Avoiding File System Micromanagement with Range Writes

Ashok Anand, Sayandeep Sen, Andrew Krioukov; Florentina Popovici:r
Aditya Akella, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Suman Banerjee
University of Wisconsin, Madison

Abstract

We introduce range writes, a simple but powerful change to the
disk interface that removes the need for file system microman-
agement of block placement. By allowing a file system to spec-
ify a set of possible address targets, range writes enable the disk
to choose the final on-disk location of the request; the disk im-
proves performance by writing to the closest location and subse-
quently reporting its choice to the file system above. The result
is a clean separation of responsibility; the file system (as high-
level manager) provides coarse-grained control over placement,
while the disk (as low-level worker) makes the final fine-grained
placement decision to improve write performance. We show the
benefits of range writes through numerous simulations and a pro-
totype implementation, in some cases improving performance
by a factor of three across both synthetic and real workloads.

1 Introduction

File systems micromanage storage. Consider placement
decisions: although modern file systems have little un-
derstanding of disk geometry or head position, they de-
cide the exact location of each block. The file system has
coarse-grained intentions (e.g., that a data block be placed
near its inode [22]) and yet it applies fine-grained control,
specifying a single target address for the block.

Micromanagement of block placement arose due to the
organic evolution of the disk interface. Early file systems
such as FFS [22] understood details of disk geometry,
including aspects such as cylinders, tracks, and sectors.
With these physical characteristics exposed, file systems
evolved to exert control over them.

The interface to storage has become more abstract over
time. Currently, a disk presents itself as a linear array of
blocks, each of which can be read or written [2, 21]. On
the positive side, the interface is simple to use: file sys-
tems simply place blocks within the linear array, making
it straightforward to utilize the same file system across a
broad class of storage devices.

On the negative side, the disk hides critical informa-
tion from the file system, including the exact logical-to-
physical mapping of blocks as well as the current posi-
tion of the disk head [32, 37]. As a result, the file system
does not have accurate knowledge of disk internals. How-
ever, the current interface to storage demands such knowl-

*Now a Ph.D. student at U.C. Berkeley
TNow at Google

edge, particularly when writing a block to disk. For each
write, the file system must specify a single target address;
the disk must obey this directive, and thus may incur un-
necessary seek and rotational overheads. The file system
micromanages block placement but without enough infor-
mation or control to make the decision properly, precisely
the case where micromanagement fails [6].

Previous work has tried to remedy this dilemma in nu-
merous ways. For example, some have advocated that
disks remap blocks on-the-fly to increase write perfor-
mance [7, 10, 34]. Others have suggested a wholesale
move to a higher-level, object-based interface [1, 13]. The
former approach is costly and complex, requiring the disk
to track a large amount of persistent metadata; the latter
approach requires substantial change to existing file sys-
tems and disks, and thus inhibits deployment. An ideal
approach would instead require little modification to ex-
isting systems while enabling high performance.

In this paper, we introduce an evolutionary change to
the disk interface to address the problem of micromanage-
ment: range writes. The basic idea is simple: instead of
specifying a single exact address per write, the file sys-
tem presents a set of possible targets (i.e., a range) to the
disk. The disk is then free to pick where to place the block
among this set based on its internal positioning informa-
tion, thus minimizing positioning costs. When the request
completes, the disk informs the file system which address
it chose, thereby allowing for proper bookkeeping. By de-
sign, range writes retain the benefits of the existing inter-
face, and necessitate only small changes to both file sys-
tem and disk to be effective.

Range writes make a more successful two-level man-
agerial hierarchy possible. Specifically, the file system
(i.e., the manager) can exert coarse-grained control over
block placement; by specifying a set of possible targets,
the file system gives freedom to the disk without relin-
quishing all control. In turn, the disk (i.e., the worker)
is given the ability to make the best possible fine-grained
decision, using all available internal information.

