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Abstract
Xax is a browser plugin model that enables developers
to leverage existing tools, libraries, and entire programs
to deliver feature-rich applications on the web. Xax em-
ploys a novel combination of mechanisms that collec-
tively provide security, OS-independence, performance,
and support for legacy code. These mechanisms include
memory-isolated native code execution behind a narrow
syscall interface, an abstraction layer that provides a con-
sistent binary interface across operating systems, sys-
tem services via hooks to existing browser mechanisms,
and lightweight modifications to existing tool chains and
code bases. We demonstrate a variety of applications and
libraries from existing code bases, in several languages,
produced with various tool chains, running in multiple
browsers on multiple operating systems. With roughly
two person-weeks of effort, we ported 3.3 million lines
of code to Xax, including a PDF viewer, a Python inter-
preter, a speech synthesizer, and an OpenGL pipeline.

1 Introduction
Web applications are undergoing a rapid evolution in

functionality. Whereas they were once merely simple
dynamic enhancements to otherwise-static web pages,
modern web apps1 are driving toward the power of fully
functional desktop applications such as email clients
(Gmail, Hotmail, Outlook Web Access) and productiv-
ity apps (Google Docs). Web applications offer two
significant advantages over desktop apps: security—in
that the user’s system is protected from buggy or ma-
licious applications—and OS-independence. Both of
these properties are normally provided by a virtual ex-
ecution environment that implements a type-safe lan-
guage, such as JavaScript, Flash, or Silverlight. How-
ever, this mechanism inherently prohibits the use of non-
type-safe legacy code. Since the vast majority of extant
desktop applications and libraries are not written in a
type-safe language, this enormous code base is currently
unavailable to the developers of web applications.

Our vision is to deliver feature-rich, desktop-class ap-
plications on the web. We believe that the fastest and
easiest way to create such apps is to leverage the ex-
isting code bases of desktop applications and libraries,
thereby exploiting the years of design, development, and
debugging effort that have gone into them. This ex-
isting code commonly expects to run in an OS pro-
cess and to access OS services. However, actually run-
ning the code in an OS process would defeat the OS-
independence required by web apps; and it would also
impede code security, because large and complex OS
system-call (or syscall) interfaces are difficult to secure
against privilege-escalation vulnerabilities [15].

There is thus a trade-off between OS-independence,
security, and legacy support. No existing web-app
mechanism can provide all three of these properties.
Herein, we show that is possible to achieve all three, and
further to achieve native-code performance.

In particular, we propose eliminating the process’s ac-
cess to the operating system, and instead providing only
a very narrow syscall interface. A sufficiently narrow
interface is easy to implement identically on different
operating systems; and it is far easier to secure against
malicious code. However, it may not be obvious that a
process can do much useful work without an operating
system to call, and it is even less clear that legacy code
could easily be made to work without an OS.

Surprisingly, we found that with minimal modifica-
tion, legacy libraries and applications with large code
bases and rich functionality can indeed be compiled to
run on a very simple syscall interface. We demonstrate
this point by running the GhostScript PDF viewer, the
eSpeak speech synthesizer, and an OpenGL demo that
renders 3D animation. In total, it took roughly two
person-weeks of effort to port 3.3 million lines of code
to use this simple interface. This existing code was writ-
ten in several languages and produced with various tool
chains, and it runs in multiple browsers on multiple op-
erating systems.
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We achieved these results with Xax, a browser plu-
gin model that supports legacy code in a secure and OS-
independent manner, and which further provides native-
code performance as required by feature-rich applica-
tions. Xax achieves these properties with four mecha-
nisms:

• The picoprocess, a native-code execution abstrac-
tion that is secured via hardware memory isolation
and a very narrow system-call interface, akin to a
streamlined hardware virtual machine

• The Platform Abstraction Layer (PAL), which pro-
vides an OS-independent Application Binary Inter-
face (ABI) to Xax picoprocesses

• Hooks to existing browser mechanisms to provide
applications with system services—such as network
communication, user interface, and local storage—
that respect browser security policies

• Lightweight modifications to existing tool chains
and code bases, for retargeting legacy code to the
Xax picoprocess environment

The key principle behind Xax is that the browser already
contains sufficient functionality to support the necessary
system services for running legacy code. Xax provides
this support with its novel combination of four mecha-
nisms and its specific design decisions within each mech-
anism. Together, these choices achieve our goal of high-
performance support for legacy desktop code in secure,
OS-independent web applications.

Xax provides key pieces of a comprehensive solution
to enable skilled developers to deploy actual desktop ap-
plications on the web. Although we have not yet built
a large, full-featured application, we have built several
moderate-sized applications using a dozen libraries and
application components we have ported.

In addition, by leveraging not only existing applica-
tion code and libraries but also existing development tool
chains, Xax allows even moderately skilled developers
to combine the conventional DOM-manipulation model
of web applications with the power of existing non-web-
specific code libraries, arbitrary programming languages,
and familiar development tools. We demonstrate this
by porting a Python interpreter to Xax and providing
language bindings to JavaScript DOM functions, after
which we created a social-network visualization app us-
ing unmodified Python wrappers for the graphviz library.

Finally, we show that the Xax plugin model can ac-
tually subsume other browser plugins. We demonstrate
this with a basic port of the Kaffe Java Virtual Machine
(JVM) into Xax. Because Kaffe runs within a Xax pi-
coprocess, it does not add to the browser’s trusted code
base, unlike the standard JVM browser plugin.

The next section details the goals of Xax and con-
trasts with alternative approaches. Section 3 describes
the four mechanisms Xax uses to achieve its goals: pico-
processes, the Platform Abstraction Layer, services via
browser mechanisms, and lightweight code modification.
Section 4 describes our implementations of Xax in Linux
and Windows, as well as our proxy-based browser inte-
gration. Section 5 describes some of our example ap-
plications. Section 6 evaluates the four benefits of Xax
described in Section 2. Sections 7 and 8 describe related
and future work. Section 9 summarizes and concludes.

2 Goals and Alternatives
In this section, we detail the goals that must be sat-

isfied to deliver desktop applications on the web, and
we consider alternative mechanisms for achieving these
goals.

2.1 Xax Design Goals
As previewed in the Introduction, Xax has four de-

sign goals: security, OS-independence, performance,
and legacy support. For the first three, our intent is to
match the benefits of existing web-app mechanisms, such
as JavaScript and Flash. Xax’s main benefit beyond ex-
isting mechanisms is support for legacy code.

security — The particular form of security required
for web applications is protecting the client against mali-
cious code. (For the scope of this paper, we ignore other
threats such as cross-site scripting and phishing.) Part of
what makes web applications attractive is that they are
supposed to run safely without requiring explicit trust
assumptions from the user. This stands in contrast to
installed desktop applications, which have nearly unfet-
tered access to the client machine, so users make trust as-
sumptions whenever they install a desktop program from
a CD or via the Internet. Web applications are considered
safe because they execute within a sandbox that sharply
restricts the reach of the program.

