
USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 309

Difference Engine:
Harnessing Memory Redundancy in Virtual Machines

Diwaker Gupta, Sangmin Lee∗, Michael Vrable,
Stefan Savage, Alex C. Snoeren, George Varghese, Geoffrey M. Voelker, and Amin Vahdat

{dgupta,mvrable,savage,snoeren,varghese,voelker,vahdat}@cs.ucsd.edu

University of California, San Diego

Abstract
Virtual machine monitors (VMMs) are a popular platform for
Internet hosting centers and cloud-based compute services.
By multiplexing hardware resources among virtual machines
(VMs) running commodity operating systems, VMMs decrease
both the capital outlay and management overhead of hosting
centers. Appropriate placement and migration policies can take
advantage of statistical multiplexing to effectively utilize avail-
able processors. However, main memory is not amenable to
such multiplexing and is often the primary bottleneck in achiev-
ing higher degrees of consolidation.

Previous efforts have shown that content-based page shar-
ing provides modest decreases in the memory footprint of VMs
running similar operating systems and applications. Our stud-
ies show that significant additional gains can be had by lever-
aging both sub-page level sharing (through page patching) and
in-core memory compression. We build Difference Engine,
an extension to the Xen virtual machine monitor, to support
each of these—in addition to standard copy-on-write full page
sharing—and demonstrate substantial savings not only between
VMs running similar applications and operating systems (up to
90%), but even across VMs running disparate workloads (up to
65%). In head-to-head memory-savings comparisons, Differ-
ence Engine outperforms VMware ESX server by a factor of
1.5 for homogeneous workloads and by a factor of 1.6–2.5 for
heterogeneous workloads. In all cases, the performance over-
head of Difference Engine is less than 7%.

1 Introduction
Virtualization technology has improved dramatically
over the past decade to become pervasive within the
service-delivery industry. Virtual machines are particu-
larly attractive for server consolidation. Their strong re-
source and fault isolation guarantees allow multiplexing
of hardware among individual services, each with (po-
tentially) distinct software configurations. Anecdotally,
individual server machines often run at 5–10% CPU uti-
lization. Operators’ reasons are manifold: because of
the need to over-provision for peak levels of demand,
because fault isolation mandates that individual services
run on individual machines, and because many services
often run best on a particular operating system configu-

∗Currently at UT Austin, sangmin@cs.utexas.edu

ration. The promise of virtual machine technology for
server consolidation is to run multiple services on a sin-
gle physical machine while still allowing independent
configuration and failure isolation.

While physical CPUs are frequently amenable to mul-
tiplexing, main memory is not. Many services run com-
fortably on a machine with 1 GB of RAM; multiplexing
ten VMs on that same host, however, would allocate each
just 100 MB of RAM. Increasing a machine’s physical
memory is often both difficult and expensive. Incremen-
tal upgrades in memory capacity are subject to both the
availability of extra slots on the motherboard and the abil-
ity to support higher-capacity modules: such upgrades
often involve replacing—as opposed to just adding—
memory chips. Moreover, not only is high-density mem-
ory expensive, it also consumes significant power. Fur-
thermore, as many-core processors become the norm, the
bottleneck for VM multiplexing will increasingly be the
memory, not the CPU. Finally, both applications and op-
erating systems are becoming more and more resource
intensive over time. As a result, commodity operating
systems require significant physical memory to avoid fre-
quent paging.

Not surprisingly, researchers and commercial VM
software vendors have developed techniques to decrease
the memory requirements for virtual machines. Notably,
the VMware ESX server implements content-based page
sharing, which has been shown to reduce the memory
footprint of multiple, homogeneous virtual machines by
10–40% [24]. We find that these values depend greatly
on the operating system and configuration of the guest
VMs. We are not aware of any previously published shar-
ing figures for mixed-OS ESX deployments. Our evalu-
ation indicates, however, that the benefits of ESX-style
page sharing decrease as the heterogeneity of the guest
VMs increases, due in large part to the fact that page
sharing requires the candidate pages to be identical.

The premise of this work is that there are significant
additional benefits from sharing at a sub-page granular-
ity, i.e., there are many pages that are nearly identical.
We show that it is possible to efficiently find such similar
pages and to coalesce them into a much smaller memory
footprint. Among the set of similar pages, we are able to

310 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

store most as patches relative to a single baseline page.
Finally, we also compress those pages that are unlikely

to be accessed in the near future. Traditional stream-
based compression algorithms typically do not have suf-
ficient “look-ahead” to find commonality across a large
number of pages or across large chunks of content, but
they can exploit commonality within a local region, such
as a single memory page. We show that an efficient im-
plementation of compression nicely complements page
sharing and patching.

In this paper, we present Difference Engine, an exten-
sion to the Xen VMM [6] that not only shares identical
pages, but also supports sub-page sharing and in-memory
compression of infrequently accessed pages. Our re-
sults show that Difference Engine can reduce the mem-
ory footprint of homogeneous workloads by up to 90%,
a significant improvement over previously published sys-
tems [24]. For a heterogeneous setup (different operat-
ing systems hosting different applications), we can re-
duce memory usage by nearly 65%. In head-to-head
comparisons against VMware’s ESX server running the
same workloads, Difference Engine delivers a factor of
1.5 more memory savings for a homogeneous workload
and a factor of 1.6-2.5 more memory savings for hetero-
geneous workloads.

Critically, we demonstrate that these benefits can be
obtained without negatively impacting application per-
formance: in our experiments across a variety of work-
loads, Difference Engine imposes less than 7% overhead.
We further show that Difference Engine can leverage im-
proved memory efficiency to increase aggregate system
performance by utilizing the free memory to create addi-
tional virtual machines in support of a target workload.
For instance, one can improve the aggregate through-
put available from multiplexing virtual machines running
Web services onto a single physical machine.

2 Related Work
Difference Engine builds upon substantial previous work
in page sharing, delta encoding and memory compres-
sion. In each instance, we attempt to leverage existing
approaches where appropriate.

2.1 Page Sharing
Two common approaches in the literature for finding re-
dundant pages are content-based page sharing, exempli-
fied by VMWare’s ESX server [24], and explicitly track-
ing page changes to build knowledge of identical pages,
exemplified by “transparent page sharing” in Disco [9].
Transparent page sharing can be more efficient, but re-
quires several modifications to the guest OS, in contrast
to ESX server and Difference Engine which require no
modifications.

To find sharing candidates, ESX hashes contents of

each page and uses hash collisions to identify poten-
tial duplicates. To guard against false collisions, both
ESX server and Difference Engine perform a byte-by-
byte comparison before actually sharing the page.

Once shared, our system can manage page updates in
a copy-on-write fashion, as in Disco and ESX server. We
build upon earlier work on flash cloning [23] of VMs,
which allows new VMs to be cloned from an existing
VM in milliseconds; as the newly created VM writes to
its memory, it is given private copies of the shared pages.
An extension by Kloster et al. studied page sharing in
Xen [13] and we build upon this experience, adding sup-
port for fully virtualized (HVM) guests, integrating the
global clock, and improving the overall reliability and
performance.

