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Abstract — Large enterprise networks consist of thou-
sands of services and applications. The performance
and reliability of any particular application may depend
on multiple services, spanning many hosts and network
components. While the knowledge of such dependencies
is invaluable for ensuring the stability and efficiency of
these applications, thus far the only proven way to dis-
cover these complex dependencies is by exploiting hu-
man expert knowledge, which does not scale with the
number of applications in large enterprises.

Recently, researchers have proposed automated dis-
covery of dependencies from network traffic [8, 18]. In
this paper, we present a comprehensive study of the per-
formance and limitations of this class of dependency dis-
covery techniques (including our own prior work), by
comparing with the ground truth of five dominant Mi-
crosoft applications. We introduce a new system, Orion,
that discovers dependencies using packet headers and
timing information in network traffic based on a novel
insight of delay spike based analysis. Orion improves the
state of the art significantly, but some shortcomings still
remain. To take the next step forward, Orion incorporates
external tests to reduce errors to a manageable level. Our
results show Orion provides a solid foundation for com-
bining automated discovery with simple testing to obtain
accurate and validated dependencies.

1 Introduction

Modern enterprise IT infrastructures comprise of large
numbers of network services and user applications. Typ-
ical applications, such as web, email, instant messag-
ing, file sharing, and audio/video conferencing, operate
on a distributed set of clients and servers. They also
rely on many supporting services, such as Active Direc-
tory (AD), Domain Name System (DNS), Kerberos, and
Windows Internet Name Service (WINS). The complex-
ity quickly adds up as different applications and services
must interact with each other in order to function prop-
erly. For instance, a simple webpage fetch request issued

by a user can involve calls to multiple services mentioned
above. Problems at any of these services may lead to
failure of the request, leaving the user frustrated and IT
managers perplexed.

We say one service depends on the other if the former
requires the latter to operate properly. Knowledge of ser-
vice dependencies provides a basis for serving critical
network management tasks, including fault localization,
reconfiguration planning, and anomaly detection. For in-
stance, Sherlock encapsulates the services and network
components that applications depend on in an inference
graph [8]. This graph is combined with end-user obser-
vations of application performance to localize faults in
an enterprise network. When IT managers need to up-
grade, reorganize, or consolidate their existing applica-
tions, they can leverage the knowledge of dependencies
of their applications to identify the services and hosts that
may potentially be affected, and to prevent unexpected
consequences [9]. When continually discovered and up-
dated, dependencies can help draw attention to unantici-
pated changes that warrant investigation.

While there are network management systems that
perform topology and service discovery [21, 12], IT
managers currently do not have proven tools that help
to discover the web of dependencies among different
services and applications. They commonly rely on the
knowledge from application designers and owners to
specify these dependencies. These specifications can be
written in languages provided by commercial products,
such as Mercury MAM [4] and Microsoft MOM [5].
While straightforward, this approach requires significant
human effort to keep up with the evolution of the ap-
plications and their deployment environment. This be-
comes a massive problem for large enterprises with thou-
sands of applications. For example, a survey conducted
by the Wall Street Journal in 2008 found that HP and
Citigroup each operate over 6,000 and 10,000 line-of-
business (LOB) applications [6]. Microsoft runs over
3,100 LOB applications in its corporate network, most
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of which have no documentations describing their depen-
dencies. More recently, there have been a few attempts
to automate dependency discovery by observing network
traffic patterns [8, 9, 18]. However, there is very little
understanding about how well these approaches work,
where and how they fall short, and whether their limi-
tations can be overcome without human intervention.

There are a few challenges in designing a system that
discovers dependencies in a complex enterprise network:
First, it should require minimal human effort; Second,
it should be applicable to a diverse set of applications;
Third, it should be non-intrusive to applications and be
easily deployable; and Fourth, it should scale with the
number of services, applications, and hosts in the net-
work. These challenges are hard to address, especially
given that expert knowledge of application internals can-
not be assumed for thousands of new and legacy appli-
cations. Incorporating such knowledge in a system is a
formidable task.

We have built a system called Orion that overcomes all
these challenges. Specifically, it discovers dependencies
by passively observing application traffic. It uses read-
ily available information contained in IP, TCP, and UDP
headers without parsing higher-level application-specific
protocols. Most of the computation is done locally by in-
dividual hosts, and the amount of information exchanged
between hosts is small.

In this paper, we describe our experiences in design-
ing, implementing, and deploying Orion in Microsoft’s
corporate network. We make the following contribu-
tions:

e We introduce a new dependency discovery tech-
nique based on traffic delay distributions. For the
applications we studied, we can narrow down the
set of potential dependencies by a factor of 50 to
40,000 with negligible false negatives.

e We are the first to extract the dependencies for
five dominant enterprise applications by deploying
Orion in a portion of Microsoft’s corporate network
that covers more than 2,000 hosts. These extracted
dependencies can be used as input to create more
realistic scenarios for the evaluation of various fault
localization and impact analysis schemes

e We comprehensively study the performance and
limitations of a class of dependency discovery tech-
niques that are based on traffic patterns (including
Orion). The results reveal insights into the short-
comings of such techniques when they are applied
to real-world applications.

e We conduct extensive experiments to compare
Orion with the state of the art (Sherlock [8] and
eXpose [18]). While their false negatives are sim-
ilar, the false positives of Orion are 10-95% fewer
than Sherlock and 94-99% fewer than eXpose. Even

though Orion cannot avoid all the false positives, we
can obtain accurate dependencies using simple ex-
ternal tests.

In the rest of the paper, we elaborate on our tech-
niques, implementation, and evaluation of automated de-
pendency discovery. Additionally, we provide concrete
examples about how to use extracted dependencies for
fault diagnosis and reconfiguration planning.

2 Related Work

Many sophisticated commercial products, such as EMC
SMARTS [1], HP OpenView [2], IBM Tivoli [3], Mi-
crosoft MOM [5], and Mercury MAM [4], are used for
managing enterprise networks. Some of them provide
support for application designers to specify the depen-
dency models. However, these approaches require too
much manual effort and are often restricted to a particu-
lar set of applications from the same vendor.

There is a large body of prior work on tracing execu-
tion paths among different components in distributed ap-
plications. For example, Pinpoint instruments the J2EE
middleware on every host to track requests as they flow
through the system [15]. It focuses on mining the collec-
tions of these paths to locate faults and understand sys-
tem changes. X-Trace is a cross-layer, cross-application
framework for tracing the network operations resulting
from a particular task [16]. The data generated by X-
Trace can also be used for fault detection and diagnosis.
Both Pinpoint and X-Trace require all the distributed ap-
plications to run on a common instrumented platform.
This is unlikely to happen in large enterprise networks
with a plethora of applications and operating systems
from different vendors.

Magpie is a toolchain that correlates events generated
by operating system, middleware, and application to ex-
tract individual requests and their resource usage [10].
However, it heavily relies on expert knowledge about the
systems and applications to construct schemas for event
correlation.