Implementing and utilizing range writes does not come
without challenges, however. Specifically, drive schedul-
ing algorithms must change to accommodate ranges ef-
ficiently. Thus, we develop two novel approaches to
scheduling of range writes. The first, expand-and-cancel
scheduling, integrates well with current schedulers but in-

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation

161

duces high computational overhead; the second, hierar-
chical range scheduling, requires a more extensive re-
working of the disk scheduling infrastructure but mini-
mizes computational costs as a result. Through simula-
tion, we show that both of these schedulers achieve excel-
lent performance, reducing write latency dramatically as
the number of targets increases.

In addition, file systems must evolve to use range
writes. We thus explore how range writes could be in-
corporated into the allocation policies of a typical file sys-
tem. Specifically, we build a simulation of the Linux ext2
file system and explore how to modify its policies to in-
corporate range writes. We discuss the core issues and
present results of running a range-aware ext2 in a number
of workload scenarios. Overall, we find that range writes
can be used to place some block types effectively (e.g.,
data blocks), whereas other less flexibly-placed data struc-
tures (e.g., inodes) will require a more radical redesign to
obtain the benefits of using ranges.

Finally, we develop and implement a software-based
prototype that demonstrates how range writes can be used
to speed up writes to the log in a journaling file system.
Our prototype transforms the Linux ext3 write-ahead log
into a more flexible write-ahead region, and in doing so
avoids rotational overheads during log writes. Under a
transactional workload, we show how range writes can
improve journaling performance by nearly a factor of two.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss previous efforts and why they are not
ideal. We then describe range writes in Section 3 and
study disk scheduling in Section 4. In Section 5, we show
how to modify file system allocation to take advantage
of range writes, and then describe our prototype imple-
mentation of fast journal writing in Section 6. Finally, in
Section 7, we conclude.

2 Background

We first give a brief tutorial on modern disks; more details
are available elsewhere [2, 26]. We then review existing
approaches for minimizing positioning overheads.

2.1 Disks

A disk drive contains one or more platters, where each
platter surface has an associated disk head for reading and
writing. Each surface has data stored in a series of con-
centric circles, or tracks. Within each track are the sectors,
the smallest amount of data that can be read or written on
the disk. A single stack of tracks at a common distance
from the spindle is called a cylinder. Modern disks also
contain RAM to perform caching.

The disk appears to its client, such as the file system,
as a linear array of logical blocks; thus, each block has an
associated logical block number, or LBN. These logical
blocks are then mapped to physical sectors on the plat-

ters. This indirection has the advantage that the disk can
lay out blocks to improve performance, but it has the dis-
advantage that the client does not know where a particular
logical block is located. For example, optimizations such
as zoning, skewing, and bad-block remapping all impact
the mapping in complex ways.

The service time of reading or writing a request has two
basic components: positioning time, or the time to move
the disk head to the first sector of the current request, and
transfer time, or the time to read/write all of the sectors
in the current request. Positioning time has two dominant
components. The first component is seek time, moving the
disk head over the desired track. The second component is
rotational latency, waiting for the desired block to rotate
under the disk head. The time for the platter to rotate
is roughly constant, but it may vary around 0.5% to 1%
of the nominal rate. The other mechanical movements
(e.g., head and track switch time) have a smaller but non-
negligible impact on positioning time [27].

Most disks today also support tagged-command queue-
ing [24], in which multiple outstanding requests can be
serviced at the same time. The benefit is obvious: with
multiple requests to choose from, the disk itself can sched-
ule requests it sees and improve performance by using de-
tailed knowledge of positioning and layout.

2.2 Reducing Write Costs

In this paper, our focus is on what we refer to as the
positioning-time problem for writes; how do we reduce
or eliminate positioning-time overheads for writes to
disk? The idea of minimizing write time is by no means
new [20]. However, there is as of yet no consensus on
the best approach or the best division of labor between
disk and file system for achieving this goal. We briefly
describe previous approaches and why they are not ideal.

2.2.1 Disk Scheduling

Disk scheduling has long been used to reduce positioning
overheads for writes. Early schedulers, built into the OS,
tried to reduce seek costs with simple algorithms such as
elevator and its many variants.