2.2 Delta Encoding
Our initial investigations into page similarity were in-
spired by research in leveraging similarity across files in
large file systems. In GLIMPSE [18], Manber proposed
computing Rabin fingerprints over fixed-size blocks at
multiple offsets in a file. Similar files will then share
some fingerprints. Thus the maximum number of com-
mon fingerprints is a strong indicator of similarity. How-
ever, in a dynamically evolving virtual memory system,
this approach does not scale well since every time a page
changes its fingerprints must be recomputed as well. Fur-
ther, it is inefficient to find the maximal intersecting set
from among a large number of candidate pages.

Broder adapted Manber’s approach to the problem of
identifying documents (in this case, Web pages) that are
nearly identical using a combination of Rabin finger-
prints and sampling based on minimum values under a
set of random permutations [8]. His paper also contains a
general discussion of how thresholds should be set for in-
ferring document similarity based on the number of com-
mon fingerprints or sets of fingerprints.

While these techniques can be used to identify simi-
lar files, they do not address how to efficiently encode
the differences. Douglis and Iyengar explored using Ra-
bin fingerprints and delta encoding to compress similar
files in the DERD system [12], but only considered whole
files. Kulkarni et al. [14] extended the DERD scheme to
exploit similarity at the block level. Difference Engine
also tries to exploit memory redundancy at several differ-
ent granularities.

2.3 Memory Compression
In-memory compression is not a new idea. Douglis
et al. [11] implemented memory compression in the
Sprite operating system with mixed results. In their expe-
rience, memory compression was sometimes beneficial,
but at other times the performance overhead outweighed
the memory savings. Subsequently, Wilson et al. argued

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 311

(a) Initial (b) Page sharing (c) Patching (d) Compression

Figure 1: The three different memory conservation techniques employed by Difference Engine: page sharing, page patching, and compression. In
this example, five physical pages are stored in less than three machine memory pages for a savings of roughly 50%.

Douglis’ mixed results were primarily due to slow hard-
ware [25]. They also developed new compression algo-
rithms (leveraged by Difference Engine) that exploited
the inherent structure present in virtual memory, whereas
earlier systems used general-purpose compression algo-
rithms.

Despite its mixed history, several operating systems
have dabbled with in-memory compression. In the early
90s, a Macintosh application, Ram Doubler, promised to
“double a machine’s RAM” [15]. Tuduce et al. [22]
implemented a compressed cache for Linux that adap-
tively manages the amount of physical memory devoted
to compressed pages using a simple algorithm shown to
be effective across a wide variety of workloads.

3 Architecture
Difference Engine uses three distinct mechanisms that
work together to realize the benefits of memory sharing,
as shown in Figure 1. In this example, two VMs have al-
located five pages total, each initially backed by distinct
pages in machine memory (Figure 1(a)). For brevity, we
only show how the mapping from guest physical memory
to machine memory changes; the guest virtual to guest
physical mapping remains unaffected. First, for identical
pages across the VMs, we store a single copy and create
references that point to the original. In Figure 1(b), one
page in VM-2 is identical to one in VM-1. For pages that
are similar, but not identical, we store a patch against a
reference page and discard the redundant copy. In Fig-
ure 1(c), the second page of VM-2 is stored as a patch
to the second page of VM-1. Finally, for pages that are
unique and infrequently accessed, we compress them in
memory to save space. In Figure 1(d), the remaining pri-
vate page in VM-1 is compressed. The actual machine
memory footprint is now less than three pages, down
from five pages originally.

In all three cases, efficiency concerns require us to se-
lect candidate pages that are unlikely to be accessed in
the near future. We employ a global clock that scans

memory in the background, identifying pages that have
not been recently used. In addition, reference pages for
sharing or patching must be found quickly without intro-
ducing performance overhead. Difference Engine uses
full-page hashes and hash-based fingerprints to identify
good candidates. Finally, we implement a demand pag-
ing mechanism that supplements main memory by writ-
ing VM pages to disk to support overcommitment, allow-
ing the total memory required for all VMs to temporarily
exceed the physical memory capacity.

3.1 Page Sharing
Difference Engine’s implementation of content-based
page sharing is similar to those in earlier systems. We
walk through memory looking for identical pages. As
we scan memory, we hash each page and index it based
on its hash value. Identical pages hash to the same value
and a collision indicates that a potential matching page
has been found. We perform a byte-by-byte comparison
to ensure that the pages are indeed identical before shar-
ing them.

Upon identifying target pages for sharing, we reclaim
one of the pages and update the virtual memory to point
at the shared copy. Both mappings are marked read-only,
so that writes to a shared page cause a page fault that
will be trapped by the VMM. The VMM returns a private
copy of the shared page to the faulting VM and updates
the virtual memory mappings appropriately. If no VM
refers to a shared page, the VMM reclaims it and returns
it to the free memory pool.

3.2 Patching
Traditionally, the goal of page sharing has been to elimi-
nate redundant copies of identical pages. Difference En-
gine considers further reducing the memory required to
store similar pages by constructing patches that represent
a page as the difference relative to a reference page. To
motivate this design decision, we provide an initial study
into the potential savings due to sub-page sharing, both
within and across virtual machines. First, we define the

312 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

following two heterogeneous workloads, each involving
three 512-MB virtual machines:

• MIXED-1: Windows XP SP1 hosting RUBiS [10];
Debian 3.1 compiling the Linux kernel; Slackware
10.2 compiling Vim 7.0 followed by a run of the
lmbench benchmark [19].

• MIXED-2: Windows XP SP1 running Apache 2.2.8
hosting approximately 32,000 static Web pages
crawled from Wikipedia, with httperf running
on a separate machine requesting these pages; De-
bian 3.1 running the SysBench database bench-
mark [1] using 10 threads to issue 100,000 requests;
Slackware 10.2 running dbench [2] with 10 clients
for six minutes followed by a run of the IOZone
benchmark [3].

We designed these workloads to stress the memory-
saving mechanisms since opportunities for identical page
sharing are reduced. Our choice of applications was
guided by the VMmark benchmark [17] and the vmbench
suite [20]. In this first experiment, for a variety of config-
urations, we suspend the VMs after completing a bench-
mark, and consider a static snapshot of their memory to
determine the number of pages required to store the im-
ages using various techniques. Table 1 shows the results
of our analysis for the MIXED-1 workload.

The first column breaks down these 393,120 pages into
three categories: 149,038 zero pages (i.e., the page con-
tains all zeros), 52,436 sharable pages (the page is not all
zeros, and there exists at least one other identical page),
and 191,646 unique pages (no other page in memory is
exactly the same). The second column shows the number
of pages required to store these three categories of pages
using traditional page sharing. Each unique page must
be preserved; however, we only need to store one copy
of a set of identical pages. Hence, the 52,436 non-unique
pages contain only 3577 distinct pages—implying there
are roughly fourteen copies of every non-unique page.
Furthermore, only one copy of the zero page is needed.
In total, the 393,120 original pages can be represented by
195,224 distinct pages—a 50% savings.