Project5 [7] and WAPS [22] apply two different cor-
relation algorithms to message traces recorded at each
host to identify the causality paths in distributed systems.
They both focus on debugging and profiling individual
applications by determining the causality between mes-
sages. The message correlation in Project5 is done by
computing the cross correlation between two message
streams. WAPS developed a different message correla-
tion algorithm based on the assumption that causal delays
follow an exponential distribution for wide-area network
applications. In contrast, Orion focuses on discovering
the service dependencies of network applications.

Brown et al. propose to use active perturbation to infer
dependencies between system components in distributed
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applications [14]. While this methodology requires little
knowledge about the implementation details of the ap-
plications, it has to use a priori information to learn the
list of candidate services to perturb, which is inherently
difficult to obtain in large enterprise networks.

The closest prior work to Orion is the use of traffic
co-occurrence to identify dependencies in enterprise net-
works. To determine whether one service depends on the
other, researchers have tried to compute either the condi-
tional probability [8, 9] or the IMeasure [18] of the two
services within a fixed time window. A key issue with
both approaches is the choice of the time window size.
In fact, it is fundamentally difficult to pick an appropri-
ate window size that attains a good balance between false
positives and false negatives. While they seem to extract
certain meaningful dependencies, neither of them quan-
tified the accuracy of their results in terms of how many
true dependencies they missed or how many false depen-
dencies they mistakenly inferred. In contrast, our tech-
nique does not rely on any co-occurrence window size.
Through field deployment, we show that Orion extracts
dependencies much more accurately than Sherlock [8]
and eXpose [18] for a variety of real-world enterprise ap-
plications. We also validated our results with the owners
of all these applications.

3 Goal & Approach

Given an enterprise network application, our goal is to
discover the set of services on which it depends in order
to perform its regular functions. Before describing the
technical details, we first introduce a few concepts and
terms that will be used in the paper. We then motivate
our design decisions, outline our approach, and discuss
our challenges.

3.1 Services and dependencies

Enterprise networks consist of numerous services and
user applications. Applications, such as web, email, and
file sharing, are directly accessed by users. Most appli-
cations depend on various network services to function
properly. Typical network services include Active Di-
rectory (AD), Domain Name System (DNS), and Ker-
beros. These services provide basic functions, such as
name lookup, authentication, and security isolation. An
application or a service can run on one or more hosts.

In this paper, we do not make a formal distinction be-
tween services and applications, and we use both terms
interchangeably. We use a three-tuple (ip, port, proto)
to denote either an application or a service. In an enter-
prise network, an ¢p normally maps to a unique host and
the port and proto often identify a particular service run-
ning on that host. Many ports under 1024 are reserved
for well-known services, such as Web (80, TCP), DNS
(53, TCP/UDP), Kerberos (88, TCP/UDP), WINS (137,
TCP/UDP), and LDAP (389, TCP/UDP). Another type

of service is RPC-based and does not use well-known
ports. Instead, these services register an RPC port be-
tween 1025 and 65535 when a host boots up. Clients
who intend to use these services will learn the RPC ser-
vice port through a well-known port of RPC endpoint
mapper (135).

While it is a common practice to associate a ser-
vice with an (ip, port, proto) tuple, we may define ser-
vice at either coarser or finer granularities. On the one
hand, many enterprises include fail-over or load bal-
ancing clusters of hosts for particular services, which
can be denoted as (ipCluster, port, proto). Other ser-
vices, such as audio and video streaming, could use any
port within a particular range, which can be denoted as
(ip, port Range, proto). On the other hand, multiple ser-
vices may share the same port on a host in which case we
must use additional service-specific information to iden-
tify each of them.

We define service A to depend on service B, denoted
as A — B, if A requires B to satisfy certain requests
from its clients. For instance, a web service depends on
DNS service because web clients need to lookup the IP
address of the web server to access a webpage. Simi-
larly, a web service may also depend on database ser-
vices to retrieve contents requested by its clients. Note
that A — B does not mean A must depend on B to an-
swer all the client requests. In the example above, clients
may bypass the DNS service if they have cached the web
server IP address. The web server may also bypass the
database service if it already has the contents requested
by the clients.

3.2 Discovering dependencies from traffic
We consider three options in designing Orion to discover
dependencies of enterprise applications: i) instrument-
ing applications or middlewares; ii) mining application
configuration files; and iii) analyzing application traffic.
We bypass the first option because we want Orion to be
easily deployable. Requiring changes to existing appli-
cations or middlewares will deter adoption.

Configuration files on hosts are useful sources for dis-
covering dependencies. For instance, DNS configura-
tion files reveal information about the IP addresses of
the DNS servers, and proxy configuration files may con-
tain the IP addresses and port numbers of HTTP and
FTP proxies. However, the configuration files of dif-
ferent applications may be stored in different locations
and have different formats. We need application-specific
knowledge to parse and extract dependencies from them.
Moreover, they are less useful in identifying dependen-
cies that are dynamically constructed. A notable example
is that web browsers often use automatic proxy discovery
protocols to determine their proxy settings.

In Orion, we take the third approach of discovering
dependencies by using packet headers (e.g., IP, UDP, and
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TCP) and timing information in network traffic. Such
information is both easy to obtain and common to most
enterprise applications. Note that it is natural to develop
application-specific parsers to understand the application
traffic, e.g., when a message starts or ends and what the
purpose of the message is. Such detailed knowledge is
helpful in determining the dependency relationships be-
tween the traffic of different services, eliminating am-
biguities, and hence improving the accuracy of depen-
dency inference. Nonetheless, developing parsers for ev-
ery application requires extensive human effort and do-
main knowledge. For this reason, we refrain from us-
ing any packet content information besides IP, UDP, and
TCP headers.

Orion discovers dependencies based on the observa-
tion that the traffic delay distribution between dependent
services often exhibits “typical” spikes that reflect the
underlying delay for using or providing these services.
While conceptually simple, we must overcome three key
challenges. First, it is inherently difficult to infer de-
pendencies from application traffic without understand-
ing application-specific semantics. Packet headers and
timing information are often insufficient to resolve am-
biguity. This may cause us to mistakenly discover cer-
tain service correlations (false positives) even though
there are no real dependencies between the services. Sec-
ond, packet headers and timing information can be dis-
torted by various sources of noise. Timing information
is known to be susceptible to variations in server load
or network congestion. Third, large enterprise networks
often consist of tens of thousands of hosts and services.
This imposes stringent demand on the performance and
scalability of Orion. We introduce new techniques to ad-
dress each of the three challenges.

Orion has three components. The flow generator con-
verts raw network traffic traces into flows. The purpose
is to infer the boundaries of application messages based
only on packet headers and timing information. The
delay distribution calculator identifies the potential ser-
vices from the flows and computes delay distributions
between flows of different services. Finally, the depen-
dency extractor filters noise and discovers dependencies
based on the delay distributions. We describe each of
them in detail in the subsequent sections.

4 Flow Generation

In client-server applications, services and their clients
communicate with each other using requests and replies.
For convenience, we use a message to denote either a re-
quest or a reply. Orion discovers service dependencies
by looking for the time correlation of messages between
different services. For instance, it infers the dependency
of a web service on a DNS service by observing DNS
messages precede web messages. While time correlation

may not always indicate a true dependency, we rely on
a large number of statistical samples to reduce the likeli-
hood of false positives.

