 PRISM
nodes on Emulab. In Figure 9(a) we kill a single node
70 seconds into the run, which disconnects 24 additional
nodes from the aggregation tree being examined. Within
seconds, this failure causes N, cqchabie to fall to 83, in-
dicating that any result calculated in this interval might
only include the most recent values from 83 nodes. Pas-
try detects this failure quickly in this case and reconfig-
ures, causing the disconnected nodes to rejoin the tree at
a new location. These nodes contribute 24 to N, un-
til they are certain that their former parent is no longer
caching their inputs as soft state. The glitch for N,y
occurs because the disconnected children rejoin the sys-
tem slightly more quickly than their prior ancestor de-
tects their departure. Figure 9(b) traces the evolution of
the NI metrics as we kill one of the 108 original nodes
every 10 minutes over a 4 hour run, and similar behav-
iors are evident; we use higher churn than typical en-

175 5
FP (Unreachable) —— FN (Unreachable) ——
150 FP (Duplicate) —=— 4 FN (Duplicate) —=—
£ 125
& 100 3
g 75
3 2
z 50
1
25]
P N
0 1 2 3 4 0 1 2 3 4
Time (hours) Time (hours)
(a) (b)

Figure 10: Validation of NI metrics: NI has (a) few false
positives and (b) almost zero false negatives.

vironments to stress test the system. Figure 9(c) shows
how NI reflects network state for a 85-node PrMon ex-
periment on PlanetLab for an 18-hour run; nodes were
randomly picked from 248 Internet2 nodes. For some of
the following experiments we focus on NI's effectiveness
during periods of instability by running experiments on
PlanetLab nodes. Because these nodes show heavy load,
unexpected delays, and relatively frequent reboots (espe-
cially prior to deadlines!), we expect these nodes to ex-
hibit more NI than a typical environment, which makes
them a convenient stress test of our system.

Our implementation of NI is conservative: we are will-
ing to accept some false positives (when NI reports that
inputs are stale or duplicated when they are not, as dis-
cussed in Section 4.1), but we want to minimize false
negatives (when NI fails to warn an application of du-
plicate or stale inputs). Figure 10 shows the results for
a 96-node Emulab setup under a network path failure
model [13]; we use failure probability, MTTF, and MTTR
of 0.1, 3.2 hours, and 10 minutes. We contrive an “ap-
pend” aggregation in each of the 96 distinct trees: each
node periodically feeds a (node, timestamp) tuple and in-
ternal nodes append the children inputs together. At each
root, we compare the aggregate value against NI to de-
tect any false positive (FP) or false negative (FN) reports
for (1) Ngyyp count duplicates and (2) dips in Nycachabie
count nodes whose reported values are not within TI of

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 97

100 = 100 _ _ 100
80 80 80
e
[
Z 60 60 60
c
©
X
o 4 NI oblivious —e— 1 40 NI oblivious —e— { 40
9 NI = 0% —&—
[s)] d NIl < 5% —8— NI = 5
o | NI <10% —a— | N|<<10°/°_'_ K=1 —e—
20 NI<50% —e—] 20 Ni<10% —e— | 20 Koo
. NI < 75% | Ni<50% —=— ko5 o
o NI <90% —v— ’ NI < 90% o 0 K=4 —e—
‘ ‘) ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 o 20 40 60 80 100 O 0.2 0.4 0.6 0.8 1
Difference from truth (%) Difference from truth (%) NI

(a) CDF of result accuracy (PlanetLab) (b) CDF of result accuracy (Emulab) (c) CDF of observed NI (PlanetLab)

Figure 11: (a) and (b) show the CDFs of result accuracy with answers filtered for different NI thresholds and k = 1 for
PrMon on (a) Planetlab and (b) Emulab. (c) Shows the availability of results on Planetlab by showing the CDF of NI

values for k duplicate keys.

their current values.

Figure 10 indicates that NI accurately characterizes
how churn affects aggregation. Across 300 minutes and
96 trees, we observe fewer than 100 false positive re-
ports, most of them small in magnitude. The high FP
near 60 minutes is due to a root failure triggering a large
reconfiguration and was validated using logs. We ob-
serve zero false negative reports for unreachability and
three false negative reports for duplication; the largest
error was underreporting the number of duplicate nodes
by three. Overall, we observe a FP rate less than 0.3%
and a FN rate less than 0.01%.