The third column depicts the additional savings avail-
able if we consider sub-page sharing. Using a cut-off of
2 KB for the patch size (i.e., we do not create a patch if it
will take up more than half a page), we identify 144,497
distinct pages eligible for patching. We store the 50,727
remaining pages as is and use them as reference pages
for the patched pages. For each of the similar pages, we
compute a patch using Xdelta [16]. The average patch
size is 1,070 bytes, allowing them to be stored in 37,695
4-KB pages, saving 106,802 pages. In sum, sub-page
sharing requires only 88,422 pages to store the memory
for all VMs instead of 195,224 for full-page sharing or

Pages Initial After
Sharing

After
Patching

Unique 191,646 191,646
Sharable (non-zero) 52,436 3,577
Zero 149,038 1

Total 393,120 195,224 88,422
Reference 50,727 50,727
Patchable 144,497 37,695

Table 1: Effectiveness of page sharing across three 512-MB VMs run-
ning Windows XP, Debian and Slackware Linux using 4-KB pages.

393,120 originally—an impressive 77% savings, or al-
most another 50% over full-page sharing. We note that
this was the least savings in our experiments; the savings
from patching are even higher in most cases. Further, a
significant amount of page sharing actually comes from
zero pages and, therefore, depends on their availability.
For instance, the same workload when executed on 256-
MB VMs yields far fewer zero pages. Alternative mech-
anisms to page sharing become even more important in
such cases.

One of the principal complications with sub-page
sharing is identifying candidate reference pages. Dif-
ference Engine uses a parameterized scheme to iden-
tify similar pages based upon the hashes of sev-
eral 64-byte portions of each page. In particular,
HashSimilarityDetector(k, s) hashes the contents of
(k · s) 64-byte blocks at randomly chosen locations on
the page, and then groups these hashes together into k
groups of s hashes each. We use each group as an in-
dex into a hash table. In other words, higher values
of s capture local similarity while higher k values in-
corporate global similarity. Hence, HashSimilarityDe-
tector(1,1) will choose one block on a page and index
that block; pages are considered similar if that block of
data matches. HashSimilarityDetector(1,2) combines
the hashes from two different locations in the page into
one index of length two. HashSimilarityDetector(2,1)
instead indexes each page twice: once based on the con-
tents of a first block, and again based on the contents
of a second block. Pages that match at least one of the
two blocks are chosen as candidates. For each scheme,
the number of candidates, c, specifies how many differ-
ent pages the hash table tracks for each signature. With
one candidate, we only store the first page found with
each signature; for larger values, we keep multiple pages
in the hash table for each index. When trying to build a
patch, Difference Engine computes a patch between all
matching pages and chooses the best one.

Figure 2 shows the effectiveness of this scheme for
various parameter settings on the two workloads de-
scribed above. On the X-axis, we have parameters in
the format (k, s), c, and on the Y-axis we plot the total
savings from patching after all identical pages have been

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 313

(1,
1),

1
(1,

1),
2
(1,

1),
8
(2,

1),
1
(2,

1),
2
(2,

1),
8
(4,

1),
1
(4,

1),
2
(4,

1),
8
(1,

2),
1
(1,

2),
2
(1,

2),
8
(2,

2),
1
(2,

2),
2
(2,

2),
8

0

5

10

15

20

25

30

35

40
Sa

vi
ng

s
(%

)
MIXED-1
MIXED-2

Figure 2: Effectiveness of the similarity detector for varying number of
indices, index length and number of candidates. All entries use a 18-bit
hash.

shared. Throughout the paper, we use the following def-
inition of savings (we factor in the memory used to store
the shared and patched/compressed pages):

�

1 −
Total memory actually used

Total memory allocated to VMs

�

× 100

For both the workloads, HashSimilarityDetec-
tor(2,1) with one candidate does surprisingly well. There
is a substantial gain due to hashing two distinct blocks
in the page separately, but little additional gain by hash-
ing more blocks. Combining blocks does not help much,
at least for these workloads. Furthermore, storing more
candidates in each hash bucket also produces little gain.
Hence, Difference Engine indexes a page by hashing 64-
byte blocks at two fixed locations in the page (chosen at
random) and using each hash value as a separate index to
store the page in the hash table. To find a candidate sim-
ilar page, the system computes hashes at the same two
locations, looks up those hash table entries, and chooses
the better of the (at most) two pages found there.

Our current implementation uses 18-bit hashes to keep
the hash table small to cope with the limited size of the
Xen heap. In general though, larger hashes might be used
for improved savings and fewer collisions. Our analysis
indicates, however, that the benefits from increasing the
hash size are modest. For example, using HashSimilari-
tyDetector(2,1) with one candidate, a 32-bit hash yields
a savings of 24.66% for MIXED-1, compared to a savings
of 20.11% with 18-bit hashes.

3.3 Compression
Finally, for pages that are not significantly similar to
other pages in memory, we consider compressing them
to reduce the memory footprint. Compression is use-
ful only if the compression ratio is reasonably high, and,
like patching, if selected pages are accessed infrequently,

otherwise the overhead of compression/decompression
will outweigh the benefits. We identify candidate pages
for compression using a global clock algorithm (Section
4.2), assuming that pages that have not been recently ac-
cessed are unlikely to be accessed in the near future.

Difference Engine supports multiple compression al-
gorithms, currently LZO and WKdm as described in
[25]; We invalidate compressed pages in the VM and save
them in a dynamically allocated storage area in machine
memory. When a VM accesses a compressed page, Dif-
ference Engine decompresses the page and returns it to
the VM uncompressed. It remains there until it is again
considered for compression.

3.4 Paging Machine Memory

While Difference Engine will deliver some (typically
high) level of memory savings, in the worst case all
VMs might actually require all of their allocated memory.
Setting aside sufficient physical memory to account for
this case prevents using the memory saved by Difference
Engine to create additional VMs. Not doing so, how-
ever, may result in temporarily overshooting the physi-
cal memory capacity of the machine and cause a system
crash. We therefore require a demand-paging mechanism
to supplement main memory by writing pages out to disk
in such cases.

A good candidate page for swapping out would likely
not be accessed in the near future—the same requirement
as compressed/patched pages. In fact, Difference Engine
also considers compressed and patched pages as candi-
dates for swapping out. Once the contents of the page
are written to disk, the page can be reclaimed. When
a VM accesses a swapped out page, Difference Engine
fetches it from disk and copies the contents into a newly
allocated page that is mapped appropriately in the VM’s
memory.

Since disk I/O is involved, swapping in/out is an ex-
pensive operation. Further, a swapped page is unavail-
able for sharing or as a reference page for patching.
Therefore, swapping should be an infrequent operation.
Difference Engine implements the core mechanisms for
paging, and leaves policy decisions—such as when and
how much to swap—to user space tools. We describe our
reference implementation for swapping and the associ-
ated tools in Section 4.6.

4 Implementation
We have implemented Difference Engine on top of Xen
3.0.4 in roughly 14,500 lines of code. An additional
20,000 lines come from ports of existing patching and
compression algorithms (Xdelta, LZO, WKdm) to run in-
side Xen.