In reality, we are only able to observe individual pack-
ets in the network instead of individual messages. Mul-
tiple packets may belong to the same message and the
time correlation among themselves do not explicitly con-
vey any dependency information. If we consider the time
correlation between every possible pair of packets, we
could introduce: i) too much redundancy because we
count the correlation between two dependent messages
multiple times; and ii) significant computation overhead
because the number of packets is much larger than the
number of messages.

While it is desirable to aggregate packets into mes-
sages for dependency inference, this is nontrivial be-
cause we do not parse the application payload in packets.
Given that most services use UDP and TCP for commu-
nications, we aim to both reduce computation overhead
and keep sufficient correlation information by aggregat-
ing packets into flows based on IP, TCP, and UDP headers
and timing information:

TCP packets  with the same five tuple (locIP, locPt,
remlIP, remPt, proto) are aggregated into a flow whose
boundary is determined by either a timeout threshold,
or TCP SYN/FIN/RST, or KEEPALIVE. Any two con-
secutive packets in a flow must not be interleaved by
an interval longer than the timeout threshold. TCP
SYN/FIN/RST flags are explicit indications of the start
or the end of flows. Certain services with frequent
communications may establish persistent connections to
avoid the cost of repetitive TCP handshakes. They may
use KEEPALIVE messages to maintain their connections
during idle periods. We also use such messages to iden-
tify flow boundaries.

UDP packets  with the same five tuple (locIP, locPt,
remIP, remPt, proto) are aggregated into a flow solely
based on timing information, since UDP is a connection-
less protocol. Any two consecutive packets in a flow
must not be interleaved by an interval longer than the
timeout threshold.

We will evaluate the impact of flow generation on our
inference results in Section 7.2.3.

5 Service Dependency Discovery

In this section, we first present an overview of our ap-
proach to discovering service dependencies. We then
describe the details of our approach, including how to
calculate delay distributions between different services
based on flow information and how to extract dependen-
cies from delay distributions.

5.1 Overview

Orion discovers service dependencies by observing the
time correlation of messages between different services.
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Our key assumption is if service A depends on ser-
vice B, the delay distribution between their messages
should not be random. In fact, it should reflect the un-
derlying processing and network delays that are deter-
mined by factors like computation complexity, execution
speed, amount of communication information, and net-
work available bandwidth and latency. For instance, a
web client may need to go through DNS lookup and au-
thentication before accessing a web service. The mes-
sage delay between the DNS and web services is the sum
of: 1) the time it takes for the client to send an authentica-
tion request after the DNS reply is received; 2) the trans-
mission time of the authentication request to the authen-
tication service; 3) the processing time of the authenti-
cation request by the authentication service; 4) the trans-
mission time of the authentication reply to the client; and
5) the time it takes for the client to send a web request
after the authentication reply is received. Assuming the
host and network load are relatively stable and relatively
uniform service processing overhead, this message de-
lay should be close to a “typical” value that exhibits as a
“typical” spike in its delay distribution.

There could be multiple typical values for the message
delay between two dependent services, each of which
corresponds to a distinct execution path in the services.
In the above example, the client may bypass the authen-
tication if it has a valid authentication ticket cached. As
a result, the message delay between the DNS and web
services will simply be the time it takes for the client to
send a web request after the DNS reply is received. This
will lead to two typical spikes in the delay distribution.

While there could be thousands of hosts in the net-
work, Orion focuses on discovering service dependen-
cies from an individual host’s perspective. Given a host,
it aims to identify dependencies only between services
that are either used or provided by that host. This im-
plies the dependency discovery algorithm can run inde-
pendently on each host. This is critical for Orion to scale
with the network size. By combining the dependencies
extracted from multiple hosts, Orion can construct the de-
pendency graphs of multi-tier applications. The depen-
dency graphs of a few three-tier applications are illus-
trated in Section 7.1.

In the remainder of the section, we will describe a few
important techniques in realizing Orion. This includes
how to scale with the number of services, reduce the im-
pact of noise, and deal with insufficient number of delay
samples.

5.2 Delay distribution calculation

Orion uses the delay distribution of service pairs to deter-
mine their dependency relationship. Given a host, we use
(IPyoc, Portioe, proto) and (I Py.ep, Port,em, proto) to
represent the local and remote services with respect
to that host. We are interested in two types of de-

pendency: i) Remote-Remote (RR) dependency indi-
cates the host depends on one remote service to use an-
other remote service. This type of dependency is com-
monly seen on clients, e.g., a client depends on a DNS
service (DN S,em, 53rem, UDP) to use a web service
(Webrem, 80rem, TCP); ii) Local-Remote (LR) depen-
dency indicates the host depends on a remote service to
provide a local service. This type of dependency is com-
monly seen on servers, e.g., the web service on a server
(Webioe, 8010c, T'C'P) depends on an SQL database ser-
vice (SQLyem, 1433,em, TCP) to satisfy the web re-
quests from its clients.

Orion calculates the delay distribution based on the
flow information generated in the previous stage (Sec-
tion 4). Since a host may observe many flows over a
long time, Orion uses two heuristics to reduce the CPU
and memory usage. First, it calculates the delays only be-
tween flows that are interleaved by less than a predefined
time window. Ideally, the time window should be larger
than the end-to-end response time of any service S in the
network (from the time a client sends the first request to a
service that S depends on till the time the client receives
the first reply from S) to capture all the possible depen-
dencies of S. In single-site enterprise networks, a time
window of a few seconds should be large enough to cap-
ture most of the dependencies that we look for, given the
end-to-end response time of services in such networks is
typically small. In multi-site enterprise networks which
are interconnected via wide-area networks, we may need
a time window of a few tens of seconds. We currently
use a three-second time window for our deployment in-
side Microsoft’s corporate network.

The second heuristic to reduce overhead is based on
the observation that a host may communicate over a
large number of services, many of which may not be
persistent enough to attract our interest. For instance,
clients often use many ephemeral ports to communicate
with servers and the “services” corresponding to these
ephemeral ports are never used by other services. Orion
keeps track of the number of flows of each service in the
recent past and uses a flow count threshold to distinguish
between ephemeral and persistent services. It calculates
and maintains delay distributions only for persistent ser-
vices pairs. The flow count threshold is determined by
the minimum number of statistical samples that are re-
quired to reliably extract dependencies. We use a default
threshold of 50 in the current system. Note that the win-
dow size and the flow count threshold only affect the the
computation and storage overhead but not the accuracy
of Orion.

Since Orion does not parse packet payload to under-
stand the actual relationship between flows, it simply
calculates the delay between every pair of flows, e.g.,
(LocI Py, LocPty, RemI P, RemPty, protoy) and
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(LocI Py, LocPto, RemlI Po, RemPtoy, protos),  that
are interleaved by less than the time window. We treat
each delay sample as a possible indication of both a RR

dependency, e.g, (RemlIP, RemPts,protos) —
(RemlIPy, RemPty,protor), and an LR de-
pendency, eg., (LocIPy, LocPty,protoy) —

(RemlI Py, RemPtsy, protos), and add it to the de-
lay distributions of both service pairs. This implies that
there could be “irrelevant” samples in the delay distri-
bution that do not reflect a true dependency between
the service pair. This could be problematic if a delay
distribution is dominated by such irrelevant samples.
Nonetheless, in our current deployment, we identified
only one false negative that is possibly caused by this
problem (Section 7.2).