6.2 Coping with disruption

We now examine how applications use NI to improve
their accuracy by compensating for churn. Our basic ap-
proach is to compare results of NI-oblivious aggregation
and aggregation with NI-based compensation with an or-
acle that has access to the inputs at all leaves; we simulate
the oracle via off-line processing of input logs. We run
a 1 hour trace-based PrMon experiment on 94 PlanetLab
nodes or 108 Emulab nodes for a collection of attributes
calculated using a SUM aggregate with Al = 0 and TI
= 60 seconds. For Emulab, we use the synthetic failure
model described for Fig 10. Note that to keep the dis-
cussion simple, we condense NI to a single parameter:
NI = (N“”_%:j;”"“ble) + (J]V\,‘i"jf) for all the subsequent
experiments.

The NI-oblivious line of Figure 11(a) and (b) shows
for PrMon nodes that ignore NI, the CDF of the dif-
ference between query results and the true value of the
aggregation computed by an off-line oracle from traces.
For PlanetLab, 50% of the reports differ from the truth
by more than 30% in this challenging environment. For
the more stable Emulab environment, a few results dif-
fer from reality by more than 40%. Next, we discuss
how applications can achieve better accuracy using tech-
niques discussed in Section 3.3.

Filtering. One technique is to trade availability for ac-
curacy by filtering results during periods of instability.
The lines (NI < 2%, + =5, 10, 50, 75, and 90) of Fig-
ure 11(a) and (b) show how rejecting results with high
NI improves accuracy. For example, for the high-churn
PlanetLab environment, when NI < 5%, 80% answers
have less than 20% deviation from the true value. For
the Emulab experiment, 95% answers have less than 20%
deviation using NI < 5% filtering.

Filtering answers during periods of high churn exposes
a fundamental consistency versus availability tradeoff [19].
Applications must decide whether it is better to silently
give a potentially inaccurate answer or explicitly indicate
when it cannot provide a good answer. For example, the
k =1 line in Figure 11(c) shows the CDF of the fraction
of time for which NI is at or below a specified value for
the PlanetLab run. For half of the reports, NI > 30% and
for 20% of the reports, NI > 80% reflecting high system
instability. Note that the PlanetLab environment is in-
tended to illustrate PRISM’s behavior during intervals of
high churn. Since accuracy is maximized when answers
reflect complete and current information, systems with
fewer disruptions (e.g., Emulab) are expected to show
higher result accuracy compared to PlanetLab and we ob-
serve this behavior for Emulab where the curves in Fig-
ure 11(c) shift up and to the left (graph omitted due to
space constraints; please see the technical report [31]).

Redundant aggregation. Redundant aggregation allows
applications to trade increased overheads for better avail-
ability and accuracy. Rather than aggregating an attribute
up a single tree, information can be aggregated up k dis-
tinct trees. As k increases, the fraction of time during
which NI is low increases. Because the vast majority of
nodes in a 16-ary tree are near the leaves, sampling sev-
eral trees rapidly increases the probability that at least
one tree avoids encountering many near-root failures. We
provide an analytic model formalizing this intuition in a
technical report [31].

98

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

NI oblivious —e—
K = 4, no filtering —8— -
4, Nl =0% —a—
4,Nl<5% —e—

4, Nl =0% —a—

K= ,
K= 4 Nl < 5% —e—

100 100
80 | o g
©
[
Z 60f 60
C
©
8
o 40 40 1«
a
(&) K=1 —e—
20 K=2 —8—] 20
K=3 —a—
K=4 —o—
0 - 0
0 20 40 60 80 100 0 20

Difference from truth (%)

(a) PlanetLab redun. aggr.

Difference from truth (%)

(b) PlanetLab redun. aggr. + filtering

60 80 100 0 20 40 60 80 100
Difference from truth (%)

(c) Emulab redun. aggr. + filtering

Figure 12: CDF of result accuracy for redundant aggregation up k trees and filtering for PlanetLab and Emulab runs

for the PrMon application.