More recently, schedulers have gone beyond seek op-
timizations to include rotational delay. The basic idea
is to reorganize requests to service the request with the
shortest positioning time first (SPTF) instead of simply
the request with the shortest seek time (SSTF). Perform-
ing rotationally-aware scheduling within the disk itself is
relatively straightforward since the disk has complete and
accurate information about the current location of the disk
head and the location of each requested block. In contrast,
performing rotationally-aware scheduling within the OS
is much more challenging, since the OS must predict the
current head position. As a result, much of the schedul-
ing work has been performed through simulation [18, 28]
or has been crafted with extreme care [17, 23, 36, 38]

162

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

More fundamentally, disk scheduling alone cannot com-
pletely eliminate rotational delays. For example, if too
few requests exist in the scheduling queue, smart schedul-
ing cannot avoid rotation.

2.2.2 File System Structures

Another approach to solving the positioning-time prob-
lem for writes is to develop a file system that transforms
the traffic stream to avoid small costly writes by de-
sign. A prime example is the Log-structured File Sys-
tem (LFS) [25]; many commercial file systems (e.g.,
WAFL [14], ZFS [31]) have adopted similar approaches.

LES buffers all writes (including data and metadata)
into segments; when a segment is full, LFS writes the seg-
ment in its entirety to free space at the end of the log.
By writing to disk in large chunks (a few megabytes at a
time), LFS amortizes positioning costs.

By design, LFS avoids small writes and thus would
seem to solve the positioning-time problem. However,
LES is not an ideal solution for two reasons. First, this
approach requires the widespread adoption of a new file
system; history has shown such adoption is not straight-
forward. Second, LFS and similar file systems do not
perform well for all workloads; in particular, underneath
transactional workloads that frequently force data to disk,
LFS performance suffers [29].

2.2.3 Write Indirection

Many researchers have noted that another way to mini-
mize write delay is to appropriately control the placement
of blocks on disk. This work, which introduces a layer
of indirection between the file system and disk, can be di-
vided into two camps: that which assumes the traditional
interface to disk (an array of blocks), and that which pro-
poses a new, higher-level interface (usually based on ob-
jects or similar abstractions).

Traditional Disks: In the first approach, the disk itself
controls the layout of logical blocks written by the file
system onto the physical blocks in the disk. The basic
approach has been to perform eager writing, in which
the data is written to the free disk block currently clos-
est to the disk head. There are three basic problems with
these approaches. First, this approach assumes that an
indirection map exists to map the logical block address
used by the file system to its actual physical location on
disk [7, 10, 34]. Unfortunately, updating the indirection
map atomically and recovering after crashes can incur a
significant performance overhead. Second, these systems
need to know which blocks are free versus allocated. Un-
fortunately, although the file system readily knows the
state of each logical block, it is quite challenging for disks
to know whether a block is live or dead [30]. Third, this
approach forces the file system to completely relinquish
any control over placement; given that the file system
knows which blocks are related to one another and thus

are likely to exhibit temporal locality (e.g., the inode and
all data blocks of the same file), the file system would like
to ensure that those blocks are placed somewhat near one
another to optimize future reads. Thus, pushing full re-
sponsibility for block placement into the disk is not the
best division of labor.

New Interfaces: A related set of efforts allows the disk to
control placement but requires a new interface; this idea
has appeared in different forms in the literature as Log-
ical Disks [8], Network-Attached Storage Devices [13],
and Object-based Storage [1]. With this type of new inter-
face, the disk controls exactly where each object is placed,
and thus can make intelligent low-level decisions. How-
ever, such an approach also has its drawbacks. First, and
most importantly, it requires more substantial change of
both disks and the clients that use them, which is likely a
major impediment to widespread acceptance. Second, al-
lowing the disk to manage objects (or similar constructs)
implies that the disk must now be concerned with consis-
tent update. Consider object-based storage: when adding
a new block to an object, both the new block and a
pointer to it must be allocated inside the disk and com-
mitted in a consistent fashion. Thus, the disk must now
also include some kind of logging machinery (perhaps to
NVRAM), duplicating effort and increasing the complex-
ity of the drive. Logical disks go a step further, adding a
new “atomic recovery unit” interface to allow for arbitrary
writes to be grouped and committed together [8]. In either
approach, complexity within the disk is increased.