OS-independence — Unlike desktop apps, web ap-
plications are not tied to a particular operating system,
because they do not make direct use of OS services. In-
stead, web apps invoke services provided by the browser
or by a browser plugin, which is responsible for export-
ing the same interface and semantics across OS imple-
mentations. Ideally, web apps are also independent of
the particular browser in which they run; however, some
aspects of HTML and the JavaScript environment are not
implemented consistently among browsers [22], which
somewhat limits this benefit in practice. In addition, a
particular web app might rely on features of a particu-
lar plugin version, so running the web app might require
downloading and installing a new version of the plugin
(which entails making a trust assumption).
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performance — Simple web apps, such as web pages
with dynamic menus, may not require much performance
from their execution environments. However, the perfor-
mance demands may be significant for feature-rich appli-
cations that provide functionality comparable to desktop
applications, such as animated 3D rendering.

legacy support — Developing complex, feature-rich
applications requires an enormous effort. A nearly essen-
tial practice for mitigating this effort is software reuse,
which has been a staple of the computer industry since
the idea was first proposed in 1969 [27]. Despite the
fact that the past decade has seen an increasing amount
of new code written in type-safe languages, the vast ma-
jority of extant software is not type-safe. Of 311 mil-
lion lines of code in the SourceForge [40] repository,
half are C (29%) and C++ (18%); by contrast, Java, C#
and JavaScript combined account for only 17%. Large
fractions of the 86 million lines [21] of Mac OS X,
200 million lines [1] of Windows Vista, and 283 mil-
lion lines [36] of the Debian GNU/Linux distribution
are general libraries that provide significant functionality
to desktop applications; much of this legacy code could
benefit the development of rich web applications.

2.2 Alternative Mechanisms
Xax achieves all four of the above goals. Many exist-

ing mechanisms for developing web apps already exist,
but each falls short of these goals in at least some re-
spects. There are also other yet-undeployed approaches
one could explore; we argue that Xax has advantages
over each of these other approaches.

2.2.1 Existing web-app mechanisms
There are a number of existing mechanisms for im-

plementing web applications. This set of mechanisms
cannot be totally ordered with respect to our four goals;
however, we make an attempt to present them in roughly
increasing order of goal satisfaction.

JavaScript is an interpreted scripting language with
dynamic typing and very late binding. It is included in
all major web browsers, so it has the exclusive benefit
of not requiring a plugin. It provides language-based se-
curity and OS-independence. Because it is interpreted,
it does not have very good performance, and the late-
binding dynamic semantics of the language make it diffi-
cult to JIT and therefore slow. Conversion tools provide
limited legacy support for other type-safe languages, in-
cluding Python, Java, C#, and Pascal, but not for any
non-type-safe language.

ActiveX controls are means for packaging client-side
code that can be invoked from a web page. They execute
natively, so they provide high performance. They have
some legacy support for non-type-safe code, particularly
for C++ code that is compiled with the Microsoft Foun-
dation Class (MFC) library or the Active Template Li-

brary (ATL), as well as support for other languages such
as Delphi and Visual Basic. ActiveX controls work only
on Windows, and because they have unrestricted OS ac-
cess, they provide no security against malicious code.

Type-safe intermediate-language systems include
Flash, the Java Virtual Machine (JVM), and Sil-
verlight. These all provide security via translating a
type-safe source language into a type-safe intermediate
language—such as bytecode—that is downloaded to the
browser. The definition of the intermediate language is
OS-independent, and interpreters or JIT compilers ex-
ist for all major browsers. Performance is good be-
cause of JIT compiling. Collectively, these systems sup-
port a sizeable count of type-safe languages: Flash byte-
code can be generated from ActionScript and LZX. Java
bytecode can be generated from Java, Python, Ruby,
JavaScript, and Common Lisp. Common Language Run-
time code, Silverlight 2’s intermediate language, can be
generated from C#, Visual Basic, Managed C++, and
a number of uncommon languages. However, none of
these systems can support legacy code written in a non-
type-safe language, which — as observed above — is the
vast majority of extant code.

2.2.2 OS processes
Since the lion’s share of legacy code was written to run

in an OS process and to access OS services, a natural way
to support this code within a web application is to actu-
ally run it inside an OS process. This approach provides
the performance of native-code execution as well as di-
rect legacy support. However, it leads to two problems
that could potentially be solved at some cost.

First, and most obviously, OS processes are not OS-
independent. However, it is possible to write compatibil-
ity layers [47] that that map foreign OS calls to native OS
calls. Such compatibility layers are notoriously hard to
write, because OS processes require bug-for-bug binary-
compatible emulation of the OS interface.

Second, OS processes provide insufficient safety for
web apps, since the interface to the OS is powerful
enough for the process to harm the client machine. How-
ever, it is possible to write confinement layers [16, 17,
34] that restrict the allowable system calls made by a pro-
cess. Such confinement layers are also quite challenging
to create, not because the mechanism is particularly diffi-
cult, but because of the subtleties in defining appropriate
policies that are sufficiently liberal to permit application
functionality while sufficiently restrictive to prevent se-
curity breaches [15].

More broadly, we believe that trying to pare away dan-
gerous entry points and combinations of calling param-
eters from a wide and complex interface is fraught with
error. As described below, Xax takes the opposite tack by
starting with no interface and then adding the minimum
necessary to provide useful functionality.



342 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2.2.3 Hardware virtual machines
Another alternative is to run a legacy application,

along with the OS for which it was written, inside a
hardware virtual machine (VM). Modern VM technol-
ogy provides impressive performance that rivals native
execution speed. It achieves strong security against ma-
licious code through a combination of isolation via hard-
ware and communication via a virtual network interface.
A VM that runs on top of multiple host OSes can provide
OS-independence, and a VM that executes multiple guest
OSes can provide full legacy support. Tahoma contains
web browsers using VMs [8]. However, use of a VM for
executing web applications leads to three concerns.

First, the virtual machine monitor (VMM), which pro-
vides the hardware emulation environment for a VM, is
part of the trusted code base. Because VMMs are large
and complex, they contain significant potential for secu-
rity vulnerabilities [32].

Second, virtual machine images are very large, be-
cause they include not only the application and libraries
but also a full OS. For instance, we measured that a
sparsely configured Debian system fetches over 25 MB
of pages merely to boot. Given typical wide-area con-
nection speeds, VM images can take hours to download,
even with optimizations [23, 5, 39]. It is plausible that
sophisticated caching and prefetching strategies could
mitigate some of this download time. In addition, the
techniques we use to port apps to Xax (§3.4) could simi-
larly be applied to reducing VM image sizes.

Third, VM technology is challenging to implement,
which makes it difficult to extend to other platforms,
such as mobile devices. A VMM must perform accu-
rate emulation of kernel-mode execution, a full MMU,
addressable and programmable devices, and the convo-
luted addressing modes employed during OS boot. This
complexity is so challenging that only one fully virtual-
izing VM product is currently able to run multiple guest
OSes and to run on multiple host OSes [45].

The complexity of VM technology can be reduced
by paravirtualization [46], which entails making small
changes to the guest code to reduce the emulation bur-
den on the VM system. Such changes may obviate some
of the more cumbersome addressing modes or eliminate
the need for binary rewriting to mask unvirtualizable ma-
chine features.