In Figure 12(a) we explore the effectiveness of a sim-
ple redundant aggregation approach in which PrMon ag-
gregates each attribute k times and then chooses the re-
sult with the lowest NI. This approach maximizes availa-
bility—as long as any of the root nodes for an attribute
are available, PrMon always returns a result—and it also
can achieve high accuracy. Due to space constraints, we
focus on the PlanetLab run and show the CDF of results
with respect to the deviation from an oracle as we vary k
from 1 to 4. We observe that this approach can reduce the
deviation to at most 22% thereby reducing the worst-case
inaccuracy by nearly 5x.

Applications can combine the redundant aggregation
and filtering techniques to get excellent availability and
accuracy. Figure 12(b) and (c) show the results for the
PlanetLab and Emulab environments. As Figure 11(c)
shows, redundant aggregation increases availability by
increasing the fraction of time NI is below the filter thresh-
old, and as Figures 12(b) and (c) show, the combination
improves accuracy by up to an order of magnitude over
best effort results.

6.3 NI scalability

Finally, we quantify the monitoring overhead of track-
ing NI via (1) each aggregation tree separately and (2)
dual-tree prefix aggregation. Figure 13 shows the aver-
age per-node message cost for NI monitoring as we vary
the network size from 16 to 1024 nodes mapped to 256
Lonestar [35] machines. We observe that the overhead
using independent aggregation trees scales linearly with
the network size whereas it scales logarithmically using
dual-tree prefix aggregation.

Note that the above experiment constructs all n dis-
tinct trees in the DHT forest of n nodes assuming that
the number of attributes is at least on the order of the
number of nodes n. However, for systems that aggre-
gate fewer attributes (or if only few attributes care about
ND), it is important to know which of the two techniques
for tracking NI—(1) per-tree aggregation or (2) dual-tree

prefix aggregation—is more efficient. Figure 14 shows
both the average and the maximum message cost across
all nodes in a 1000-node experimental setup as above for
both per-tree NI aggregation and dual-tree prefix aggre-
gation as we increase the number of trees along which
NI value is computed. Note that per-tree NI aggregation
costs increase as we increase the number of trees while
dual-tree prefix aggregation has a constant cost. We ob-
serve that the break-even point for the average load is 44
trees while the break-even point for the maximum load
is only 8 trees.

7 Related Work

PRISM is a monitoring architecture that is to our knowl-
edge the first to maximize scalability by integrating three
techniques that have been used in isolation in prior sys-
tems: DHT-based hierarchy for load balancing and in-
network filtering [5,44,47,53], arithmetic filtering [6,21,
30,31,36,38,42,51,56], and temporal batching [14, 36,
56]. As discussed in Section 2, each of these techniques
improves scalability, but each also increases the risk that
queries will report incorrect results during network and
node failures. We believe the NI abstraction and the im-
plementation techniques discussed in this paper will be
widely applicable.

The idea of flagging results when the state of a dis-
tributed system is disrupted by node or network failures
has been used in tackling other distributed systems prob-
lems. For example, our idea of NI is analogous to that of
fail-aware services [16] and failure detectors [9] for fault-
tolerant distributed systems. Freedman et al. propose
link-attestation groups [18] that use an application spe-
cific notion of reliability and correctness to map pairs of
nodes which consider each other reliable. Their system,
designed for groups on the scale of tens of nodes, mon-
itors the nodes and system and exposes such attestation
graph to the applications. Bawa et al. [4] survey previous
work on measuring the validity of query results in faulty
networks. Their “single-site validity” semantic is equiv-

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 99

100

Dual-tree Prefix Aggregation I
Per-tree Aggregation —»— /-

80 r 1
70 1
60 1
50 1
40 1
30 - 1
20 - 1

Messages per node per second

H T L L
32 128 512

Number of nodes

Figure 13: NI monitoring overhead for dual-tree pre-
fix aggregation and for computing NI per aggregation
tree. The overhead scales linearly with the network
size for per-tree aggregation whereas it scales loga-
rithmically using dual-tree prefix aggregation.

alent to PRISM’S N,.cqchabie metric. Completeness [20]
defined as the percentage of network hosts whose data
contributed to the final query result, is similar to the ratio
of Nycachabie and Ngj;. Relative Error [12,57] between
the reported and the “true” result at any instant can only
be computed by an oracle with a perfect view of the dy-
namic network.