314 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4.1 Modifications to Xen
Xen and other platforms that support fully virtualized
guests use a mechanism called “shadow page tables” to
manage guest OS memory [24]. The guest OS has its
own copy of the page table that it manages believing that
they are the hardware page tables, though in reality it is
just a map from the guest’s virtual memory to its notion
of physical memory (V2P map). In addition, Xen main-
tains a map from the guest’s notion of physical memory
to the machine memory (P2M map). The shadow page
table is a cache of the results of composing the V2P map
with the P2M map, mapping guest virtual memory di-
rectly to machine memory. Loosely, it is the virtualized
analog to a software TLB. The shadow page table en-
ables quick page translation and look-ups, and more im-
portantly, can be used directly by the CPU.

Difference Engine relies on manipulating P2M maps
and the shadow page tables to interpose on page accesses.
For simplicity, we do not consider any pages mapped
by Domain-0 (the privileged, control domain in Xen),
which, among other things, avoids the potential for cir-
cular page faults. Our implementation method gives rise
to two slight complications.

4.1.1 Real Mode

On x86 hardware, the booting-on-bare-metal process dis-
ables the x86 real-mode paging. This configuration is re-
quired because the OS needs to obtain some information
from the BIOS for the boot sequence to proceed. When
executing under Xen, this requirement means that pag-
ing is disabled during the initial stages of the boot pro-
cess, and shadow page tables are not used until paging is
turned on. Instead, the guest employs a direct P2M map
as the page table. Hence, a VM’s memory is not available
for consideration by Difference Engine until paging has
been turned on within the guest OS.

4.1.2 I/O Support

To support unmodified operating system requirements
for I/O access, the Xen hypervisor must emulate much
of the underlying hardware that the OS expects (such as
the BIOS and the display device). Xen has a software
I/O emulator based on Qemu [7]. A per-VM user-space
process in Domain-0 known as ioemu performs all nec-
essary I/O emulation. The ioemu must be able to read
and write directly into the guest memory, primarily for
efficiency. For instance, this enables the ioemu process
to DMA directly into pages of the VM. By virtue of ex-
ecuting in Domain-0, the ioemu may map any pages of
the guest OS in its address space.

By default, ioemu maps the entire memory of the
guest into its address space for simplicity. Recall, how-
ever, that Difference Engine explicitly excludes pages
mapped by Domain-0. Thus, ioemu will nominally pre-

vent us from saving any memory at all, since every VM’s
address space will be mapped by its ioemu into Domain-
0. Our initial prototype addressed this issue by modify-
ing ioemu to map a small, fixed number (16) of pages
from each VM at any given time. While simple to im-
plement, this scheme suffered from the drawback that,
for I/O-intensive workloads, the ioemu process would
constantly have to map VM pages into its address space
on demand, leading to undesirable performance degra-
dation. To address this limitation, we implemented a
dynamic aging mechanism in ioemu—VM pages are
mapped into Domain-0 on demand, but not immediately
unmapped. Every ten seconds, we unmap VM pages
which were not accessed during the previous interval.

4.1.3 Block Allocator

Patching and compression may result in compact repre-
sentations of a page that are much smaller than the page
size. We wrote a custom block allocator for Difference
Engine to efficiently manage storage for patched and
compressed pages. The allocator acquires pages from the
domain heap (from which memory for new VMs is allo-
cated) on demand, and returns pages to the heap when no
longer required.

4.2 Clock
Difference Engine implements a not-recently-used
(NRU) policy [21] to select candidate pages for sharing,
patching, compression and swapping out. On each invo-
cation, the clock scans a portion of the memory, checking
and clearing the referenced (R) and modified (M) bits on
pages. Thus, pages with the R/M bits set must have been
referenced/modified since the last scan. We ensure that
successive scans of memory are separated by at least four
seconds in the current implementation to give domains a
chance to set the R/M bits on frequently accessed pages.
In the presence of multiple VMs, the clock scans a small
portion of each VM’s memory in turn for fairness. The
external API exported by the clock is simple: return a
list of pages (of some maximum size) that have not been
accessed in some time.

In OSes running on bare metal, the R/M bits on page-
table entries are typically updated by the processor. Xen
structures the P2M map exactly like the page tables used
by the hardware. However, since the processor does not
actually use the P2M map as a page table, the R/M bits
are not updated automatically. We modify Xen’s shadow
page table code to set these bits when creating readable
or writable page mappings. Unlike conventional operat-
ing systems, where there may be multiple sets of page
tables that refer to the same set of pages, in Xen there is
only one P2M map per domain. Hence, each guest page
corresponds unambiguously to one P2M entry and one
set of R/M bits.

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 315

Using the R/M bits, we can annotate each page with
its “freshness”:

• Recently modified (C1): The page has been written
since the last scan. [M,R=1,1]

• Not recently modified (C2): The page has been
accessed since the last scan, but not modified.
[M,R=1,0]

• Not recently accessed (C3): The page has not been
accessed at all since the last scan. [M,R=0,0]

• Not accessed for an extended period (C4): The
page has not been accessed in the past few scans.

Note that the existing two R/M bits are not sufficient
to classify C4 pages—we extend the clock’s “memory”
by leveraging two additional bits in the page table en-
tries to identify such pages. We update these bits when a
page is classified as C3 in consecutive scans. Together,
these four annotations enable a clean separation between
mechanism and policy, allowing us to explore different
techniques to determine when and what to share, patch,
and compress. By default, we employ the following pol-
icy. C1 pages are ignored; C2 pages are considered for
sharing and to be reference pages for patching, but cannot
be patched or compressed themselves; C3 pages can be
shared or patched; C4 pages are eligible for everything,
including compression and swapping.

We consider sharing first since it delivers the most
memory savings in exchange for a small amount of meta
data. We consider compression last because once a page
is compressed, there is no opportunity to benefit from fu-
ture sharing or patching of that page. An alternate, more
aggressive policy might treat all pages as if they were in
state C4 (not accessed in a long time)—in other words,
proactively patch and compress pages. Initial experimen-
tation indicates that while the contribution of patched and
compressed pages does increase slightly, it does not yield
a significant net savings. We also considered a policy that
selects pages for compression before patching. Initial ex-
perimentation with the workloads in Section 5.4.2 shows
that this policy performs slightly worse than the default
in terms of savings, but incurs less performance overhead
since patching is more resource intensive. We suspect
that it may be a good candidate policy for heterogeneous
workloads with infrequently changing working sets, but
do not explore it further here.