We observe that the paravirtualization concept can be
taken to an extreme. Rather than merely modifying the
guest OS, one can eliminate the guest OS along with
some of the guest libraries, and then make changes to the
guest application that enable it to run on a dramatically
less-functional substrate. Such an approach substantially
reduces the size and complexity of the VMM, since it
need not emulate physical devices, the MMU, or CPU
kernel mode. In addition, this approach dramatically re-

duces the size of VM images, since they contain little
more than application code. Moreover, reducing the size
of the VMM reduces the size of the trusted code base,
thereby improving security. Such extreme paravirtualiza-
tion is one way to view the Xax picoprocess architecture,
which we describe next.

3 Mechanisms
Section 2.1 itemized four design goals, and the present

section describes the four mechanisms by which Xax
achieves these goals. Despite the agreement in num-
ber, there is not a one-to-one correspondence between the
goals and the mechanisms. Security is provided by pico-
processes and browser-based services; OS-independence
is provided by picoprocesses and the Platform Abstrac-
tion Layer; performance is provided by picoprocesses;
and legacy support is provided by lightweight code mod-
ification.

3.1 Picoprocesses
The core abstraction in Xax is the picoprocess. As

described in the previous section, a picoprocess can be
thought of as a stripped-down virtual machine with-
out emulated physical devices, MMU, or CPU kernel
mode. Alternatively, a picoprocess can be thought of
as a highly restricted OS process that is prevented from
making kernel calls. In either view, a picoprocess is
a single hardware-memory-isolated address space with
strictly user-mode CPU execution and a very narrow in-
terface to the world outside the picoprocess, as illustrated
in Figure 1.

Picoprocesses are created and mediated by a browser
plugin called the Xax Monitor. Like a virtual machine
monitor (in the VM analogy) or an OS kernel (in the
OS process analogy), the Xax Monitor is part of the
browser’s trusted code base, so it is important to keep
it small. The picoprocess communicates by making xax-
calls (analogous to syscalls) to the Xax Monitor.

Because the Xax Monitor uses OS services to create
and manage picoprocesses, it is necessarily OS-specific.
Moreover, to ease the implementation burden and help
keep the Xax Monitor simple, we do not enforce a stan-
dard xaxcall interface. The specific set of xaxcalls, as
well as the xaxcall invocation mechanism, may vary de-
pending on the underlying OS platform. We describe
some differences below in sections on our Linux (§4.2)
and Windows (§4.3) implementations. In terms of func-
tionality, xaxcalls provide means for memory allocation
and deallocation, raw communication with the browser,
raw communication with the origin server, access to
URL query parameters, and picoprocess exit.

The simplicity of the xaxcall interface makes it very
easy to implement on commodity operating systems,
which assists OS-independence. This simplicity also
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Figure 1: The Xax architecture. Everything inside the pico-
process (§3.1) isolation boundary is untrusted. The Xax Mon-
itor mediates access to the outside world, employing existing
browser mechanisms (§3.3) to implement xaxcalls from the pi-
coprocess. The PAL (§3.2) provides a consistent Application
Binary Interface (ABI) across OS platforms. Above the ABI,
the specific structure can vary; the depicted structure is one we
have found useful when porting code (§3.4).

aids security, since it is much easier to reason about the
security aspects of a narrow interface with simple se-
mantics than a wide interface with complex semantics.
Because a picoprocess executes native code, it provides
good performance. However, it is not necessarily clear
that this architecture supports legacy code that was writ-
ten with the expectation of running in an OS process with
access to rich OS services; we address this point in §3.4
below.

3.2 Platform Abstraction Layer
As mentioned in the previous section, the xaxcall in-

terface may vary slightly across OS platforms. For OS-
independence, Xax defines a consistent Application Bi-
nary Interface (ABI) irrespective of the underlying OS.
By necessity, the ABI varies across architectures, so the
x86 ABI is different from the PowerPC ABI.

The ABI is exported by an OS-specific Platform
Abstraction Layer (PAL), which translates the OS-
independent ABI into the OS-specific xaxcalls of the Xax
Monitor. The PAL is included with the OS-specific Xax
implementation; everything above the ABI is native code
delivered from an origin server. The PAL runs inside the
Xax picoprocess, so its code is not trusted. Security is
provided by the xaxcall interface (dashed border in Fig-
ure 1); the PAL merely provides ABI consistency across
host operating systems (wiggly line in Figure 1).

All xaxcalls are nonblocking except for poll, which
can optionally yield until I/O is ready. This provides suf-
ficient functionality for user-level threading.

We herewith present the entire Xax ABI. For memory
allocation and deallocation, the ABI includes the follow-
ing two calls:

void *xabi_alloc(
void *start, long len);
Map len zero-filled bytes of picoprocess memory,
starting at start if specified. Return the address.

int xabi_free(void *start);

Free the memory region beginning at start, which
must be an address returned from xabi alloc. Re-
turn 0 for success or −1 for error.

As described in the next section, the picoprocess appears
to the browser as a web server, and communication is
typically over HTTP. When the browser opens a connec-
tion to the picoprocess, this connection can be received
by the following call:

int xabi_accept();

Return a channel identifier, analogous to a Unix file
descriptor or a Windows handle, connected to an in-
coming connection from the browser. Return −1 if no
incoming connection is ready.

The picoprocess can also initiate connection to the server
that provided the picoprocess application. To initiate a
connection to the home server, the picoprocess uses the
following call:

int xabi_open_url(
const char *method,
const char *url);

Return a channel identifier connected to the given
URL, according to the specified method, which may
be “get”, “put”, or “connect”. Fetch and cache the
URL according to the Same Origin Policy (SOP) rules
for the domain that provided the Xax picoprocess.

The operations that can be performed on an open channel
are read, write, poll, and close:

int xabi_read(
int chnl, char *buf, int len);

int xabi_write(
int chnl, char *buf, int len);
Transfer data on an open channel. Return the number
of bytes transferred, 0 if the channel is not ready, or
−1 if the channel is closed or failed.

typedef struct {
int channel;
short events; /* requested */
short revents; /* returned */

} xabi_poll_fd;
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int xabi_poll(
xabi_poll_fd *pfds, int npfds,
bool block);
Indicate the ready status of a set of channels by updat-
ing revents. If block is true, do not return until
at least one requested event is ready, thereby allow-
ing the picoprocess to yield the processor. Return the
number of events ready; do not return 0 if block is
true.

int xabi_close(int chnl);
Close an open channel. Return 0 for success or −1

for error.

During picoprocess boot, the loader (§4.4) needs to know
the URL from which to fetch the application image. We
could have required a custom loader for each application,
with the URL baked into the loader’s image. Instead, we
wrote a general loader that reads the application URL
from the query parameters of the URL that launched the
picoprocess. The following call, which in normally used
only by the loader, provides access to these parameters.
(Note that there is no corresponding xaxcall; the param-
eters are written into the PAL during picoprocess initial-
ization.)

const char **xabi_args();
Return a pointer to a NULL-terminated list of pointers
to arguments specified at instantiation.