2.3 A Cooperative Approach

Problems

Needs many requests,
hard to implement in OS
Gaining acceptance,
synchronous workloads
Drive complexity,

lack of FS information
Drive complexity,
gaining acceptance

Previous Approach
Disk scheduling [17, 18, 23, 28, 36, 38]

Write-anywhere file systems [14, 25, 31]

Eager writing [10, 34]

Higher-level interfaces [1, 8, 13]

In contrast to previous approaches, range writes divide
the responsibilities of performing fast writes across both
file system and disk; this tandem approach is reminiscent
of scheduler activations [3], in which a cooperative ap-
proach to thread scheduling was shown to be superior to
either a pure user-level or kernel-level approach. The file
system does what it does best: make coarse-grained lay-
out decisions, manage free space, track block ownership,
and so forth. The disk does what it does best: take ad-
vantage of low-level knowledge (e.g., head position, ac-
tual physical layout) to improve performance. The small
change required does not greatly complicate either sys-
tem or significantly change the interface between them,
thus increasing the chances of deployment.

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation

163

direction
of rotation

range write options:
13-16, 19-22

scheduler chooses 19

read/write
head

for fastest write

Figure 1: Range Writes. The figure illustrates how to use range
writes. The disk has just serviced a write to block 5, and is then given a
write with two ranges: 13 through 16, and 19 through 22. The disk, given
its current position, realizes that 19 will result in the fastest write, and
thus chooses it as the target. The file system is subsequently informed.

3 Range Writes

In this section, we describe range writes. We describe
the basic interface as well as numerous details about the
interface and its exact semantics. We conclude with a dis-
cussion of the counterpart of range writes: range reads.

3.1 The Basic Interface

Current disks support the ability to write data of a speci-
fied length to a given address on disk. With range writes,
the disk supports the ability to write data to one address
out of a set of specified options. The options are spec-
ified in a range descriptor. The simplest possible range
descriptor is comprised of a pair of addresses, Byqqin and
Bend, designating that data of a given length can be writ-
ten to any contiguous range of blocks fitting within Byegip
and By 4. See Figure 1 for an example.

When the operation completes, the disk returns a tar-
get address, that is, the starting address of the region to
which it wrote the data. This information allows the file
system to record the address of the data block in whatever
structure it is using (e.g., an inode).

One option the client must include is the alignment of
writes, which restricts where in the range a write can be
placed. For example, if the file system is writing a 4-KB
block to a 16-KB range, it would specify an alignment of
4 KB, thus restricting the write to one of four locations.
Without such an option, the disk could logically choose to
start writing at any 512-byte offset within the range.

The interface also guarantees no reordering of blocks
within a single multi-block write. This decision enables
the requester to control the ordering of blocks on disk,
which may be important for subsequent read performance,
and allows a single target address to be returned by the
disk. The interface is summarized in Table 1.

3.1.1 Range Specification
One challenge is to decide how to specify the set of pos-
sible target addresses to the disk. The format of this
range description must both be compact as well as flex-
ible, which are often at odds.

We initially considered a single range, but found it was
too restrictive. For example, a file system may have a
large amount of free space on a given track, but the pres-
ence of just a few allocated blocks in said track would
greatly reduce the utility of single-range range writes. In
other words, the client may wish to express that a request
can be written anywhere within the range B g, t0 Beyng
except for blocks Bpegin, + 1 and Byegin + 2 (because
those blocks are already in use). Thus, the interface needs
to support such flexibility.

We also considered a list of target addresses. While
this approach is quite flexible, we felt it added too much
overhead to each write command. A file system might
wish to specify a large number of choices; with a range,
in the best case, this is just the start and end of a range; in
the list approach, it comprises hundreds or even thousands
of target addresses.