4.3 Page Sharing
Difference Engine uses the SuperFastHash [4] function
to compute digests for each scanned page and inserts
them along with the page-frame number into a hash ta-
ble. Ideally, the hash table should be sized so that it can
hold entries for all of physical memory. The hash table

is allocated out of Xen’s heap space, which is quite lim-
ited in size: the code, data, and heap segments in Xen
must all fit in a 12-MB region of memory. Changing the
heap size requires pervasive code changes in Xen, and
will likely break the application binary interface (ABI)
for some OSes. We therefore restrict the size of the page-
sharing hash table so that it can hold entries for only 1/5
of physical memory. Hence Difference Engine processes
memory in five passes, as described by Kloster et al.
[13]. In our test configuration, this partitioning results
in a 1.76-MB hash table. We divide the space of hash
function values into five intervals, and only insert a page
into the table if its hash value falls into the current inter-
val. A complete cycle of five passes covering all the hash
value intervals is required to identify all identical pages.

4.4 Page-similarity Detection
The goal of the page-similarity component is to find
pairs of pages with similar content, and, hence, make
candidates for patching. We implement a simple strat-
egy for finding similar pages based on hashing short
blocks within a page, as described in Section 3.2. Specif-
ically, we use the HashSimilarityDetector(2,1) de-
scribed there, which hashes short data blocks from two
locations on each page, and indexes the page at each of
those two locations in a separate page-similarity hash ta-
ble, distinct from the page-sharing hash table described
above. We use the 1-candidate variation, where at most
one page is indexed for each block hash value.

Recall that the clock makes a complete scan through
memory in five passes. The page-sharing hash table is
cleared after each pass, since only pages within a pass
are considered for sharing. However, two similar pages
may appear in different passes if their hash values fall in
different intervals. Since we want to only consider pages
that have not been shared in a full cycle for patching, the
page-similarity hash table is not cleared on every pass.
This approach also increases the chances of finding better
candidate pages to act as the reference for a patch.

The page-similarity hash table may be cleared after
considering every page in memory—that is, at the end
of each cycle of the global clock. We do so to prevent
stale data from accumulating: if a page changes after it
has been indexed, we should remove old pointers to it.
Since we do not trap on write operations, it is simpler to
just discard and rebuild the similarity hash table.

Only the last step of patching—building the patch and
replacing the page with it—requires a lock. We per-
form all earlier steps (indexing and lookups to find simi-
lar pages) without pausing any domains. Thus, the page
contents may change after Difference Engine indexes the
page, or after it makes an initial estimate of patch size.
This is fine since the goal of these steps is to find pairs
of pages that will likely patch well. An intervening page

316 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

modification will not cause a correctness problem, only a
patch that is larger than originally intended.

4.5 Compression
Compression operates similarly to patching—in both
cases the goal is to replace a page with a shorter repre-
sentation of the same data. The primary difference is that
patching makes use of a reference page, while a com-
pressed representation is self contained.

There is one important interaction between compres-
sion and patching: once we compress a page, the page
can no longer be used as a reference for a later patched
page. A naive implementation that compresses all non-
identical pages as it goes along will almost entirely pre-
vent page patches from being built. Compression of a
page should be postponed at least until all pages have
been checked for similarity against it. A complete cy-
cle of a page sharing scan will identify similar pages,
so a sufficient condition for compression is that no page
should be compressed until a complete cycle of the page
sharing code finishes. We make the definition of “not
accessed for an extended period” in the clock algorithm
coincide with this condition (state C4). As mentioned in
Section 4.2, this is our default policy for page compres-
sion.

4.6 Paging Machine Memory
Recall that any memory freed by Difference Engine can-
not be used reliably without supplementing main mem-
ory with secondary storage. That is, when the total al-
located memory of all VMs exceeds the system memory
capacity, some pages will have to be swapped to disk.
Note that this ability to overcommit memory is useful in
Xen independent of other Difference Engine functional-
ity, and has been designed accordingly.

The Xen VMM does not perform any I/O (delegating
all I/O to Domain-0) and is not aware of any devices.
Thus, it is not possible to build swap support directly in
the VMM. Further, since Difference Engine supports un-
modified OSes, we cannot expect any support from the
guest OS. Figure 3 shows the design of our swap imple-
mentation guided by these constraints. A single swap
daemon (swapd) running as a user process in Domain-
0 manages the swap space. For each VM in the system,
swapd creates a separate thread to handle swap-in re-
quests. Swapping out is initiated by swapd, when one
of the following occurs:

• The memory utilization in the system ex-
ceeds some user configurable threshold (the
HIGH WATERMARK). Pages are swapped out until
a user configurable threshold of free memory is
attained (the LOW WATERMARK). A separate thread
(the memory monitor) tracks system memory.

Figure 3: Architecture of the swap mechanism.

• A swap-out notification is received from Xen via an
event channel. This allows the hypervisor to initiate
swapping if more memory is urgently required (for
instance, when creating a private copy of a shared
page). The hypervisor indicates the amount of free
memory desired.

• A swap-out request is received from another pro-
cess. This allows other user space tools (for in-
stance, the VM creation tool) to initiate swapping
to free memory. We currently employ XenStore [5]
for such communication, but any other IPC mecha-
nism can be used.

Note that swapd always treats a swap-out request as a
hint. It will try to free pages, but if that is not possible—
if no suitable candidate page was available, for instance,
or if the swap space became full—it continues silently. A
single flat file of configurable size is used as storage for
the swap space.

To swap out a page, swapd makes a hypercall into
Xen, where a victim page is chosen by invoking the
global clock. If the victim is a compressed or patched
page, we first reconstruct it. We pause the VM that owns
the page and copy the contents of the page to a page in
Domain-0’s address space (supplied by swapd). Next,
we remove all entries pointing to the victim page in the
P2M and M2P maps, and in the shadow page tables. We
then mark the page as swapped out in the correspond-
ing page table entry. Meanwhile, swapd writes the page
contents to the swap file and inserts the corresponding
byte offset in a hash table keyed by <Domain ID, guest
page-frame number>. Finally, we free the page, return it
to the domain heap, and reschedule the VM.

When a VM tries to access a swapped page, it incurs
a page fault and traps into Xen. We pause the VM and
allocate a fresh page to hold the swapped in data. We
populate the P2M and M2P maps appropriately to ac-
commodate the new page. Xen dispatches a swap-in re-
quest to swapd containing the domain ID and the fault-
ing page-frame number. The handler thread for the fault-
ing domain in swapd receives the request and fetches
the location of the page in the swap file from the hash
table. It then copies the page contents into the newly al-
located page frame within Xen via another hypercall. At

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 317

Function Mean execution time (µs)
share pages 6.2
cow break 25.1
compress page 29.7
uncompress 10.4
patch page 338.1
unpatch 18.6
swap out page 48.9
swap in page 7151.6

Table 2: CPU overhead of different functions.

this point, swapd notifies Xen, and Xen restarts the VM
at the faulting instruction.

This implementation leads to two interesting interac-
tions between ioemu and swapd. First, recall that
ioemu can directly write to a VM page mapped in its
address space. Mapped pages might not be accessed un-
til later, so a swapped page can get mapped or a mapped
page can get swapped out without immediate detection.
To avoid unnecessary subsequent swap ins, we modify
ioemu to ensure that pages to be mapped will be first
swapped in if necessary and that mapped pages become
ineligible for swapping. Also note that control must be
transferred from Xen to swapd for a swap in to com-
plete. This asynchrony allows a race condition where
ioemu tries to map a swapped out page (so Xen initi-
ates a swap in on its behest) and proceeds with the access
before the swap in has finished. This race can happen
because both processes must run in Domain-0 in the Xen
architecture. As a work around, we modify ioemu to
block if a swap in is still in progress inside swapd using
shared memory between the processes for the required
synchronization.