Suppose a host uses m remote services and provides
n local services, Orion needs to maintain delay distri-
butions for (m x m) RR service pairs and (m x n)
LR service pairs for that host in the worse case. Be-
cause Orion discovers dependencies for each host inde-
pendently, m and n are determined by the services ob-
served at that host rather than all the services in the net-
work. This allows Orion to scale in large enterprises with
many services. We evaluate the scalability of Orion in
Section 7.4.1.
5.3 Service dependency extraction
We now describe three important issues related to ex-
tracting dependencies from delay distributions: mitigat-
ing the impact of random noise, detecting typical spikes,
and dealing with insufficient samples.

5.3.1 Noise filtering & spike detection

The delay distribution of service pairs calculated from
flow information is stored as a histogram with a default
bin width of 10ms. There are 300 bins if we use a three-
second time window. We denote bin-height as the num-
ber of delay samples that fall into each bin.

Raw delay distributions may contain much random
noise due to host and network load variations. The noise
will introduce numerous random spikes in the delay dis-
tribution, which could potentially interfere with the de-
tection of typical spikes. Realizing this problem, we treat
each delay distribution as a signal and use signal pro-
cessing techniques to reduce random noise. Intuitively,
the number of typical spikes corresponds to the number
of commonly-executed paths in the services, which is at
most a few for all the services we study. In contrast, ran-
dom noise tends to introduce numerous random spikes in
the signal, which is more evident in the high frequency
spectrum.

This prompts us to use Fast Fourier Transform (FFT)
to decompose the signal across the frequency spectrum
and apply a low-pass filter to mitigate the impact of ran-
dom noise [13]. The choice of low-pass filter reflects
the trade-off between tolerance to noise and sensitivity
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to typical spikes. We have tried a few commonly-used
filters and find that Kaiser window (50 < 3 < 200) [17]
achieves a reasonable balance between the two goals.
The effect of filtering is not particularly sensitive to the
choice of 3 within the above range and we use 5 = 100
in the current system.

For each delay distribution, we plot the corresponding
bin-height distribution. Each point in the bin-height dis-
tribution represents the number of bins with a particular
bin-height. Interestingly, we find these bin-height distri-
butions closely follow normal distribution, as illustrated
by an example in Figure 1. Based on this observation, we
detect typical spikes whose bin-heights are among the
top % in the bin-height distribution. The parameter x
determines the degree of tolerance to noise and sensitiv-
ity to typical spikes. In practice, we find = between 0.1%
and 1% works pretty well. We use a bin-height threshold
of (mean + k x stdev) to detect typical spikes, where
mean and stdev are the the mean and standard deviation
of the bin-heights. With £ = 3, we will detect typical
spikes whose bin-heights are among the top 0.3% in the
bin-height distribution.

Figure 2 shows two examples of noise filtering and
spike detection. The two horizontal lines in each graph
represent the mean and the (mean + k x stdev) of the
bin-heights. The two graphs on the left are the delay
distributions of a true dependency before and after fil-
tering. Clearly, filtering does not eliminate the typical
spike. The two graphs on the right are the delay distribu-
tions of a non-dependency. In this case, filtering signif-
icantly reduces the random spikes that could have led to
false positives. Note that noise filtering is effective only
against random spikes in delay distributions. It has little
effect on other non-typical spikes introduced by certain
unexpected service pair interaction.
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5.3.2 Client & service aggregation

Orion requires a reasonably large number of samples in
a delay distribution to reliably detect typical spikes. To
avoid inaccuracy due to a lack of samples, it ignores de-
lay distributions in which the number of samples is fewer
than the number of bins in the histogram. This could
be problematic for individual clients who use many re-
mote services infrequently. Fortunately, clients in an en-
terprise network often have similar host, software, and
network configurations. They also have a similar set
of dependencies when using a particular remote service.
Orion aggregates the delay distributions of the same ser-
vice pairs from multiple clients to improve the accuracy
of dependency extraction. Note that the service depen-
dencies of clients may have slight difference, e.g., due to
different software versions. By doing client aggregation,
Orion will discover the aggregated dependencies of all
the clients, which could be a superset of the dependen-
cies of each individual client.

To facilitate client aggregation, we may have to per-
form service aggregation as well. Many enterprise net-
works use a failover or load balancing cluster of servers
to provide a particular service. Clients may communi-
cate with any of the servers in the cluster. By treating
such a cluster of servers as a whole and representing
the service with a (ipCluster, port, proto), it provides
us much more opportunities in performing client aggre-
gation. Similarly, a server may provide the same ser-
vice (e.g., audio and video streaming) on any port in a
particular range. We may represent such a service with
(ip, port Range, proto) to help client aggregation.

While client and service aggregations help to improve
accuracy, they require extra information beyond that em-
bedded in the packet headers. In Microsoft’s corporate
network, most servers are named based on a well-defined
convention, e.g., XXX-prxy-xx is a proxy cluster and xxx-
dns-xx is a DNS cluster. We develop a simple set of
naming rules to identify the clusters. We also examine
the configuration files to obtain the port range for a few
services that do not use a fixed port. In enterprises where
such naming convention does not exist, we may have to
rely on IT managers to populate the host-to-cluster map-
ping information. Normally, this type of information al-
ready exists in large enterprises to facilitate host man-
agement. We can also leverage existing work on service
discovery to obtain this information [11].

5.4 Discussion

We focus on discovering the service dependencies for
client-server applications, which are dominant in many
enterprise networks. Their dependencies change only
when they are reconfigured or upgraded. As a result,
the dependencies that we aim to discover are usually sta-
ble over several weeks or even months. As we will see
in Section 7.3, this is critical because Orion may need a
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Figure 3: System architecture

few days of statistical samples to reliably infer depen-
dencies. Recently, peer-to-peer (p2p) applications have
gained popularity in enterprise networks. In contrast to
traditional client-server applications, they are designed
to be highly resilient by dynamically changing the set of
hosts with which a client communicates. The dependen-
cies of these applications could change even during short
periods of time. As future work, we plan to investigate
how to discover the dependencies of p2p applications.

Orion discovers service dependencies by looking for
typical spikes in the delay distributions of service pairs.
While conceptually simple, false positives and false neg-
atives may arise due to various types of noise (e.g., dif-
ferent hardware, software, configuration, and workload
on the hosts and load variation in the network) or un-
expected service pair interaction (e.g., although service
A — B, the messages of A and B could be triggered by
other services). While the impact of random noise can
be mitigated by taking a large number of statistical sam-
ples, unexpected service pair interaction is more prob-
lematic. In Section 7.2, we will illustrate examples of
false positives where non-dependent service pairs show
strong time correlations.