Due to these reasons, we believe that there are a few
sensible possibilities. One is a simple list of ranges; the
client specifies a list of begin and end addresses, and the
disk is free to write the request within any one such range.
A similar effect could be achieved with the combination
of a single large range and corresponding bitmap which
indicates which blocks of the range are free. Both the
list-of-ranges and bitmap interfaces are equivalent, as they
allow full flexibility in compact forms; we leave the exact
specification to the future.

3.1.2 Overlapping Ranges

Modern disks allow multiple outstanding writes. While
improving performance, the presence of multiple out-
standing requests complicates range writes. In particular,
a file system may wish to issue two requests to the disk,
R, and R,. Assume both requests should end up near one
another on disk (e.g., they are to files that live in the same
cylinder group). Assume also that the file system has a
free block range in that disk region, B, through B,,.

Thus, the file system would like to issue both requests
R, and R, simultaneously, giving each the range B;
through B,,. However, the disk is thus posed with a prob-
lem: how can it ensure it does not write the two requests
to the same location?

The simplest solution would be to disallow overlapped
writes, much like many of today’s disks do not allow mul-
tiple outstanding writes to the same address (“overlapped
commands” in SCSI parlance [35]). In this case, the file
system would have two choices. First, it could serialize
the two requests, first issuing R, observing which block
it was written to (say By), and then submitting request

164

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

Classic Write

in: address, data, length

out: status

Range Write

in: range descriptor, alignment,
data, length

out: status, resulting target address

Table 1: Classic vs. Range Writes. The table shows the
differences between the classic idealized disk write and a range write.
The range descriptor can be specified as a list of free ranges or a (begin,
end) pair plus bitmap describing the free blocks within the range.

Ry with two ranges (B to Bi_1 and By to By,). Al-
ternately, the file system could pick subsets of each range
(e.g., B1, Bas, ..., Bx_1 in one range, and Bs, By, ..., By
in the other), and issue the requests in parallel.

However, the non-overlapped approach was too restric-
tive; it forces the file system to reduce the number of tar-
gets per write request in anticipation of their use and thus
reduces performance. Further, non-overlapped ranges
complicate the use of range writes, as a client must then
make decisions on which portions of the range to give
to which requests; this likely decreases the disk’s control
over low-level placement and thus decreases performance.
For these reasons, we chose to allow clients to issue mul-
tiple outstanding range writes with overlapping ranges.

Overlapping writes complicate the implementation of
range writes within the disk. Consider our example above,
where two writes R; and R, are issued concurrently, each
with the range B through B,,. In this example, assume
that the disk schedules R; first, and places it on block B; .
It is now the responsibility of the disk to ensure that Ry
is written to any block except By. Thus, the disk must
(temporarily) note that B; has been used.

However, this action raises a new question: how long
does the disk have to remember the fact that B; was writ-
ten to and thus should not be considered as a possible
write target? One might think that the disk could forget
this knowledge once it has reported that R; has completed
(and thus indicated that B; was chosen). However, be-
cause the file system may be concurrently issuing another
request R3 to the same range, a race condition could ensue
and block B; could be (erroneously) overwritten.

Thus, we chose to add a new kind of write barrier to the
protocol. A file system uses this feature as follows. First,
the file system issues a number of outstanding writes, po-
tentially to overlapping ranges. The disk starts servicing
them, and in doing so, tracks which blocks in each range
are written. At some point, the file system issues a barrier.
The barrier guarantees to the disk that all writes following
the barrier take into account the allocation decisions of
the disk for the writes before the barrier. Thus, once the
disk completes the pre-barrier writes, it can safely forget
which blocks it wrote to during that time.

3.2 Beyond Writes: Range Reads

It is of course a natural extension to consider whether
range reads should also be supported by a disk. Range
reads would be useful in a number of contexts: for ex-
ample, to pick the rotationally-closest block replica [16,
38], or to implement efficient “dummy reads” in semi-
preemptible I/O [9].