Lastly, the ABI provides a call to exit the picoprocess
when it is finished:

void xabi_exit();

Although the PAL runs inside the picoprocess, it is not
part of the application. More pointedly, it is not deliv-
ered with the OS-independent application code. Instead,
the appropriate OS-specific PAL remains resident on the
client machine, along with the Xax Monitor and the web
browser, whose implementations are also OS-specific.
When a Xax application is delivered to the client, the app
and the PAL are loaded into the picoprocess and linked
via a simple dynamic-linking mechanism: The ABI de-
fines a table of function pointers and the calling conven-
tion for the functions. For x86 architectures, this calling
convention is cdecl; for the PowerPC, it is the one stan-
dard calling convention; and, for other architectures, no
Xax ABI has yet been defined.

We have found it helpful to create a simple shim li-
brary called libxax that an application may statically
link. libxax exports a set of symbols (xabi read,
xabi open url, etc.) that obey the function linkage
convention of the developer’s tool chain. The shim con-
verts each of these calls to the corresponding ABI call in
the PAL. This shim thus provides a standard Application
Programming Interface (API) to Xax applications.

3.3 Services via browser mechanisms
A key Xax principle is that there is sufficient func-

tionality within the browser to support the system ser-
vices needed by web applications. In fact, we assert not
only that it is sufficient for the Xax Monitor to employ
the browser’s functionality, but also that doing so im-
proves the system’s security. Because Xax reuses the ex-
isting security policy—and much of the mechanism—in
the browser, Xax introduces no new security vulnerabil-
ities, modulo implementation bugs in the Xax Monitor’s
(small) trusted code base.

The Xax Monitor has the job of providing the ser-
vices indicated by the xaxcall interface. Some of these
services are straightforward for the Xax Monitor to per-
form directly, such as memory allocation/deallocation,
access to URL query parameters, and picoprocess exit.
The Xax Monitor also provides a communication path
to the browser, via which the Xax picoprocess appears
as a web server. This communication path enables the
Xax application to use read and write calls to serve
HTTP to the browser. From the browser’s perspective,
these HTTP responses appear to come from the remote
server that supplied the Xax app. It is clear that this ap-
proach is secure, since the Xax application is unable to
do anything that the remote server could not have done
by serving content directly over the Internet.

Using the picoprocess-to-browser communication
path, the Xax application can employ JavaScript code
in the browser to perform functions on its behalf, such
as user interface operations, DOM manipulation, and ac-
cess to browser cookies. In our applications, we have
applied a common design pattern: The Xax app provides
an HTML page to the browser, and this page contains
JavaScript stubs which translate messages from the pico-
process into JavaScript function invocations.

It would be possible but awkward to use JavaScript for
network communication. To pass through JavaScript, an
application or library binary from a remote server would
have to be uuencoded, encapsulated in JSON, transferred
via HTTP, de-encapsulated, and decoded. To simplify
this process, we provide the ABI call xabi open url
to allow direct communication between a Xax picopro-
cess and its origin server. Both our Linux and Windows
Xax Monitors provide corresponding xaxcalls that im-
plement the primitives efficiently.

3.4 Lightweight code modification
One of our most surprising findings is how little effort

it takes to port a legacy application, library, or tool chain
to the minimalist Xax ABI. This is surprising because
this legacy code was written to run atop an operating sys-
tem, and it was not a priori obvious that we could elim-
inate the OS and still enable the legacy code to perform
its main function. For instance, to enable development of
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the app described in §5.2, we ported the graphviz library
and the Python interpreter to Xax. Using strace, we
saw that a quick test application makes 2725 syscalls (39
unique). Porting this code to Xax would seem to require
an enormous emulation of OS functionality. However,
using our lightweight modifications, we ported this mil-
lion lines of code in just a few days.

Although the particular modifications required are
application-dependent, they follow a design pattern that
covers five common aspects: disabling irrelevant depen-
dencies, restricting application interface usage, applying
failure-oblivious computing techniques, internally emu-
lating syscall functionality, and (only when necessary)
providing real syscall functionality via xaxcalls.

The first step is to use compiler flags to disable
dependencies on irrelevant components. Not all li-
braries and code components are necessary for use within
the web-application framework, and removing them re-
duces the download size of the web app and also re-
duces the total amount of code that needs to be ported.
For Python/graphviz, by disabling components such as
pango and pthreads, we eliminated 699 syscalls (16
unique).

The second step is to restrict the interfaces that the ap-
plication uses. For instance, an app might handle I/O
either via named files or via stdin/stdout, and the
latter may require less support from the system. Depend-
ing on the app, restricting the interface is done in var-
ious ways, such as by setting command-line arguments
or environment variables. For Python/graphviz, we used
an entry-point parameter to change the output method
from “xlib” to “svg”, which eliminated 367 syscalls (21
unique).

The third step is to identify which of the application’s
remaining system calls can be handled trivially. For
example, we can often return error codes indicating
failure, in a manner similar to failure-oblivious com-
puting [35]. For Python/graphviz, it was sufficient
to simply reject 125 syscalls (11 unique). Specif-
ically, we obviate getuid32, rt sigaction,
fstat64, rt sigprocmask, ioctl, uname,
gettimeofday, connect, time, fcntl64, and
socket.

The fourth step is to emulate syscall functionality
within the syscall interpose layer (see Figure 1). For in-
stance, Python/graphviz reads Python library files from a
file system at runtime. We package these library files as
a tar ball, and we emulate a subset of file-system calls us-
ing libtar to access the libraries. The tar ball is read-only,
which is all Python/graphviz requires. For some of our
other ported applications, we also provide read/write ac-
cess to temporary files by creating a RAM disk in the in-
terpose layer. Code in the interpose layer looks at the file
path to determine whether to direct calls to the tar ball,

to the RAM disk, or to somewhere else, such as a file
downloaded from the origin server. For Python/graphviz,
we use internal emulation to satisfy 1409 syscalls (14
unique), 943 of which fail obliviously.

The fifth and final step is to provide real backing func-
tionality for the remaining system calls via the Xax ABI.
For Python/graphviz, most of the remaining syscalls are
for user input and display output, which we route to UI
in the browser. We provide this functionality for the
remaining 137 syscalls (11 unique). Specifically, we
implement setsockopt, listen, accept, bind,
read, write, brk, close, mmap2, old mmap, and
munmap.

The first three steps are application-specific, but for
the final two steps, we found much of the syscall support
developed for one app to be readily reusable for other
apps. For example, we originally wrote the internally
emulated tar-based file system to support eSpeak, and
we later reused it to support Python. Similarly, the back-
ing functionality for the mmap functions and networking
functions (listen, accept, bind, ...) is used by all
of our example applications.

For any given application, once the needed modifica-
tions are understood, the changes become mechanical.
Thus, it is fairly straightforward for a developer to main-
tain both a desktop version and a Xax version of an app,
using a configure flag to specify the build target. This is
already a common practice for a variety of applications
that compile against Linux and BSD and Win32 syscall
interfaces.

4 Implementation
In this section, we describe the implementations of

Xax on Linux and Windows, as well as our proxy-based
browser integration.

Although they have some significant differences, our
two implementations of Xax share much common struc-
ture. The main aspect in which they differ is in the
kernel support for picoprocess isolation and communi-
cation, which we will discuss after first describing the
common aspects.