We emphasize that the issues above are not just spe-
cific to Orion but to the class of dependency discovery
techniques based on traffic patterns. We will comprehen-
sively evaluate and compare their performance using five
real-world enterprise applications in Section 7. In spite
of these issues, Orion is surprisingly effective in discov-
ering service dependencies. In fact, it not only discovers
the majority of the true dependencies but also success-
fully eliminates most of the false positives. While some
false positives are unavoidable, their numbers are suffi-
ciently small to be removed with some simple testing.

Orion requires a large number of statistical samples to
reliably extract service dependencies. This makes it less
applicable to services which are newly deployed or infre-
quently used. It may also miss dependencies that rarely
occur, such as DHCP. One possible solution is to proac-
tively inject workloads to these services to help accumu-
late sufficient number of samples.
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6 Implementation

We now describe the implementation of Orion as shown
in Figure 3. Orion has three major components that run
on a distributed set of hosts in an enterprise network.
The flow generators convert raw traffic traces into flow
records in real time. The delay distribution calculators
run on the same set of hosts as the flow generators. They
continually update the delay distributions for all the ser-
vice pairs relevant to the services that administrators are
interested in. A centralized dependency extractor col-
lects and analyzes the delay distributions from multiple
hosts to extract dependencies.

In a fully distributed deployment, each host runs a flow
generator and a delay distribution calculator to build its
own delay distributions (host-based deployment). Such
organization scales well given the localized nature of
computation. Traffic traces can be captured by WinPcap
or TDI drivers (a Windows API). The latter allows us
to get the port and protocol information even when traf-
fic is encrypted by IPSec. When such a fully distributed
deployment is not possible, Orion can operate on packet
sniffers connected to span ports on switches and routers
that are close to hosts (network-based deployment). It
will build the delay distributions for each host on the
same subnet.

6.1 Flow generator

A flow generator reads the (ip, port, proto) and tim-
ing information from the raw traffic traces and outputs
flow records. It maintains a hash table in memory,
which keeps track of all the active flow records using
the five-tuple (locI P, locPt, remlIP,remPt, proto) as
keys. locI P corresponds to a monitored host. Each flow
record contains a small amount of information, e.g., the
timestamps of the first and the last packets, the direc-
tion and TCP flag of the last packet, and the current TCP
state of the flow. Based on this information, we can de-
termine whether to merge a new packet into an existing
flow record, flush an existing flow record, or create a new
one. To keep the hash table from growing excessively,
we expire old flow records periodically. The current ver-
sion is implemented in C using the libpcap library with
roughly 2K lines of code.

6.2 Delay distribution calculator

The delay distribution calculator keeps a buffer that holds
the recent flow records of each monitored host. The flow
records in the buffer are sorted based on their starting
time and ending time. When a new flow record arrives,
we use its starting time and ending time minus the three-
second time window to expire old records in the buffer.
For each monitored host, we also maintain a set of de-
lay distributions for the service pairs related to that host.
We go through all the existing flow records in the buffer,
compute the delay between the new flow record and each
of the existing ones, and insert the delay samples into

| Exchange
Server

| Sharepoint
Server

Figure 4: Deployment in Microsoft corporate network

the delay distributions of the corresponding service pairs.
Each delay distribution is maintained as a histogram with
300 bins and 10ms bin width. We implement this com-
ponent using Perl with roughly 500 lines of code.

6.3 Dependency extractor

The centralized dependency extractor waits for depen-
dency extraction requests for a particular service from
administrators. When a request arrives, it will retrieve
the delay distributions of relevant service pairs from the
servers where the service is hosted and the clients. De-
pending on whether there are enough samples to reliably
extract dependencies, the dependency extractor may per-
form client and service aggregation when clustering in-
formation is available. Aggregation is done by adding the
bin-heights of the same bins in the delay distributions of
the same service pair. After retrieving and possibly ag-
gregating the delay distributions, we ignore those delay
distributions with fewer samples than the number of bins.
For each remaining delay distribution, we use Matlab to
perform Fast Fourier Transform, filter noise with Kaiser
window, and then detect typical spikes whose bin-heights
exceed (mean + k x stdev). If any typical spike exists,
we consider the corresponding service pair a dependency
and output the list of all the dependencies in the end. We
use a combination of Perl and Matlab codes for aggrega-
tion, noise filtering, spike detection, and report genera-
tion, with a total of 1K lines of code.

7 Experimental Results

We deployed Orion in a portion of Microsoft’s corpo-
rate network illustrated in Figure 4. Because we can-
not directly access the clients and the production servers,
we choose an network-based deployment by connecting
packet sniffers to span ports on routers. We monitored
the traffic of 2,048 clients in 9 LANs at router Ry and
the traffic of 2 servers in the data center at routers R;
and Ry. The client traffic must traverse Ry to reach the
data center, where most of the services are hosted. From
the traffic at Ry, we extract the RR dependencies for five
representative applications from the client’s perspective.
By examining the traffic at R, and Rs, we extract the
LR dependencies for two of the five applications from
the server’s perspective. The results in this section were
obtained during a two-week period in January 2008. We
thoroughly evaluate Orion in its accuracy of dependency
extraction, its convergence properties, and its scalability
and performance.
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Type Sharepoint | DFS | OC | SD | Exchg
# of Instances 1693 1125 3 34 34
# of Clients 786 746 | 228 | 196 349

Table 1: Popularity of five enterprise applications
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Figure 5: OC client dependencies

7.1 Dependencies of five applications
Microsoft’s corporate network has thousands of applica-
tions. We select five distinct applications based on their
popularity. These five applications include Office Com-
munications (integrated instant messaging, VoIP, and au-
dio and video conferencing), Exchange (email), Share-
point (web), Distributed File System (file serving), and
Source Depot (version control system).

For each application, Table 1 lists the number of
clients and the number of application instances of the
same type based on the traffic at Ry. Clearly, each ap-
plication attracts a reasonably large fraction of the mon-
itored clients. There are also many application instances
of the same types in the network. Since the same type of
applications have similar dependencies, our results may
be easily extended to many other application instances.
For each application, we obtain its true dependencies
from the deployment documents written by the applica-
tion owners. This is one key distinction from previous
work which does not have access to such ground truths
to perform comprehensive validations. Note that due to
the large amount of time and effort involved, application
owners can only create these documents for a small sub-
set of important applications.

There are four infrastructural services that most ap-
plications depend on. Among them, active directory
(AD) and proxy services are provided by load bal-
ancing clusters and DNS and WINS services are pro-
vided by failover clusters. We aggregate all the servers
in the same cluster and represent each service as an
(ipCluster, port, proto). Since most services support
both UDP and TCP, we omit the proto field for simplic-
ity in the remaining of this section. We next describe
the service dependencies of the five applications studied
based on the ground truths from deployment documents
also confirmed by their application owners.