Several aggregation systems have worked to address
the failure amplification effect. To mask failures, TAG [36]
proposes (1) reusing previously cached values and (2)
dividing the aggregate value into fractions equal to the
number of parents and then sending each fraction to a
distinct parent. This approach reduces the variance but
not the expected error of the aggregate value at the root.
SAAR uses multiple interior-node-disjoint trees to re-
duce the impact of node failures [39]. In San Fermin [8],
each node creates its own binomial tree by swapping
data with other nodes. Seaweed [40] uses a supernode
approach in which data on each internal node is repli-
cated. However, both these systems process one-shot
queries but not continuous queries on high-volume dy-
namic data, which is the focus of PRISM. Gossip-based
protocols [7, 45, 51] are highly robust but incur more
overhead than trees [53]. NI can also complement gossip
protocols, which we leave as future work. Other studies
have proposed multi-path routing methods [12,20,29,37,
41] for fault-tolerant aggregation.

Recent proposals [4,12,37,41,55] have combined mul-
tipath routing with order- and duplicate-insensitive data
structures to tolerate faults in sensor network aggrega-
tion. The key idea is to use probabilistic counting [17]
to approximately count the number of distinct elements
in a multi-set. PRISM takes a complementary approach:
whereas multipath duplicate-insensitive (MDI) aggrega-

1000

Per-tree Max load
Per-tree Avg load -
Dual-Tree Prefix Max load
Dual-Tree Prefix Avg load

100 f

L) E—

Messages per node per second

0.1

1 10 100
Number of trees

1000

Figure 14: Break-even point for NI tracking overhead
as the number of trees (attributes) varies for (a) per-
tree aggregation vs. (b) dual-tree prefix aggregation
in a 1000-node system. The break-even points for the
average and maximum load are 44 trees and 8 trees.

tion seeks to reduce the effects of network disruption,
PRISM’s NI metric seeks to quantify the network dis-
ruptions that do occur. In particular, although MDI ag-
gregation can, in principle, reduce network-induced in-
accuracy to any desired target if losses are independent
and sufficient redundant transmissions are made [41], the
systems studied in the literature are still subject to non-
zero network-induced inaccuracy due to efforts to bal-
ance transmission overhead with loss rates, insufficient
redundancy in a topology to meet desired path redun-
dancy, or correlated network losses across multiple links.
These issues may be more severe in our environment
than in wireless sensor networks targeted by MDI ap-
proaches because the dominant loss model may differ
(e.g., link congestion and DHT reconfigurations in our
environment versus distance-sensitive loss probability for
the wireless sensors) and because the transmission cost
model differs (for some wireless networks, transmission
to multiple destinations can be accomplished with a sin-
gle broadcast.

The MDI aggregation techniques are also complemen-
tary in that PRISM’s infrastructure provides NI informa-
tion that is common across attributes while the MDI ap-
proach modifies the computation of individual attributes.
As Section 3.3 discussed, NI provides a basis for inte-
grating a broad range of techniques for coping with net-
work error, and MDI aggregation may be a useful tech-
nique in cases when (a) an aggregation function can be
recast to be order- and duplicate-insensitive and (b) the
system is willing to pay the extra network cost to trans-
mit each attribute’s updates. To realize this promise, ad-
ditional work is required to extend MDI approaches for
bounding the approximation error while still minimizing
network load via Al and T1 filtering.

100

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

8 Conclusions

If a man will begin with certainties, he shall
end in doubts; but if he will be content to begin
with doubts, he shall end in certainties.

—Sir Francis Bacon

We have presented Network Imprecision, a new met-
ric for characterizing network state that quantifies the
consistency of query results in a dynamic, large-scale
monitoring system. Without NI guarantees, large scale
network monitoring systems may provide misleading re-
ports because query result outputs by such systems may
be arbitrarily wrong. Incorporating NI in the PRISM
monitoring framework qualitatively improves its output
by exposing cases when approximation bounds on query
results can not be trusted.