4.1 Monitor, boot block, and PAL
The Xax Monitor is a user-mode process that creates,

isolates, and manages each picoprocess (§3.1), and that
provides the functionality of xaxcalls (§3.3). A picopro-
cess is realized as a user-level OS process, thus leverag-
ing the hardware memory isolation that the OS already
enforces on its processes. Before creating a new picopro-
cess, the Xax Monitor first allocates a region of shared
memory, which will serve as a communication conduit
between the picoprocess and the Monitor. Then, the pi-
coprocess is created as a child process of the Xax Moni-
tor process.
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This child process begins by executing an OS-specific
boot block, which performs three steps. First, it maps
the shared memory region into the child process’s ad-
dress space, thereby completing the communication con-
duit. Second, it makes an OS-specific kernel call that
permanently revokes the child process’s ability to make
subsequent kernel calls, thereby completing the isolation.
Third, it passes execution to the OS-specific PAL, which
in turn loads and passes execution to the Xax application.

Note that the boot block is part of the TCB, even
though it executes inside the child process. The child
process does not truly become a picoprocess until after
the boot block has executed. At that point, the child pro-
cess has no means to de-isolate itself, since this would re-
quire a kernel call but the picoprocess is prevented from
making kernel calls.

After transferring control to the Xax application, the
PAL (§3.2) has the job of implementing the Xax ABI
by making appropriate xaxcalls to the Xax Monitor. To
make a xaxcall, the PAL writes the xaxcall identifier and
arguments into the shared memory region, then traps to
the kernel. In an OS-specific manner (described below)
the kernel notifies the Xax Monitor of the call. The Mon-
itor then reads the shared memory, performs the indi-
cated operation, writes the result to the shared memory,
and returns control to the picoprocess.

Although the Xax Monitor has different implemen-
tations on different operating systems, it handles most
xaxcalls in more-or-less the same way irrespective of
OS. The alloc and free xaxcalls are exceptions to
this rule, so their different implementations are described
in the following two sections. For accept, the Xax
Monitor maintains a queue of connection requests from
the browser, and each call dequeues the next request.
The open url xaxcall makes an HTTP connection to
a remote resource; the returned channel identifier cor-
responds to either a socket handle or a file handle, de-
pending on whether the requested data is cached. The
I/O calls read, write, poll, and close are imple-
mented by reading, writing, polling, and closing OS file
descriptors on sockets and files. The exit xaxcall sim-
ply terminates the child process.

4.2 Linux kernel support
Our Linux implementation involves no custom ker-

nel code. Instead, it makes use of the Linux kernel’s
ptrace facility, which enables a process to observe and
control the execution of another process.

As described above, the boot block makes a kernel call
to revoke the child process’s ability to make subsequent
kernel calls. In our Linux implementation, this is done
by calling ptrace(TRACE ME), which causes the ker-
nel to intercept the entry and exit of every subsequent
syscall, transferring control to the Xax Monitor parent

process. On entry to a syscall, the Xax Monitor normally
replaces whatever system call the child process requested
with a harmless system call (specifically, getpid) be-
fore releasing control to the kernel. This prevents the
child process from passing a syscall to the OS.

Syscalls are also legitimately used by the PAL to sig-
nal a xaxcall. Thus, when ptrace notifies the Xax
Monitor of an entry to a syscall, the Monitor checks
whether the shared memory contains a legitimate xax-
call identifier and arguments. If it does, the Xax Moni-
tor performs the operation and returns the result, as de-
scribed above. If the xaxcall is a memory-management
operation (alloc or free), it has to be handled spe-
cially, because Linux does not provide a mechanism for
a process to allocate memory on behalf of another pro-
cess. So, in this case, the Xax Monitor does not over-
write the syscall with getpid. Instead, it overwrites the
syscall with mmap and a set of appropriate arguments.
Since the return from the syscall is also intercepted by
ptrace, the Xax Monitor has an opportunity to write a
return value for the alloc xaxcall into the shared mem-
ory, based on the return value from the mmap syscall.

Use of an existing kernel facility (ptrace) en-
ables our Linux implementation to be deployed without
kernel-module installation or root privilege. However, it
entails a performance hit, because every xaxcall requires
three syscalls from the Xax Monitor: one to swap out the
syscall with getpid or mmap, a second to enter the ker-
nel, and a third to resume the picoprocess. More impor-
tantly, if the Xax Monitor fails and exits without proper
signal handling, the child process may continue to run
without having its syscalls intercepted [34]. This failure
condition could turn the picoprocess back into a regular
OS process, which would violate security.

These performance and security problems could be
mitigated by using a custom kernel module instead of
ptrace. In the future, we intend to employ this ap-
proach, and we have already done so in our Windows
implementation.

4.3 Windows kernel support
In our Windows implementation, when the child pro-

cess’s boot block makes a kernel call to establish an in-
terposition on all subsequent syscalls, it makes this call
to a custom kernel module, XaxDrv. Because every Win-
dows thread has its own pointer to a table of system call
handlers, XaxDrv is able to isolate a picoprocess by re-
placing the handler table for that process’s thread. The
replacement table converts every user-mode syscall into
an inter-process call (IPC) to the user-space Xax Moni-
tor. For a syscall originating from kernel mode (e.g., for
paging), XaxDrv passes the call through to the original
handler, preserving the dispatcher’s stack frame for the
callee’s inspection.
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When the Xax Monitor receives an IPC, it reads
the xaxcall identifier and arguments from the shared
memory and performs the operation. Unlike the
Linux case, no special handling is required for
memory-management operations, because Windows
NtMapViewOfSection allows the Monitor to map
memory on behalf of its child process.

Although XaxDrv has to be ported to each version of
Windows on which it runs, the changes are minimal, in-
volving two constant scalars and a constant array: (1)
the offset in the kernel thread block for the pointer to the
syscall handler table, (2) the count of system calls, and
(3) for each system call, the total parameter byte count.
This information is readily available from the kernel de-
bugger in the Windows Driver Kit [28]. We have ported
XaxDrv to Windows XP, Windows Vista, and Windows
Server 2008.

An alternative implementation of XaxDrv could have
followed the common approach [25, 38] of patching ev-
ery entry in the standard system-call table. However, Mi-
crosoft discourages this practice because it transparently
changes the behavior of every process in the system. Fur-
thermore, even if the interposed handlers were to prop-
erly fall through to the original handlers, they would still
add overhead to every system call.

4.4 Loaders
The Linux toolchain emits standard statically-linked

Elf binaries. These Xax binaries are loaded by a small
elfLoader. This loader reads the target binary, parses
it to learn where to map its program regions, and looks up
two symbols: a global symbol where the binary’s copy
of libxax expects to find a pointer to the PAL’s dis-
patch table, and the address of the start symbol. Then
elfLoader maps the program, writes the dispatch ta-
ble location into the pointer, and jumps to start.

The Windows toolchain emits statically-linked .EXE
binaries in Windows’ native PE-COFF format. Our
peLoader performs the corresponding tasks to map
and launch PE executables.

4.5 Browser integration
Recall (§3.3) that the Xax application appears to the

browser as part of the origin server that just happens to
handle HTTP requests very quickly; this ensures that the
picoprocess is governed by the Same-Origin Policy [20]
just as is the origin server.