7.1.1 Office communications (OC)

Office Communications (OC) is an enterprise application
that combines instant messaging, VolP, and audio and
video (AV) conferencing. It is one of the most popu-
lar applications and is being used by 50K+ users in Mi-
crosoft’s corporate network. Figure 5 illustrates the de-
pendencies of OC clients. They depend on eleven ser-
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Figure 6: Exchange client dependencies
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vices to exploit the full functionality of OC: 1) DNS:53
for server name lookup during login; 2) Director:5061
for load-balancing login requests; 3) AD:88 for user au-
thorization; 4) AD:389 for querying relevant domain ob-
jects; 5) AD:1025 (an RPC port) for looking up user
profile; 6) AD:135 for learning the port number of the
AD:1025 service; 7) EdgeAV:3478 for AV conferencing
with external users via UDP; 8) EdgeAV:443 for AV con-
ferencing with external users via TCP; 9) AVConf:49152
for AV conferencing with internal users; 10) VoIP:49152
for voice-over-1P; 11) WebComp:443 for retrieving web
contents via HTTPS.

7.1.2 Exchange

Exchange is an enterprise email application. It is being
used by all the users in Microsoft. Figure 6 and 7 il-
lustrate its client and mailbox server dependencies. Ex-
change clients depend on six services to use the email
service, five of which have been explained before. Be-
cause clients use RPC to communicate with the email
service, it also depends on the endpoint mapper service
on the mailbox server (Mailbox:135) to learn the RPC
port of the email service. The email service on the mail-
box server depends on eight services to answer the re-
quests from Exchange clients, each of which is an email
submission service running on a hub transport server.
Note that we can obtain a three-tier dependency graph
of Exchange by combining the client-side dependencies
with the server-side dependencies.

7.1.3 Sharepoint
Sharepoint is a web-based enterprise collaboration ap-
plication. We studied one of the most popular internal
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Sharepoint websites. Figures 8 and 9 illustrate its client
and front-end server dependencies. Sharepoint clients
depend on six services to use the web service, three of
which have been explained before. The remaining three
services are: 1) WINS:137 is required because the web
service uses a NetBios name which can only be looked
up via WINS; 2) Proxy:80 is for notifying clients with
proxy settings that Sharepoint is an internal website; 3)
Proxy:1745 is for notifying clients without proxy settings
that Sharepoint is an internal website. The web service
on the front-end server depends on ten services to an-
swer requests from clients: 1) five SQL services that
store most of the web contents; 2) one web service that
stores the remaining web contents; and 3) three query
services that handle search requests. We can obtain a
three-tier dependency graph of Sharepoint by combining
the client-side dependencies with the server-side depen-
dencies.

7.1.4 Distributed file system (DFS)

DFS is an enterprise service that can organize many SMB
file servers into a single distributed file system. We study
one of the DFS services where internal users can down-
load most of the installation packages of Microsoft soft-
wares. Figure 10 illustrates the dependencies of DFS
clients. They depend on eight services to access the
files in DFS, four of which are unique to DFS. AD:445
and AD:139 help clients find the DFS namespace servers
(NS). NS:445 and NS:139 redirect clients to the appro-
priate file servers.

7.1.5 Source depot (SD)

Source depot (SD) is a CVS-like version control system.
We study one of the SD services that is frequently used
by our monitored clients. Figure 11 illustrates the service
dependencies of SD clients. There are only four depen-
dencies, all of which have been explained before.

7.2 Accuracy of dependency discovery

We first examine the accuracy of the dependencies dis-
covered by Orion for each of the five applications de-
picted above. We then further remove false positives with
additional testing, compare our results with prior work
based on co-occurrence probability, and study the effects
of noise filtering and flow generation.

For each application, we first create a candidate set
of services that the application could possibly depend on
if we do not make any inference. For a client-side or a
server-side application, it is simply the full set of the re-
mote services that the client or the server ever communi-
cates with. We classify the services in the candidate set
into true positives (TP), true negatives (TN), false pos-
itives (FP), and false negatives (FN) by comparing the
inferred dependencies with the true dependencies pre-
sented in the previous section.

The rows starting with Orion in Table 2 and 3 present
the breakdown of the client-side (with aggregation) and
server-side dependencies respectively. The number of
services in the candidate sets varies from several hun-
dreds to hundreds of thousands for different applications,
reflecting the difficulty in extracting the dependencies
manually. Orion can narrow down the set of potential
dependencies (T'P + F' P) to fewer than a hundred, mak-
ing it much easier to identify the true dependencies with
some additional testing. This represents a factor of 50 to
44K reduction from the original candidate sets. Further-
more, we only miss two true dependencies on the server
side (Table 3), one for each application. There is no false
negative for any of the applications on the client side (Ta-
ble 2).

For the server-side Sharepoint web service, we miss
one dependency on a database service. Further investi-
gation indicates that there is no typical spike in the de-
lay distribution between the two services, likely due to
the noise induced by the background indexing traffic be-
tween the two services which are unrelated to the web
service. For the server-side Exchange email service, we
miss the dependency on one of the eight email submis-
sion services. While visual inspection does reveal a typi-
cal spike in the corresponding delay distribution, it is not
significant enough to be caught by our spike detection.

The number of FP’s varies from 3 for the client-side
Sharepoint service to 77 for the client-side OC service.
They fall into two categories depending on whether they
contain any significant, non-typical spikes in their delay
distributions. The FP’s in the first category are unlikely
to be caused by random noise. Manual inspection indi-
cates most of these non-typical spikes can be explained
by the existence of certain correlation between the ser-
vice pairs. As one example, the OC client has false
dependency on the exchange email service, apparently
due to many clients running both applications simulta-
neously. In another example, the Exchange client has
false dependency on the proxy service. This can happen
when Exchange clients open emails with embedded ex-
ternal web contents, causing these clients to access exter-
nal websites via proxy. The FP’s in the second category
are apparently due to the limitation of our spike detection
algorithm to fully distinguish noise from spikes.
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Table 3: Server side dependencies

7.2.1 Removing false positives

In the process of extracting dependencies from the can-
didate set, we have to trade off between FP’s and FN’s.
Our primary goal is to avoid FN’s even at the expense
of increasing FP’s. This is because we have almost no
way to recover a true dependency once it is removed
from the candidate set. In cases where dependencies are
used for fault localization or reconfiguration planning,
missing dependencies may lead to unanticipated conse-
quences that are expensive to diagnose and repair. (see
Section 8 for details).

To further reduce the FP’s in Table 2, we perform con-
trolled experiments on the client side. For each of the five
applications, we use a firewall to block the services in the
FP and TP sets one-by-one. Blocking the services in the
FP set will not have any impact on the application while
blocking the services in the TP set will disrupt its service
function. To eliminate caching effect, we must start with
a clean state for each test. Because this is a manual pro-
cess, it took us roughly one working day to successfully
identify all the 35 true dependencies from the 158 poten-
tial ones. We did not conduct such experiments on the
server side because we have no control over the servers.
Administrators can do such testing during maintenance
hours to minimize the disruption to users. Note that de-
veloping test cases requires human knowledge of only
how to drive applications but not of application internals.
The former is relatively widely available while the latter
is usually arduous to extract.