However, introducing range reads, in particular for im-
proving rotational costs on reads, requires an expanded
interface and implementation from the disk. For exam-
ple, for a block to be replicated properly to reduce ro-
tational costs, it should be written to opposite sides of
a track. Thus, the disk should likely support a replica-
creating write which tries to position the blocks properly
for later reads. In addition, file systems would have to be
substantially modified to support tracking of blocks and
their copies, a feature which only a few recent file sys-
tems support [31]. Given these and other nuances, we
leave range reads for future work.

4 Disk Scheduling

In this section, we describe how an in-disk scheduler
must evolve to support range writes. We present two ap-
proaches. The first we call expand-and-cancel schedul-
ing, a technique that is simple, integrates well with ex-
isting schedulers, and performs well, but may be too
computationally intensive. Because of this weakness,
we present a competing approach known as hierarchical-
range scheduling, which requires a more extensive re-
structuring of a scheduler to become range aware but thus
avoids excessive computational overheads.

Note that we focus on obtaining the highest perfor-
mance possible, and thus consider variants of shortest-
positioning-time-first schedulers (SPTF). Standard modi-
fications could be made to address fairness issues [18, 28].

4.1 Expand-and-cancel Scheduling
Internally, the in-disk scheduler must be modified to sup-
port servicing of requests within lists of ranges. One sim-
ple way to implement support for range writes would be
through a new scheduling approach we call expand-and-
cancel scheduling (ECS), as shown in Figure 2. In the
expand phase, a range write request I to block range By
through B,, is expanded into n independent requests, R
through R,, each to a single location, B; through B,,
respectively. When the first of these requests complete
(as dictated by the policy of the scheduler), the other re-
quests are canceled (i.e., removed from the scheduling
queue). Given any scheduler, ECS guarantees that the
best scheduling decision over all range writes (and other
requests) will be made, to the extent possible given the
current scheduling algorithm.

The main advantage of ECS is its excellent integration
with existing disk schedulers. The basic scheduling pol-

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation

165

Remove parent
(2a) from RW queue

Write (6) \

Write (7)

Write (11) |l (Zb)Canccl siblings

from E queue

Write (12)
Write (16) K

Write (17)

Write (6, 11, 16, 21)
Write (7, 12, 17, 22)

Range Write Queue

Write 21) [~ Service write
™~ (1) and remove from

E queue

Write (22)

Expanded Queue
Figure 2: Expand-and-cancel Scheduling. The figure de-
picts how expand-and-cancel scheduling operates. Range writes are
placed into the leftmost queue and then expanded into the full set of
writes on the right. In step 0 (not shown), two range writes arrive si-
multaneously and are placed in the range write queue on the left; their
expansions are placed in the expanded queue on the right. In step I,
the scheduler (which examines all requests in the expanded queue and
greedily chooses the one with minimal latency) decides to service the
write to 21. As a result, the range write to (6, 11, 16, 21) is removed

from the range write queue (step 2a), and the expanded requests to 6,

11, and 16 are canceled (step 2b).

icy is not modified, but simply works with more requests
to decide what is the best decision. However, this ap-
proach can be computationally expensive, requiring ex-
tensive queue reshuffling as range writes enter the system,
as well as after the completion of each range write. Fur-
ther, with large ranges, the size of the expanded queue
grows quite large; thus the number of options that must
be examined to make a scheduling decision may become
computationally prohibitive.

Thus, we expect that disk implementations that choose
ECS will vary in exactly how much expansion is per-
formed. By choosing a subset of each range request
(e.g., 2 or 4 or 8 target destinations, equally spaced
around a track), the disk can keep computational over-
heads low while still reducing rotational overhead sub-
stantially. More expensive drives can include additional
processing capabilities to enable more targets, thus allow-
ing for differentiation among drive vendors.

4.2 Hierarchical-Range Scheduling

As an alternative to ECS, we present an approach we
call hierarchical-range scheduling (HRS). HRS requires
more exact knowledge of drive details, including the cur-
rent head position, and thus demands a more extensive re-
working of the scheduling infrastructure. However, the
added complexity comes with a benefit: HRS is much
more computationally efficient than ECS, doing less work
to obtain similar performance benefits.