Our implementation integrates Xax into the browser
via an HTTP proxy. This approach is expedient, and one
implementation serves all makes of browser. The proxy
passes most HTTP requests transparently to the specified
host. However, if the URL’s path component begins with
/ xax/, the proxy interposes on the request to direct
the request to an existing picoprocess or to create a new
one. The proxy is integrated with the Xax Monitor pro-

cess, and allows each picoprocess to contact its origin
server via xax open url. This contact employs the
same mechanism that fetches ordinary URLs, and thus
obeys the SOP.

5 Examples
This section highlights several features of Xax by way

of brief presentations of some application examples.

5.1 Headline Reader and 3D Demo
The only connection between a Xax picoprocess and

the browser is an HTTP channel, which might seem in-
sufficient to deliver the rich content that can be provided
by other plugins. However, we present two applications
that show this channel to be sufficient.

First, the Headline Reader app performs text-to-
speech conversion. We ported the 25K-line eSpeak
speech synthesizer to Xax and invoke it with a small
wrapper app we wrote. The app produces .WAV audio
clips, which are transferred to the browser via the HTTP
channel and then played using the browser’s standard au-
dio helper.

Second, the 3D Demo performs real-time 3D render-
ing. We ported the 684K-line Mesa OpenGL library to
Xax. It includes a demo which draws a 400×400-pixel
3D scene; we modified it to animate. We express the
output of OpenGL as a series of PNG files, which are
sequentially transferred to the browser periodically and
inserted into an HTML DIV element for display. This
approach is performance-limited by the time spent en-
coding PNG files; the Xax mesa demo renders 8.8 frames
per second on a machine where native OpenGL renders
the same scene at 36 frames per second.

5.2 Social Network Visualizer
The lightweight code modifications described in Sec-

tion 3.4 are not very time-consuming, but they do require
a fair degree of sophistication from the developer porting
the code. However, we present an application that shows
how Xax enables developers with no special skill to cre-
ate new and interesting apps.

We separately ported a Python interpreter and the
graphviz graph-layout library to Xax. We also wrote
language bindings between Python and the DOM-
manipulation functions in JavaScript, which allows
Python code to directly manipulate the DOM. Because
there are Python wrappers for graphviz, it is possible for
Python code to call the powerful graph visualization rou-
tines in this library.

Another developer, who had no familiarity with the
process of porting code to Xax, then wrote a web app
in Python for visualizing a social network, specifically
a network of actors from the Internet Movie DataBase
(IMDB), akin to “six degrees of Kevin Bacon”. The
app’s web page provides a text box for entering an ac-
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tor’s name. The client queries a back-end service to enu-
merate the movies featuring that actor, as well as lists of
other actors in each movie. The client-side web app uses
graphviz to plot and present the network of actors and
movies.

Xax enabled the developer to leverage the advanced
non-type-safe legacy code base of grahpviz, which was
developed over more than a decade. It also enabled this
developer to use his knowledge of Python to write an
app without needing to learn a new language, such as
JavaScript. None of this required the developer to learn
how to port code to Xax. The tool and library were ported
once, and they are now usable by non-experts.

5.3 GhostScript and Kaffe
The fact that Xax is yet another browser plugin might

give one cause for concern. Even though Xax provides
benefits unavailable in any existing plugin, a user might
still be bothered by having to install an additional plugin
in the browser. However, we present two examples that
show how the Xax plugin model can actually subsume
other browser plugins.

First, we ported the GhostScript PDF viewer to Xax.
PDF viewers are currently available as browser plugins,
to enable users to view PDF documents on web sites.
Xax enables PDF viewing functionality without the need
for a special-purpose plugin. Moreover, by running the
PDF viewer inside a secure Xax picoprocess, we protect
the browser from the dozens of vulnerabilities that have
been discovered in PDF plugins [32].

Second, we performed a basic port of the Kaffe Java
Virtual Machine (JVM) into Xax. As described in Sec-
tion 2.2.1, JVM is an alternative mechanism for writ-
ing web applications, albeit one that does not provide
legacy support for non-type-safe code. Although we
have not yet completed our port of the Qt implemen-
tation of Kaffe’s Abstract Windowing Toolkit, the core
Java execution engine is working and able to perform
UI functions via DOM manipulation. As with the PDF
renderer, by running the JVM inside a picoprocess, we
protect the browser from vulnerabilities in the JVM im-
plementation [4, 9, 10, 37].

6 Evaluation
Here we evaluate Xax’s performance, legacy support,

OS-independence, and security.

6.1 Performance
To evaluate performance, we run microbenchmarks

and macrobenchmarks to measure CPU- and I/O-bound
performance. All measurements are on a 2.8GHz Intel
Pentium 4.

Xax’s use of native CPU execution, adopted to achieve
legacy support, also leads to native CPU performance.
Our first microbenchmark (Table 1(a)) computes the

Environment tool compute syscall alloc
sha1 close 16MB

(a) (b) (c)
Linux native gcc 5,930,000 430 27,120
Linux Xax gcc 5,970,000 69,400 202,600
XP native VS 4,540,000 1,126 31,390
XP Xax gcc 6,170,000 16,880 235,300
Vista native VS 4,580,000 1,316 40,900
Vista Xax gcc 6,490,000 59,900 612,000

Table 1: Microbenchmarks (§6.1). Units are machine cycles,
1/(2.8 × 109) sec; max σ

µ
=6.6%.

SHA-1 hash of H.G. Wells’ The War of the Worlds. Xax
performs comparably to the Linux native host. The Win-
dows native binary was compiled with a different com-
piler (Visual Studio vs. gcc); we believe this explains the
improved performance of the Windows native cases.

The benefits of native execution led us to accept over-
heads associated with hardware context switching; how-
ever, our simple uninvasive user-level implementations
lead to quite high overheads. Table 1(b) reports the cost
of a null xaxcall compared with a null native system
call; in each case, we invoke close(-1). Table 1(c)
reports the cost of allocating an empty 16MB memory
region. The Xax overhead runs 7–161×.

Despite high xaxcall overhead, real applications
perform quite well because applications use I/O spar-
ingly. Two macrobenchmarks quantify this observation.
First, we wrote a Mandelbrot Set viewer that draws 300
distinct 400×400-pixel frames as it zooms into the Set
(Table 2(a)). We chose this application for two reasons.
First, it involves both intensive computation and frequent
I/O. Second, it is small enough to reimplement in multi-
ple languages, enabling us to compare a single applica-
tion across multiple extension mechanisms. The Mandel-
brot benchmark ran at roughly the same speed under both
Windows and Linux, under both Xax and using native
binaries. For comparison, we also tried two other com-
mon browser extension languages: Java and JavaScript.
The benchmark ran 30% faster using Sun Java 1.6r7 un-
der Windows XP. This difference arises from the time
taken encoding PNG images in the C implementations;
to validate this hypothesis, we removed the PNG step,
and found the C implementation as fast as Java. Google
Chrome’s JavaScript engine (build 2200) required more
than an hour. We gave up on Internet Explorer 7 and
Firefox 3’s JavaScript engines after waiting ten minutes
for the first two frames.