5 Evaluation
We first present micro-benchmarks to evaluate the cost
of individual operations, the performance of the global
clock and the behavior of each of the three mechanisms in
isolation. Next, we evaluate whole system performance:
for a range of workloads, we measure memory savings
and the impact on application performance. We quan-
tify the contributions of each Difference Engine mech-
anism, and also present head-to-head comparisons with
the VMware ESX server. Finally, we demonstrate how
our memory savings can be used to boost the aggregate
system performance. Unless otherwise mentioned, all
experiments are run on dual-processor, dual-core 2.33-
GHz Intel Xeon machines and the page size is 4 KB.

5.1 Cost of Individual Operations
Before quantifying the memory savings provide by Dif-
ference Engine, we measure the overhead of various
functions involved. We obtain these numbers by en-
abling each mechanism in isolation, and running the

custom micro-benchmark described in Section 5.3. To
benchmark paging, we disabled all three mechanisms
and forced eviction of 10,000 pages from a single 512-
MB VM. We then ran a simple program in the VM that
touches all memory to force pages to be swapped in.

Table 2 shows the overhead imposed by the ma-
jor Difference Engine operations. As expected, col-
lapsing identical pages into a copy-on-write shared
page (share page) and recreating private copies
(cow break) are relatively cheap operations, taking ap-
proximately 6 and 25 µs, respectively. Perhaps more sur-
prising, however, is that compressing a page on our hard-
ware is fast, requiring slightly less than 30 µs on average.
Patching, on the other hand, is almost an order of magni-
tude slower: creating a patch (patch page) takes over
300 µs. This time is primarily due to the overhead of
finding a good candidate base page and constructing the
patch. Both decompressing a page and re-constructing
a patched page are also fairly fast, taking 10 and 18 µs
respectively.

Swapping out takes approximately 50 µs. However,
this does not include the time to actually write the page
to disk. This is intentional: once the page contents have
been copied to user space, they are immediately avail-
able for being swapped in; and the actual write to the disk
might be delayed because of file system and OS buffering
in Domain-0. Swapping in, on the other hand, is the most
expensive operation, taking approximately 7 ms. There
are a few caveats, however. First, swapping in is an asyn-
chronous operation and might be affected by several fac-
tors, including process scheduling within Domain-0; it
is not a tight bound. Second, swapping in might require
reading the page from disk, and the seek time will depend
on the size of the swap file, among other things.

5.2 Clock Performance
The performance of applications running with Differ-
ence Engine depends upon how effectively we choose
idle pages to compress or patch. Patching and com-
pression are computationally intensive, and the benefits
of this overhead last only until the next access to the
page. Reads are free for shared pages, but not so for
compressed or patched pages. The clock algorithm is in-
tended to only consider pages for compression/patching
that are not likely to be accessed again soon; here we
evaluate how well it achieves that goal.

For three different workloads, we trace the life-
time of each patched and compressed page. The
lifetime of a page is the time between when it was
patched/compressed, and the time of the first subsequent
access (read or write). The workloads range from best
case homogeneous configurations (same OS, same ap-
plications) to a worst case, highly heterogeneous mix
(different OSes, different applications). The RUBiS and

318 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

       































Figure 4: Lifetime of patched and compressed pages for three different
workloads. Our NRU implementation works well in practice.

kernel compile workloads use four VMs each (Section
5.4.1). We use the MIXED-1 workload described earlier
(Section 3.2) as the heterogeneous workload.

Figure 4 plots the cumulative distribution of the life-
time of a page: the X-axis shows the lifetime (in
ms) in log scale, and the Y-axis shows the fraction of
compressed/patched pages. A good clock algorithm
should give us high lifetimes, since we would like to
patch/compress only those pages which will not be ac-
cessed in the near future. As the figure shows, almost
80% of the victim pages have a lifetime of at least 10 sec-
onds, and roughly 50% have a lifetime greater than 100
seconds. This is true for both the homogeneous and the
mixed workloads, indicating that our NRU implementa-
tion works well in practice.

5.3 Techniques in Isolation

To understand the individual contribution of the three
techniques, we first quantify the performance of each
in isolation. We deployed Difference Engine on three
machines running Debian 3.1 on a VM. Each machine
is configured to use a single mechanism—one machine
uses just page sharing, one uses just compression, and
one just patching. We then subject all the machines to
the same workload and profile the memory utilization.

To help distinguish the applicability of each technique
to various page contents, we choose a custom work-
load generator that manipulates memory in a repeatable,
predictable manner over off-the-shelf benchmarks. Our
workload generator runs in four phases. First it allocates
pages of a certain type. To exercise the different mecha-
nisms in predictable ways, we consider four distinct page
types: zero pages, random pages, identical pages and
similar-but-not-identical pages. Second, it reads all the
allocated pages. Third, it makes several small writes to
all the pages. Finally, it frees all allocated pages and
exits. After each step, the workload generator idles for
some time, allowing the memory to stabilize. For each
run of the benchmark, we spawn a new VM and start the

workload generator within it. At the end of each run, we
destroy the container VM and again give memory some
time to stabilize before the next run. We ran benchmarks
with varying degrees of similarity, where similarity is de-
fined as follows: a similarity of 90% means all pages dif-
fer from a base page by 10%, and so any two pages will
differ from each other by at most 20%. Here, we present
the results for 95%-similar pages, but the results for other
values are similar.

Each VM image is configured with 256 MB of mem-
ory. Our workload generator allocates pages filling 75%
(192 MB) of the VM’s memory. The stabilization period
is a function of several factors, particularly the period of
the global clock. For these experiments, we used a sleep
time of 80 seconds between each phase. During the write
step, the workload generator writes a single constant byte
at 16 fixed offsets in the page. On each of the time series
graphs, the significant events during the run are marked
with a vertical line. These events are: (1) begin and (2)
end of the allocation phase, (3) begin and (4) end of the
read phase, (5) begin and (6) end of the write phase, (7)
begin and (8) end of the free phase, and (9) VM destruc-
tion.

Figure 5 shows the memory savings as a function of
time for each mechanism for identical pages (for brevity,
we omit results with zero pages—they are essentially the
same as identical pages). Note that while each mech-
anism achieves similar savings, the crucial difference
is that reads are free for page sharing. With compres-
sion/patching, even a read requires the page to be recon-
structed, leading to the sharp decline in savings around
event (3) and (5).

At the other extreme are random pages. Intuitively,
none of the mechanisms should work well since the op-
portunity to share memory is scarce. Figure 6 agrees:
once the pages have been allocated, none of the mecha-
nisms are able to share more than 15–20% memory. Page
sharing does the worst, managing 5% at best.