7.2.2 Comparison with Sherlock & eXpose
Sherlock [8] and eXpose[18] attempt to extract depen-
dencies from network traffic. They are both based on the
idea that the traffic of dependent services are likely to co-
occur in time. They use a fixed time window W to com-
pute co-occurrences and then use a threshold 7" either on
the conditional probability (in Sherlock) or on the IMea-
sure (in eXpose) to identify dependencies. While they

Exchange client DES client Sharepoint client OC client SD client
tp fp fn tn tp fp fn tn tp fp fn tn tp fp fn tn tp fp fn tn
Orion 6 26 0 14K | 8 13 0 1497 6 3 0 703 | 11 77 0 | 25K | 4 4 0 369
Sher;p | 6 | 178 | 0 [ 14K | 8 | 102 | 0 | 1408 | 6 | 65 | 0 [ 641 [ 9 | 125 [ 2 [ 25K | 4 | 52 | 0 | 321
Sher10o 6 57 0 14K | 8 93 0 1417 6 168 0 538 | 10 85 1 25K | 4 29 0 344
eXpose | 5 | 443 | 1 [ 14K | 8 | 570 | 0 | 940 | 6 | 565 | O | 141 [ 10 | 1416 | 1 | 24K | 4 [ 323 | 0 | 50
noFilter 6 49 0 14K | 8 25 0 1485 6 6 0 700 | 11 159 0 | 25K | 3 19 1 354
noFlow 6 | 2488 0 12K | 8 988 0 522 6 | 534 0 172 | 11 | 3594 0 | 21K | 4 198 0 175
Table 2: Client side dependencies after aggregation
Exghangef server Sha}repoin; server both seem to extract certain meaningful dependencies,
tp i) n tn tp i) n tn . . . .
Orion 34 T30k 19 e T 660K neither of them quaptlﬁed the accurggy of their results in
Sherio | 8 | 68 | 0 | 230K | 8 7 2 T 660K terms of false negatives or false positives.
Sherjoo | 7 | 61 | 1 [ 230K | 9 | 19 | 1 | 660K While conceptually simple, a key problem with both
eXpose | 7 | 557 | 1 | 230K | 7 | 396 | 3 | 660K approaches is the choice of W. As we explained ear-
noFilter | 4 | 44 | 4 | 230K | 6 | 3 | 4 | 660K lier in Section 7.2.3, the delay between two dependent

services reflects the underlying processing and network
delay. This delay could vary from a few milliseconds to
hundreds of milliseconds. If W is small (as in Sherlock),
we may miss the dependencies between the service pairs
whose typical delays exceed W. If W is large (as in eX-
pose), we are likely to capture many co-occurrences of
non-dependent service pairs. In contrast, Orion identifies
dependencies by looking for typical spikes in the delay
distributions. It does not make any assumption about the
location of the typical spikes in the distribution.

We implemented both Sherlock and eXpose for com-
parison. We use W = 10ms and 100ms for Sherlock
and the W = 1s for eXpose. (In their papers, Sherlock
uses W = 10ms and eXpose uses W = 1s.) We tune
their threshold 7" so that their FN’s roughly match ours,
and then compare the FP’s. The results are in the rows
starting with Sher;, Sher;gp, and eXpose in Tables 2
and 3. Clearly, Orion has far fewer FP’s than Sherlock or
eXpose in all the cases. For the client side of Exchange,
DFS, Sharepoint, and SD, the FP’s inferred by Orion are
only 5% - 50% of those inferred by Sherlock or eXpose.
Assuming that the testing time to remove FP’s grows lin-
early with the number of potential dependencies, Orion
will save approximately two to twenty days of human
testing time compared with Sherlock and eXpose.

7.2.3 Effect of noise filtering & flow gener-
ation

Orion relies on noise filtering to mitigate the impact of
random noise on dependency discovery. It is important
to understand to what extent noise filtering helps to re-
duce FP’s and FN’s. In Table 2 and 3, the results in the
rows starting with “noFilter” are computed by applying
spike detection directly to the delay distributions with-
out filtering noise. Judging from the Orion results, noise
filtering is effective in reducing FP’s and/or FN’s in all
but one case. Even in the Sharepoint server case where
Orion has 3 more FP’s, we consider it worthwhile given
the decrease of 3 FN’s.

Orion aggregates packets into flows to reduce redun-
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Figure 12: Impact of flows on Exchange server depen-
dencies

dant correlation and computation overhead. Without
flow generation, big flows are treated more favorably
than small flows since they will contribute more samples
in the delay distributions. Such systematic bias may lead
to undesirable spikes in the delay distribution. In Table 2,
the row starting with “noFlow” contains the results with-
out flow generation. Compared with the Orion results,
FN’s stay the same but FP’s are much larger, most likely
due to the over-counting of delay samples related to big
flows. In terms of performance, calculating delay distri-
bution directly from packets is roughly ten times slower
than from flows. This is because there are significantly
more packet pairs than flow pairs.
7.3 Convergence of dependency discovery
We now study the convergence properties of Orion along
three dimensions: time, flows, and clients. This is im-
portant because the dependencies of an application may
change from time to time due to reconfiguration. We
evaluate whether Orion can produce stable results before
the next change happens. Furthermore, Orion discovers
dependencies based on the delay samples computed from
flows. Understanding its requirement on the number of
flows is essential for us to judge the reliability of the re-
sults. Finally, Orion sometimes needs client aggregation
to overcome the problem of a lack of sufficient samples.
Measuring the impact of clients helps to avoid unneces-
sary overhead due to excessive client aggregation.

Figure 12 illustrates how the inferred dependencies of
Exchange server change as more flows to the Exchange
server are used for dependency discovery. The X-axis is
the number of flows. The number of samples in all the
delay distributions related to the Exchange service grows
with the number of flows. Clearly, Orion can discover
more TP’s when more flows are used. When the number
of flows reaches 65K, Orion discovers all the TP’s and
the number of FP’s also stabilizes. This suggests that the
variation of inferred dependencies (T'P + F'P) is a good
indication of whether Orion needs more flows. The con-
vergence behavior of other applications exhibits similar
trend. Depending on the application, Orion needs 10K to
300K flows to obtain stable results.

Figure 13 shows how the inferred dependencies of Ex-
change client evolve over time. Not surprisingly, the ac-
curacy of the inferred dependencies gradually improves
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Figure 13: Impact of time on Exchange client dependen-
cies
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Figure 14: Impact of aggregation on DFS client depen-
dencies

as Orion uses longer duration of traces. After 200 hours,
it has discovered all the TP’s and the inferred depen-
dencies fluctuate only slightly thereafter. This confirms
that we can stop the inference when the inferred de-
pendencies converge. For all the applications, the con-
vergence time varies from two to nine days. We con-
sider this acceptable since the dependencies of produc-
tion client-server applications are usually stable for at
least several weeks to several months in enterprise net-
works. Nonetheless, this convergence time could be a bit
long for newly deployed applications. We may expedite
the discovery process by applying dependency templates
derived from other networks or provided by application
designers to pre-filter the set of possible dependencies.
Figure 14 illustrates how the inferred dependencies of
DEFS client vary as we aggregate more clients. It is ev-
ident that client aggregation is important for improving
the inference accuracy, especially when no individual
clients have a sufficient number of delay samples. The
FN’s drop from 5 to 0 as the aggregated clients increase
from 10 to 90. After that, the inferred dependencies be-
come stable even when more clients are aggregated. This
suggests excessive client aggregation will only lead to
more overhead instead of benefit. For the remaining ap-
plications, we need to aggregate 7 (SD) to 230 (Share-
point) clients to identify all the TP’s.
7.4 Performance & Scalability
In this section, we focus on the performance and scalabil-
ity of Orion. We are interested in answering the following
questions: 1) does it scale with the number of services in
the network? ii) what is the CPU and memory usage in
a network-based or a host-based deployment? iii) how
quickly can dependencies be extracted when administra-
tors need such information?
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7.4.1 Scalability of delay distribution cal-
culator