Second, we compare the performance of rendering and
displaying a one-page Postscript document in Xax and on
the native host, using Ghostscript 8.62 as the underlying
rendering engine in all cases (Table 2(b)). Ghostscript
is a rich application that exercises CPU, allocation, and
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Environment Mandelbrot Ghostscript
300 frames 1 page

(a) (b)
Linux native 169s 840ms
Linux Xax 170s 541ms
Win XP native 188s 835ms
Win XP Xax 177s 738ms
Win XP Java 138s —
JavaScript 4,870s —

Table 2: Macrobenchmarks.

I/O. The native benchmarks incur an additional overhead
of process launch; this test shows only that the Xax per-
formance is reasonable.

6.2 Legacy Support
To evaluate legacy support, we built Xax applica-

tions that use 15 libraries totaling 3.3 million lines of
code (LoC) in four languages (Table 3). Only mini-
mal changes were needed to compile the libraries. Most
changes were configure flags to specify different library
dependencies and to emit a static library as output.

6.3 OS-Independence
To evaluate OS-independence, we ran all of the above

applications on our Linux 2.6, Windows XP, Windows
Vista, and Windows Server 2008 Xax hosts. Figure 2(a)
is a Linux-toolchain program running in Firefox on
a Linux-PowerPC host. Figure 2(b) is a Windows-
toolchain program running in Firefox on Linux-x86. Fig-
ure 2(c) is a Linux-toolchain program running in Firefox
on Windows XP. Figure 2(d) is a Linux-toolchain pro-
gram running in Internet Explorer on Windows Vista.
Figure 2(e) is a Linux-toolchain program running in Fire-
fox on Linux-x86.

6.4 Security
We roughly compare the strength of different isola-

tion mechanisms by the count of lines of code in their
TCBs [6]. The Xax picoprocess TCB is less than 5,000
lines (See Table 4). In contrast, language-based Flash
and Java have implementations around two orders of
magnitude bigger. Section 2.2.3 considered the alterna-
tive of a hardware VM; note that Xen’s TCB is similarly
large.

The previous comparison is somewhat generous to
Xax, because the table counts Kaffe’s entire TCB, in-
cluding both its isolated execution engine (the JVM,
around 50,000 lines) and the new native code Kaffe in-
troduces to provide features like rich GUI displays. On
the other hand, as a type-safety-based extension mecha-
nism, Kaffe incorporates native UI code in its TCB for
performance or to exploit a stack of legacy code. By
contrast, Xax Kaffe isolates any native UI code it incor-
porates. In future work, we expect Xax to isolate Kaffe’s

(a) (b)

(c) (d)

(e)

Figure 2: Screenshots of the applications itemized in Table 3.

UI stack with minimal TCB growth. By analogy, note
that our PDF viewer isolates a 600K-line component that
is otherwise commonly installed in the TCB.

7 Related Work
One of the key observations that enables Xax to

achieve its benefits (§2.1) is that today’s type-safety-
based browser extension mechanisms do not admit
legacy code. We chose a simple isolation mechanism
buildable from primitives available in commodity oper-
ating systems, but several alternative approaches exist.

7.1 Hardware isolation
Other extension systems use memory hardware isola-

tion differently. Nooks isolates drivers from a monolithic
kernel [42]. Mondrix has a similar goal, but requires
hypothetical hardware support [48]. Palladium isolates
kernel extensions by exploiting x86’s arcane, otherwise-
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Application Fig. Language Toolchain New Mods Base
LoC LoC LoC

XaxAnalogClock 2(a) C gcc 4.1.2 459
elfLoader C gcc 4.1.2 552
xaxlib C gcc 4.1.2 412
dietlibc 0.31 C gcc 4.1.2 405 66,970
zlib 1.2.3 C gcc 4.1.2 24 25,475
libpng 1.2.25 C gcc 4.1.2 33 60,925
gd 2.0.35 C gcc 4.1.2 20 72,202

Kevin Bacon Visualizer 2(e) Python python 2.5 143
xaxFsLib C gcc 4.1.2 1,706
libtar 1.2.11 C gcc 4.1.2 17 11,348
Python 2.5 C, Python gcc 4.1.2 33 771,112
Zziplib 0.13.49 C, C++ gcc 4.1.2 40 54,728
Jpeg 6b C, Asm gcc 4.1.2 36 26,695
Expat 2.0.1 C gcc 4.1.2 41 47,813
GraphViz 2.18 C, C++ gcc 4.1.2 79 343,096

Headline Reader C gcc 4.1.2 323
eSpeak 1.36 C++ g++ 4.1.2 46 25,170

3D Demo 2(c) C, OpenGL gcc 4.1.2 257
Mesa 7.0.3 C gcc 4.1.2 56 683,883

PDF Viewer 2(d) C gcc 4.1.2 366
GhostScript 8.62 C gcc 4.1.2 29 666,216

Hello Webserver Java sun jdk 1.6 67
Kaffe 1.1.0 C, C++ gcc 4.1.2 123 364,560

Hello Webserver 2(b) C Vsl. Studio 2003 189
peLoader C gcc 4.1.2 613
libc.lib C 0 57,223
Total 982 3,277,416

Table 3: We have compiled a variety of applications for Xax using a variety of libraries and compiler toolchains comprising over
3.3 million LoC. Each library we build on is listed once, regardless of how many applications use it. For the base libraries, “our
LoC” consist mostly of build configuration. LoC is measured by cloc.pl [6].

Isolation mechanism TCB LoC
Linux Monitor+Proxy 2,596

Linux syscall entry path 1,632
4,228

Windows Monitor+Proxy 3,043
Xax kernel driver 978
NT syscall entry path 313

4,334
Gnash Flash player + deps 791,453
Kaffe non-Java code + deps 280,622
Xen VMM2 187,688

Table 4: Security. Because Xax exploits hardware memory
protection, both Xax implementations have small TCBs.

unused segment-based isolation mechanism [3]. Each of
these mechanisms emphasizes lightweight rich-pointer
interactions between a minimally-modified extension
and its host environment. Thus the systems improve ro-
bustness of existing code compositions, but preventing
malice is an explicit non-goal.

7.2 Binary rewriting
Another approach to isolation is binary rewriting. Ba-

sic software-fault isolation for RISC [44] and CISC [26]
architectures has quite high overhead if required to en-
force both read- and write-safety; such mechanisms
are thus envisioned as robustness-improving rather than
adversary-proof. XFI [12] showed how to achieve
adversary-proof isolation for operating system exten-
sions, but overheads still range from 28–116%, and the
system has been applied only to short pieces of legacy
code.

Vx32 is a general-purpose mechanism that combines
segments and binary rewriting [14] to achieve low-
overhead adversary-proof protection, and might be a pos-
sible alternative to our picoprocesses. However, the use
of segment registers places an additional constraint on
toolchains. More importantly, it excludes other architec-
tures, which may be important for future mobile devices;
Xax already runs on PowerPC (§6.3).
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Besides isolation, binary rewriting has also been used
to provide transparent cross-architecture portability [2].
It may have applicability in the Xax context: Where web
developers have only provided an x86 binary, a non-x86-
based host may employ binary rewriting to exchange per-
formance for compatibility.