From the perspective of page sharing, similar pages are
no better than random pages. However, patching should
take advantage of sub-page similarity across pages. Fig-
ure 7 shows the memory savings for the workload with
pages of 95% similarity. Note how similar the graphs
for sharing and compression look for similar and random
pages. Patching, on the other hand, does substantially
better, extracting up to 55% savings.

5.4 Real-world Applications
We now present the performance of Difference Engine
on a variety of workloads. We seek to answer two ques-
tions. First, how effective are the memory-saving mech-
anisms at reducing memory usage for real-world appli-
cations? Second, what is the impact of those memory-
sharing mechanisms on system performance? Since the

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 319

(a) Sharing (b) Patching (c) Compression

Figure 5: Workload: Identical Pages. Performance with zero pages is very similar. All mechanisms exhibit similar gains.

(a) Sharing (b) Patching (c) Compression

Figure 6: Workload: Random Pages. None of the mechanisms perform very well, with sharing saving the least memory.

(a) Sharing (b) Patching (c) Compression

Figure 7: Workload: Similar Pages with 95% similarity. Patching does significantly better than compression and sharing.

degree of possible sharing depends on the software con-
figuration, we consider several different cases of applica-
tion mixes.

To put our numbers in perspective, we conduct head-
to-head comparisons with VMware ESX server for three
different workload mixes. We run ESX Server 3.0.1 build
32039 on a Dell PowerEdge 1950 system. Note that even
though this system has two 2.3-GHz Intel Xeon proces-
sors, our VMware license limits our usage to a single
CPU. We therefore restrict Xen (and, hence, Difference
Engine) to use a single CPU for fairness. We also en-
sure that the OS images used with ESX match those used
with Xen, especially the file system and disk layout. Note
that we are only concerned with the effectiveness of the
memory sharing mechanisms—not in comparing the ap-
plication performance across the two hypervisors. Fur-

ther, we configure ESX to use its most aggressive page
sharing settings where it scans 10,000 pages/second (de-
fault 200); we configure Difference Engine similarly.

5.4.1 Base Scenario: Homogeneous VMs

In our first set of benchmarks, we test the base scenario
where all VMs on a machine run the same OS and ap-
plications. This scenario is common in cluster-based
systems where several services are replicated to provide
fault tolerance or load balancing. Our expectation is that
significant memory savings are available and that most of
the savings will come from page sharing.

On a machine running standard Xen, we start from
1 to 6 VMs, each with 256 MB of memory and run-
ning RUBiS [10]—an e-commerce application designed
to evaluate application server performance—on Debian

320 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

   



























(a) Total requests handled

   
































(b) Average response time

   
































(c) Average and maximum savings

Figure 8: Difference Engine performance with homogeneous VMs running RUBiS

Figure 9: Four identical VMs execute dbench.
For such homogeneous workloads, both Differ-
ence Engine and ESX eventually yield similar
savings, but DE extracts more savings while the
benchmark is in progress.

Figure 10: Memory savings for MIXED-1. Dif-
ference Engine saves up to 45% more memory
than ESX.

Figure 11: Memory savings for MIXED-2. Dif-
ference Engine saves almost twice as much
memory as ESX.

3.1. We use the PHP implementation of RUBiS; each in-
stance consists of a Web server (Apache) and a database
server (MySQL). Two distinct client machines generate
the workload, each running the standard RUBiS work-
load generator simulating 100 user sessions. The bench-
mark runs for roughly 20 minutes. The workload genera-
tor reports several metrics at the end of the benchmark, in
particular the average response time and the total number
of requests served.

We then run the same set of VMs with Difference En-
gine enabled. Figures 8(a) and 8(b) show that both the to-
tal number of requests and the average response time re-
main unaffected while delivering 65–75% memory sav-
ings in all cases. In Figure 8(c), the bars indicate the aver-
age memory savings over the duration of the benchmark.
Each bar also shows the individual contribution of each
mechanism. Note that in this case, the bulk of memory
savings comes from page sharing. Recall that Difference
Engine tries to share as many pages as it can before con-
sidering pages for patching and compression, so sharing
is expected to be the largest contributor in most cases,
particularly in homogeneous workloads.

Next, we conduct a similar experiment where each VM
compiles the Linux kernel (version 2.6.18). Since the
working set of VMs changes much more rapidly in a ker-
nel compile, we expect less memory savings compared

to the RUBiS workload. As before, we measure the time
taken to finish the compile and the memory savings for
varying number of virtual machines. We summarize the
results here for brevity: in each case, the performance
under Difference Engine is within 5% of the baseline,
and on average Difference Engine delivers around 40%
savings with four or more VMs.

We next compare Difference Engine performance with
the VMware ESX server. We set up four 512-MB virtual
machines running Debian 3.1. Each VM executes dbench
[2] for ten minutes followed by a stabilization period of
20 minutes. Figure 9 shows the amount of memory saved
as a function of time. First, note that eventually both ESX
and Difference Engine reclaim roughly the same amount
of memory (the graph for ESX plateaus beyond 1,200
seconds). However, while dbench is executing, Differ-
ence Engine delivers approximately 1.5 times the mem-
ory savings achieved by ESX. As before, the bulk of Dif-
ference Engine savings come from page sharing for the
homogeneous workload case.

5.4.2 Heterogeneous OS and Applications

Given the increasing trend towards virtualization, both
on the desktop and in the data center, we envision that a
single physical machine will host significantly different
types of operating systems and workloads. While smarter

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 321

Kernel
Compile
(sec)

Vim
compile,
lmbench
(sec)

RUBiS
requests

RUBiS
response
time(ms)

Baseline 670 620 3149 1280
DE 710 702 3130 1268

Table 3: Application performance under Difference Engine for the het-
erogeneous workload MIXED-1 is within 7% of the baseline.

VM placement and scheduling will mitigate some of
these differences, there will still be a diverse and hetero-
geneous mix of applications and environments, under-
scoring the need for mechanisms other than page shar-
ing. We now examine the utility of Difference Engine
in such scenarios, and demonstrate that significant addi-
tional memory savings result from employing patching
and compression in these settings.

Figures 10 and 11 show the memory savings as a
function of time for the two heterogeneous workloads—
MIXED-1 and MIXED-2 described in Section 3.2. We
make the following observations. First, in steady state,
Difference Engine delivers a factor of 1.6-2.5 more mem-
ory savings than ESX. For instance, for the MIXED-2
workload, Difference Engine could host the three VMs
allocated 512 MB of physical memory each in approxi-
mately 760 MB of machine memory; ESX would require
roughly 1100 MB of machine memory. The remaining,
significant, savings come from patching and compres-
sion. And these savings come at a small cost. Table 3
summarizes the performance of the three benchmarks in
the MIXED-1 workload. The baseline configuration is
regular Xen without Difference Engine. In all cases, per-
formance overhead of Difference Engine is within 7% of
the baseline. For the same workload, we find that perfor-
mance under ESX with aggressive page sharing is also
within 5% of the ESX baseline with no page sharing.