9 Acknowledgments

We thank our shepherd Dejan Kostic, Joe Hellerstein,
and the anonymous reviewers for their valuable feed-
back. Navendu Jain is supported by an IBM Ph.D. Fel-
lowship. This work is supported in part by NSF Awards
CNS-0546720, CNS-0627020 and SCI-0438314.

References

[1] http://abilene.internet2.edu/.

[2] R. Adams. Distributed system management: PlanetLab
incidents and management tools. Technical Report PDN—
03-015, PlanetLab Consortium, 2003.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems. In
PODS, 2002.

[4] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani.
The price of validity in dynamic networks. In SIGMOD,
2004.

[5] A.Bharambe, M. Agrawal, and S. Seshan. Mercury: Sup-
porting Scalable Multi-Attribute Range Queries. In SIG-
COMM, 2004.

[6] M. Bhide, K. Ramamritham, and M. Agrawal. Efficient
execution of continuous incoherency bounded queries
over multi-source streaming data. In /CDCS, 2007.

[7] Y. Birk, I. Keidar, L. Liss, and A. Schuster. Efficient dy-
namic aggregation. In DISC, 2006.

[8] J. Cappos and J. H. Hartman. San fermin: aggregating
large data sets using a binomial swap forest. In NSDI,
2008.

[9] T. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. J. ACM, 1996.

D. D. Clark, C. Partridge, J. C. Ramming, and J. Wro-
clawski. A knowledge plane for the Internet. In SIG-
COMM, 2003.

http://comon.cs.princeton.edu/.

[10]

[11]

(12]

(13]

(14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

J. Considine, F. Li, G. Kollios, and J. Byers. Approximate
aggregation techniques for sensor databases. In /CDE,
2004.

M. Dahlin, B. Chandra, L. Gao, and A. Nayate. End-to-
end WAN service availability. /EEE/ACM Transactions
on Networking, 2003.

A. Deshpande, S. Nath, P. Gibbons, and S. Seshan.
Cache-and-query for wide area sensor databases. In SIG-
MOD, 2003.

C. Estan and G. Varghese. New directions in traffic mea-
surement and accounting. In SIGCOMM, 2002.

C. Fetzer and F. Cristian. Fail-awareness in timed asyn-
chronous systems. In PODC, 1996.

P. Flajolet and G. N. Martin. Probabilistic counting algo-
rithms for data base applications. JCSS, 1985.

M. J. Freedman, 1. Stoica, D. Mazieres, and S. Shenker.
Group therapy for systems: Using link attestations to
manage failures. In /PTPS, 2006.

S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of Consistent, Available, Partition-tolerant web
services. In ACM SIGACT News, 33(2), Jun 2002.

I. Gupta, R. van Renesse, and K. P. Birman. Scalable
fault-tolerant aggregation in large process groups. In
DSN, 2001.

R. Gupta and K. Ramamritham. Optimized query plan-
ning of continuous aggregation queries in dynamic data
dissemination networks. In WWW, pages 321-330, 2007.

N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. SkipNet: A Scalable Overlay Network with
Practical Locality Properties. In USITS, March 2003.

J. M. Hellerstein, V. Paxson, L. L. Peterson, T. Roscoe,
S. Shenker, and D. Wetherall. The network oracle. IEEE
Data Eng. Bull., 2005.

M. Herlihy and J. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Trans. Prog. Lang.
Sys., 12(3), 1990.

E. Hoke, J. Sun, J. D. Strunk, G. R. Ganger, and C. Falout-
sos. Intemon: continuous mining of sensor data in large-
scale self-infrastructures. Operating Systems Review,
40(3):38-44, 2006.

L. Huang, M. Garofalakis, A. D. Joseph, and N. Taft.
Communication-efficient tracking of distributed cumula-
tive triggers. In ICDCS, 2007.

R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the Internet with
PIER. In VLDB, 2003.
http://www.ietf.org/rfc/rfc2236.txt.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: a scalable and robust communication paradigm
for sensor networks. In MobiCom, 2000.

N. Jain, D. Kit, P. Mahajan, P. Yalagandula, M. Dahlin,
and Y. Zhang. STAR: Self tuning aggregation for scalable
monitoring. In VLDB, 2007.