As described in Section 5.2, Orion uses a time window
of three seconds and a flow count threshold of 50 to filter
unnecessary service pairs. To illustrate the effectiveness
of these two heuristics, Figure 15 plots the CDF of the
number of service pairs without any filter, only with the
flow count filter, and with both filters. The X-axis is the
number of service pairs and the Y-axis is the cumulative
fraction of hosts. The flow count filter reduces the ser-
vice pairs by almost three orders of magnitude. After
applying the time-window filter, 99% of the hosts have
fewer than 10° service pairs. As we show next, the actual
memory usage is reasonably small for both the network-
based and the host-based deployment.

7.4.2 Performance of flow generator & de-

lay distribution calculator

As shown in Figure 4, we currently use the network-
based deployment by running Orion on dedicated sniffing
boxes attached to three routers in the network. In this de-
ployment, each sniffing box may capture large volumes
of traffic from multiple hosts in the same subnet. We
want to understand whether the flow generator and de-
lay distribution calculator can keep up with such high
traffic rate. We use the traffic at Ry for our evaluation
because it contains the aggregate traffic of all the clients
and is bigger than the traffic at the other two routers. We
run the flow generator and delay distribution calculator
on a Windows Server 2003 machine with 2.4G four-core
Xeon processor and 3GB memory. We measured their
performance during the peak hour (2 - 3 PM local time)
on a Thursday. The aggregate traffic rate is 202 Mbps
during that period. The flow generator processed one
hour of traffic in only 5 minutes with an 8MB memory
footprint. The delay distribution calculator finished in 83
seconds and used 6.7MB memory.

We also measure the performance of the host-based
deployment. Given that Orion has to share resources with
other services on the same host, we focus on its CPU and
memory usage. We perform the evaluation on a regu-
lar client machine with 3GHz Pentium4 processor and
1GB memory. The packet sniffer, flow generator, and

[Sharepoint 1] [Sharepointj

SQL 1 (We
Figure 16: Using dependency graph for fault localization
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delay distribution calculator normally use 1% of CPU
and 11MB memory in total. Such overhead is reason-
ably small for long-term monitoring on individual hosts.

7.4.3 Performance of dependency extrac-
tor

We now evaluate the execution time for extracting de-
pendencies from the delay distributions. The results are
measured on a Windows Server 2003 machine with 2G
dual-core Opteron processor and 4GB memory. For all
the applications, the dependency extraction was finished
within two minutes. This is short enough for adminis-
trators to run on-demand. We also measured the net-
work usage of client aggregation. Aggregation is re-
quired for merging the delay distributions from multiple
clients when there are insufficient delay samples. During
the two-week evaluation period, the total size of the de-
lay distributions from all the 2,048 clients is under IMB
after compression. This suggests it is feasible to use a
centralized dependency extractor since it is unlikely to
become the bottleneck.

8 Operational Use of Dependencies

We now provide examples of how dependencies can fa-
cilitate fault localization and reconfiguration planning.
These examples are by no means exhaustive. Admin-
istrators may find dependencies useful for other network
management tasks, e.g., impact analysis and anomaly de-
tection.

The existence of complex dependencies between dif-
ferent services makes it extremely challenging to local-
ize sources of performance faults in large enterprise net-
works. For instance, when a Sharepoint service fails, it
could be caused by problems at the DNS servers, SQL
servers, web servers, or query servers. Manually inves-
tigating all these relevant servers for each performance
fault is time-consuming and often infeasible.

A dependency graph summarizes all the components
that are involved in particular services. Combined with
observations from multiple services, it enables fast and
accurate fault localization. Figure 16 illustrates an ex-
ample of a dependency graph with two Sharepoint ser-
vices. For simplicity, we ignore problems in the network
and the port numbers in the graph. Sharepoint; and
Sharepoint, use the same DNS, query, and web servers.
However, they use different SQL servers for storing con-
tents. Suppose Sharepoint; is experiencing problems
while Sharepointy is not. From the dependency graph,
we deduce that the source of the problem is unlikely at
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the DNS, query, or web servers since Sharepoint, has
no problems using them. This leaves SQ) L, as the most
plausible candidate for the source of the problem.

While the above example is fairly simple, a depen-
dency graph of a large enterprise network will be sub-
stantially more complex. In fact, it is almost impossible
to inspect manually. Fortunately, there have been known
techniques that automate the fault localization process by
applying Bayesian inference algorithms to dependency
graphs [8, 20, 19]. We omit the details here since they
are not the focus of this paper.

Another use of dependencies is in reconfiguration
planning. Large enterprises have many services and ap-
plications, which are continually being reorganized, con-
solidated, and upgraded. Such reconfigurations may lead
to unanticipated consequences which are difficult to di-
agnose and repair. A classic example involves a machine
configured as a backup database. Since there is no ex-
plicit documentation about this dependency, the machine
is recycled by administrators. Later on, when the primary
database fails, applications that depend on the database
becomes completely unavailable.

To avoid such unanticipated consequences, adminis-
trators must identify the services and applications that
depend on a particular service before any changes can
be made to that service. This often is a slow and expen-
sive process. Given the dependencies extracted from all
the service pairs, we can easily search for all the services
that directly or indirectly depend on a particular service.
This will significantly save the time administrators spend
in assessing and planning for the changes.

Besides our own research prototype, a production im-
plementation of Orion based on the TDI driver is cur-
rently being deployed in the Microsoft IT department
(MSIT). The administrators will initially use the depen-
dencies extracted by Orion for reconfiguration planning.
Orion has been set up on two web services and one Win-
dows Messenger service. Preliminary results indicate
Orion has successfully discovered the set of expected de-
pendencies on database servers, AD servers, and pres-
ence servers. The plan is to roll out Orion to over 1,000
services managed by MSIT in the next six months.

9 Conclusion

In this paper, we present a comprehensive study of the
performance and limitations of dependency discovery
techniques based on traffic patterns. We introduce the
Orion system that discovers dependencies for enterprise
applications by using packet headers and timing infor-
mation. Our key observation is the delay distribution be-
tween dependent services often exhibits “typical” spikes
that reflect the underlying delay for using or providing
such services. By deploying Orion in Microsoft’s cor-
porate network that covers over 2,000 hosts, we extract

the dependencies for five dominant applications. Our re-
sults from extensive experiments show Orion improves
the state of the art significantly. Orion provides a solid
foundation for combining automated discovery with sim-
ple testing to obtain accurate dependencies.
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