5.4.3 Increasing Aggregate System Performance

Difference Engine goes to great lengths to reclaim mem-
ory in a system, but eventually this extra memory needs
to actually get used in a productive manner. One can cer-
tainly use the saved memory to create more VMs, but
does that increase the aggregate system performance?

To answer this question, we created four VMs with
650 MB of RAM each on a physical machine with
2.8 GB of free memory (excluding memory allocated
to Domain-0). For the baseline (without Difference En-
gine), Xen allocates memory statically. Upon creating
all the VMs, there is clearly not enough memory left to
create another VM of the same configuration. Each VM
hosts a RUBiS instance. For this experiment, we used
the Java Servlets implementation of RUBiS. There are
two distinct client machines per VM to act as workload
generators.

     


































(a) Total requests handled

     






































(b) Average response time

Figure 12: Up to a limit, Difference Engine can help increase aggregate
system performance by spreading the load across extra VMs.

The goal is to increase the load on the system to sat-
uration. The solid lines in Figures 12(a) and 12(b) show
the total requests served and the average response time
for the baseline, with the total offered load marked on
the X-axis. Note that beyond 960 clients, the total num-
ber of requests served plateaus at around 180,000 while
the average response time increases sharply. Upon inves-
tigation, we find that for higher loads all of the VMs have
more than 95% memory utilization and some VMs actu-
ally start swapping to disk (within the guest OS). Using
fewer VMs with more memory (for example, 2 VMs with
1.2 GB RAM each) did not improve the baseline perfor-
mance for this workload.

Next, we repeat the same experiment with Difference
Engine, except this time we utilize reclaimed memory to
create additional VMs. As a result, for each data point
on the X-axis, the per VM load decreases, while the ag-
gregate offered load remains the same. We expect that
since each VM individually has lower load compared
to the baseline, the system will deliver better aggregate
performance. The remaining lines in Figures 12(a) and
12(b) show the performance with up to three extra VMs.
Clearly, Difference Engine enables higher aggregate per-
formance and better response time compared to the base-
line. However, beyond a certain point (two additional

322 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

VMs in this case), the overhead of managing the extra
VMs begins to offset the performance benefits: Differ-
ence Engine has to effectively manage 4.5 GB of mem-
ory on a system with 2.8 GB of RAM to support seven
VMs. In each case, beyond 1400 clients, the VMs work-
ing set becomes large enough to invoke the paging mech-
anism: we observe between 5,000 pages (for one extra
VM) to around 20,000 pages (for three extra VMs) be-
ing swapped out, of which roughly a fourth get swapped
back in.

6 Conclusion
One of the primary bottlenecks to higher degrees of vir-
tual machine multiplexing is main memory. Earlier work
shows that substantial memory savings are available from
harvesting identical pages across virtual machines when
running homogeneous workloads. The premise of this
work is that there are significant additional memory sav-
ings available from locating and patching similar pages
and in-memory page compression. We present the de-
sign and evaluation of Difference Engine to demonstrate
the potential memory savings available from leveraging
a combination of whole page sharing, page patching,
and compression. We discuss our experience address-
ing a number of technical challenges, including: i) al-
gorithms to quickly identify candidate pages for patch-
ing, ii) demand paging to support over-subscription of
total assigned physical memory, and iii) a clock mech-
anism to identify appropriate target machine pages for
sharing, patching, compression and paging. Our perfor-
mance evaluation shows that Difference Engine deliv-
ers an additional factor of 1.6–2.5 more memory savings
than VMware ESX Server for a variety of workloads,
with minimal performance overhead. Difference Engine
mechanisms might also be leveraged to improve single
OS memory management; we leave such exploration to
future work.

References
[1] http://sysbench.sourceforge.net/.
[2] http://samba.org/ftp/tridge/dbench/.
[3] http://www.iozone.org/.
[4] http://www.azillionmonkeys.com/qed/

hash.html.
[5] http://wiki.xensource.com/xenwiki/

XenStore.
[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles, 2003.

[7] F. Bellard. QEMU, a fast and portable dynamic translator.
In Proceedings of the USENIX Annual Technical Confer-
ence, 2005.

[8] A. Z. Broder. Identifying and filtering near-duplicate doc-
uments. In Proceedings of the 11th Annual Symposium on
Combinatorial Pattern Matching, 2000.

[9] E. Bugnion, S. Devine, and M. Rosenblum. Disco: Run-
ning commodity operating systems on scalable multipro-
cessors. In Proceedings of the 16th ACM Symposium on
Operating System Principles, 1997.

[10] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Perfor-
mance and scalability of EJB applications. In Proceedings
of the 17th ACM Conference on Object-oriented program-
ming, systems, languages, and applications, 2002.

[11] F. Douglis. The compression cache: Using on-line com-
pression to extend physical memory. In Proceedings of
the USENIX Winter Technical Conference, 1993.

[12] F. Douglis and A. Iyengar. Application-specific delta-
encoding via resemblance detection. In Proceedings of
the USENIX Annual Technical Conference, 2003.

[13] J. F. Kloster, J. Kristensen, and A. Mejlholm. On the fea-
sibility of memory sharing. Master’s thesis, Aalborg Uni-
versity, 2006.

[14] P. Kulkarni, F. Douglis, J. Lavoie, and J. M. Tracey. Re-
dundancy elimination within large collections of files. In
Proceedings of the USENIX Annual Technical Confer-
ence, 2004.

[15] S. Low. Connectix RAM doubler information. http://
www.lowtek.com/maxram/rd.html, May 1996.

[16] J. MacDonald. xdelta. http://www.xdelta.org/.
[17] V. Makhija, B. Herndon, P. Smith, L. Roderick,

E. Zamost, and J. Anderson. VMmark: A scalable bench-
mark for virtualized systems. Technical Report TR 2006-
002, VMware, 2006.

[18] U. Manber and S. Wu. GLIMPSE: A tool to search
through entire file systems. In Proceedings of the USENIX
Winter Technical Conference, 1994.

[19] L. McVoy and C. Staelin. lmbench: Portable tools for per-
formance analysis. In Proceedings of the USENIX Annual
Technical Conference, 1996.

[20] K.-T. Moeller. Virtual machine benchmarking. Diploma
thesis, System Architecture Group, University of Karl-
sruhe, Germany, 2007.

[21] A. S. Tanenbaum. Modern Operating Systems. Prentice
Hall, 2007.

[22] I. C. Tuduce and T. Gross. Adaptive main memory com-
pression. In Proceedings of the USENIX Annual Technical
Conference, 2005.

[23] M. Vrable, J. Ma, J. Chen, D. Moore, E. VandeKieft,
A. C. Snoeren, G. M. Voelker, and S. Savage. Scalabil-
ity, fidelity and containment in the Potemkin virtual hon-
eyfarm. In Proceedings of the 20th ACM Symposium on
Operating System Principles, 2005.

[24] C. A. Waldspurger. Memory resource management
in VMware ESX server. In Proceedings of the 5th
ACM/USENIX Symposium on Operating System Design
and Implementation, 2002.

[25] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The
case for compressed caching in virtual memory systems.
In Proceedings of the USENIX Annual Technical Confer-
ence, 1999.