N. Jain, P. Mahajan, D. Kit, P. Yalagandula, M. Dahlin,
and Y. Zhang. Network Imprecision: A new consistency

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation 101

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

metric for scalable monitoring (extended). Technical Re-
port TR-08-40, UT Austin Department of Computer Sci-
ences, October 2008.

N. Jain, P. Yalagandula, M. Dahlin, and Y. Zhang. Self-
tuning, bandwidth-aware monitoring for dynamic data
streams. In /CDE, 2009.

L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Comm. of the ACM, 21(7), July 1978.
L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. /EEE Transac-
tions on Computers, C-28(9):690-691, Sept. 1979.
http://www.tacc.utexas.edu/resources/
hpcsystems.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: a Tiny AGgregation Service for Ad-Hoc
Sensor Networks. In OSDI, 2002.

A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries and
deltas: efficient and robust aggregation in sensor network
streams. In SIGMOD, 2005.

A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Ol-
ston. Finding (recently) frequent items in distributed data
streams. In /CDE, 2005.

A. Nandi, A. Ganjam, P. Druschel, T. S. E. Ng, I. Stoica,
H. Zhang, and B. Bhattacharjee. SAAR: A shared control
plane for overlay multicast. In NSDI, 2007.

D. Narayanan, A. Donnelly, R. Mortier, and A. I. T. Row-
stron. Delay aware querying with seaweed. In VLDB,
2006.

S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson.
Synopsis diffusion for robust aggregation in sensor net-
works. In SenSys, 2004.

C. Olston, J. Jiang, and J. Widom. Adaptive filters for
continuous queries over distributed data streams. In SIG-
MOD, 2003.

Planetlab. http://www.planet-lab.org.

C. G. Plaxton, R. Rajaraman, and A. W. Richa. Access-
ing Nearby Copies of Replicated Objects in a Distributed
Environment. In ACM SPAA, 1997.

B. Raghavan, K. V. Vishwanath, S. Ramabhadran,
K. Yocum, and A. C. Snoeren. Cloud control with dis-
tributed rate limiting. In SIGCOMM, 2007.

A. Rowstron and P. Druschel. Pastry: Scalable, Dis-
tributed Object Location and Routing for Large-scale
Peer-to-peer Systems. In Middleware, 2001.

J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos,
M. Seltzer, and M. Welsh. Hourglass: An Infrastructure
for Connecting Sensor Networks and Applications. Tech-
nical Report TR-21-04, Harvard University, 2004.

A. Silberstein, G. Puggioni, A. Gelfand, K. Munagala,
and J. Yang. Suppression and failures in sensor networks:
A Bayesian approach. In VLDB, 2007.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for Internet applications. In ACM SIGCOMM, 2001.

E. Thereska, B. Salmon, J. D. Strunk, M. Wachs, M. Abd-
El-Malek, J. Lopez, and G. R. Ganger. Stardust: track-

[51]

[52]

[53]

[54]

[55]

[56]

[57]

ing activity in a distributed storage system. In SIGMET-
RICS/Performance, pages 3—14, 2006.

R. van Renesse, K. Birman, and W. Vogels. Astrolabe:
A robust and scalable technology for distributed sys-
tem monitoring, management, and data mining. TOCS,
21(2):164-206, 2003.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed sys-
tems and networks. In OSDI, 2002.

P. Yalagandula and M. Dahlin. A scalable distributed
information management system. In SIGCOMM, Aug.
2004.

P. Yalagandula, P. Sharma, S. Banerjee, S.-J. Lee, and
S. Basu. S*: A Scalable Sensing Service for Monitor-
ing Large Networked Systems. In SIGCOMM Wkshp. on
Internet Network Mgmt, 2006.

H. Yu. Dos-resilient secure aggregation queries in sensor
networks. In PODC, pages 394-395, 2007.

H. Yu and A. Vahdat. Design and evaluation of a conit-
based continuous consistency model for replicated ser-
vices. TOCS, 2002.

Y. Zhao, R. Govindan, and D. Estrin. Computing aggre-

gates for monitoring wireless sensor networks. In SNPA,
2003.

102

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