7.3 Operating system-level virtualization
Another way to isolate untrusted web applications is

via operating system-level virtualization, wherein an OS
provides multiple isolated instances for separate sub-
systems, each with the same API as the underlying
OS. Examples include Solaris zones [33] and FreeBSD
jails [41]. The implementation of OS virtualization per-
meates a monolithic kernel, so its TCB is larger and more
amorphous than that of the picoprocess mechanism. Fur-
thermore, the mechanism sacrifices OS-independence
and is not supported on many deployed OSes.

7.4 Low-level type safety
Another possible alternative for isolating legacy code

is the use of a safety-enforcing typed assembly language
(TAL) [29], an instance of a proof-carrying code [31].
TAL is type-safety-based mechanism, similar to those
described in §2.2.1, but it is lower-level than JVM or
.NET’s object-oriented type system. For example, it can
enforce safety in polymorphic languages without requir-
ing that objects use vtables. Thus one cannot compile
TAL to JVM; a separate TAL runtime must be deployed.

TAL should be easier to target than a higher-level type
system; however, no current compilers emit TAL for
weakly typed languages such as C. One could perhaps
produce such a compiler by modifying the back end of a
type-retrofitting C compiler such as CCured [30]. Ex-
perience with CCured, however, shows several limita-
tions that restrict its applicability to improving robust-
ness rather than adversary-proofing. First, although some
work has been done to verify the safety of CCured’s
output [19], the CCured compiler must generally be
trusted. Second, annotating legacy code to convince
CCured to compile it efficiently has proven to be quite
labor-intensive [7], and even then rarely eliminates all of
the “trusted casts” [19].

7.5 Application context
Many of the papers described above mention potential

application to web browsers; however, ours is the first
to demonstrate how to enable legacy code to be read-
ily compiled and deployed in the web context. VXA re-
stricts extensions to a narrow interface, and shows appli-
cability to a restricted class of applications (codecs) [13];
one important contribution of the present work is to show
how a narrow interface to the existing browser is suffi-
cient to support a much broader range of software (§3.3).

8 Limitations and future work
In this section, we discuss limitations of the current

Xax implementation and plans for future enhancements.

8.1 Security analysis
We argue that Xax is secure by its small TCB; how-

ever, as a practical matter, our implementations reuse
commodity operating systems as substrate. A production
implementation deserves a rigorous inspection to ensure
both that the kernel syscall dispatch path for a picopro-
cess is indeed closed, and that no other kernel paths, such
as exception handling or memory management, are ex-
ploitable by a malicious picoprocess. We should also ex-
plore alternative implementations that exclude more host
OS code from the TCB, such as a MacOS implementa-
tion that uses Mach processes, or a VM-like implementa-
tion that completely replaces the processor trap dispatch
table for the duration of execution of a picoprocess.

8.2 Rich application enhancements
Rich web applications, Xax or otherwise, will require

browser support for efficiently handling large binaries
(such as remote differential compression [43]), and sup-
port for offline functionality [11, 18]. Because Xax ap-
plications access resources via the browser, any browser
enhancements that deliver these features are automati-
cally inherited by the Xax environment.

When we port a shared-library loader, Xax can expe-
rience further performance improvements from selective
preloading [24].

8.3 Improved browser integration
Integrating Xax with the browser using a proxy is ex-

pedient, but for several reasons it would be better to di-
rectly integrate with the browser. First, rewriting the
namespace of the origin server is an abuse of proto-
col. Instead, the browser should provide an explicit
<embed> object with which a page can construct and
name a picoprocess for further reference. Second, the
proxy is unaware of when the browser has navigated
away from a page, and when it is thus safe to terminate
and reclaim a picoprocess. Third, the proxy cannot op-
erate on https connections. For these reasons, we plan
to integrate Xax directly into popular browsers.

8.4 Threading
Supporting some threading model is a requirement for

targeting general applications. The nonblocking I/O in-
terface (§3.2) is sufficient to implement cooperative user-
level threading, such as Kaffe’s jthreads. Adding to
the xaxcall interface a mechanism to deliver an asyn-
chronous signal (e.g., when a poll condition is satisfied)
is sufficient to implement preemptive user-level thread-
ing. Finally, the xaxcall interface could expose a mecha-
nism for launching additional kernel-level threads to en-
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able the picoprocess to exploit a multicore CPU. Each
mechanism offers improved application performance in
exchange for expanding the Xax Monitor’s contribution
to the TCB.

8.5 Porting additional libraries
Most of the ports in this paper were built on our mod-

ifications to dietlibc. Similarly modifying more main-
stream libcs, such as the GNU C library and Microsoft
Visual Studio’s standard libraries, will greatly ease port-
ing of other libraries. One challenge in porting either
library is their reliance on x86 segment registers to man-
age thread-local storage. Because segment registers can-
not be assigned in user mode, we must emulate or obviate
this functionality.

We also plan to port more interactive code. Our first
efforts will be aimed at GUI libraries with few dependen-
cies (e.g. Qt/Embedded). We expect to blit frame buffer
regions to the browser; keyboard and mouse events we
will capture in JavaScript and send back to Xax.

8.6 Relocatable code
The picoprocess restricts application code to a fixed

address range (§3.1). This restriction is an arbitrary inter-
section of the restrictions imposed by commodity oper-
ating systems; we have no guarantee that future Xax im-
plementations will not require further narrowing it. We
plan to explore an alternative approach: requiring Xax
applications to be relocatable, capable of running on an
ABI that makes no guarantee about any particular abso-
lute virtual addresses. One possible limitation with this
approach is that it may impede an attempt to import ex-
isting binaries directly into Xax.

9 Conclusion
We introduce Xax, a browser plugin model that en-

ables developers to adapt legacy code for use in rich web
applications, while maintaining security, performance,
and OS-independence.

• Xax’s security comes from its use of the picoprocess
minimalist isolation boundary and browser-based
services; we demonstrate that Xax’s TCB is orders
of magnitude smaller than alternative approaches.

• Xax’s OS-independence comes from its use of pi-
coprocesses and its platform abstraction layer; we
demonstrate that Xax applications compiled on any
toolchain run on any OS host.

• Xax’s performance derives from native code execu-
tion in picoprocesses; we measure Xax’s compute
performance to be comparable with native execu-
tion, and that even with quite inefficient I/O perfor-
mance, Xax delivers compelling whole-application
performance.

• Xax’s legacy support comes from lightweight code
modification; we demonstrate that just a few hun-
dred lines of configuration options are sufficient to
port 3.3 million lines of legacy libraries and appli-
cations.

Over decades of software development in non-type-safe
languages, vast amounts of design, implementation, and
testing effort have gone into producing powerful legacy
applications. By enabling developers to leverage this
prior effort into web applications’ deployment and ex-
ecution model, we anticipate that Xax may change the
landscape of web applications.
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Notes
1The term “Rich Internet Application” or “RIA” is sometimes used

to refer to these high-end apps. Since the distinction between a web
app and an RIA is fuzzy at best, we consistently use the term “web
app” herein.

2This value includes code supporting multiple platforms, and thus
overestimates the size of the Xen TCB.