HRS works as follows. Given a set of ranges (assuming
for now that each range fits within a track), HRS deter-
mines the time it takes to seek and settle on the track of
each request and the resulting head position. If the head

direction
of rotation

serviced: 5

5
V’. read/write

ad +arm

Figure 3: Hierarchical-range Scheduling. The figure de-
picts how hierarchical-range scheduling works. For the current request,

the scheduler must choose which of two possible ranges to write to (18-
20 on the adjacent track or 9-11 on the current). The scheduler just
serviced a request to 5, and thus must choose whether to stay on the
current track and wait for range 9-11 to rotate under the head or switch
tracks and write to 18-20. Depending on the relative costs of switching
tracks and rotational delay, HRS will decide to which range to write.

is within the range on that track, HRS chooses the next
closest spot within the range as the target, and thus es-
timates the total latency of positioning (roughly the cost
of the seek and settling time). If the head is outside the
range, HRS includes an additional rotational cost to get to
the first block of the range. Because HRS knows the time
these close-by requests will take, it can avoid considering
those requests whose seek times already exceed the cur-
rent best value. In this manner, HRS can consider many
fewer options and still minimize rotational costs.

An example of the type of decision HRS makes is found
in Figure 3. In the figure, two ranges are available: 9-11
(on the current track) and 18-20 (on an adjacent, outer
track). The disk has just serviced a request to block 5 on
the inner track, and thus must choose a target for the cur-
rent write. HRS observes that range 9-11 is on the same
track and thus estimates the time to write to 9-11 is the
time to wait until 9 rotates under the head. Then, for the
18-20 range, HRS first estimates the time to move the arm
to the adjacent track; with this time in hand, HRS can es-
timate where the head will be relative to the range. If the
seek to the outer track is fast, HRS determines that the
head will be within the range, and thus chooses the next
block in the range as a target. If, however, the short seek
takes too long, the arm may arrive and be ready to write
just after the range has rotated underneath the head (say
at block 21). In this case, HRS estimates the cost of writ-
ing to 18-20 as the time to rotate 18 back under the head
again, and thus would choose to instead write to block 9
in the first range.

A slight complication arises when a range spans mul-
tiple tracks. In this case, for each range, HRS splits the

166

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

Span=EntireDisk Span=BlockGroup

20 Total [J Total [J
% 15 Seek H Seek H
£ otation [Rotation [
o 10
1S
= 5

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Queue Size Queue Size

Figure 4: No Range Writes. The figure plots the performance
of an in-disk SPTF scheduler on a workload of writes to random loca-
tions. The x-axis varies the number of outstanding requests, and the
y-axis plots the time per write. The leftmost graph plots performance
of writes to random locations over the entire disk; the rightmost graph
plots performance of random writes to a 4096-block group.

request into a series of related requests, each of which fit
within a single track. Then, HRS considers each in turn
as before. Lists of ranges are similarly handled.

4.3 Methodology

We now wish to evaluate the utility of range writes in disk
schedulers. To do so, we utilize a detailed simulation en-
vironment built within the DiskSim framework [5].

We made numerous small changes throughout DiskSim
to provide support for range writes. We implemented a
small change to the interface so pass range descriptors to
the disk, and more extensive changes to the SPTF sched-
uler to implement both EC and HR scheduling. Over-
all, we changed or added roughly one thousand lines of
code to the simulator. Unless explicitly investigating EC
scheduling, we use the HR scheduler.

For all simulated experiments, we use the HP C2247A
disk, which has a rotational speed of 5400 RPM, and a rel-
atively small track size (roughly 60-100 blocks, depend-
ing on the zone). It is an older model, and thus, as com-
pared to modern disks, its absolute positioning costs are
high whereas track size and data transfer rates are low.
However, when writing to a localized portion of disk, the
relative balance between seek and rotation is reasonable;
thus we believe our results on reductions in positioning
time should generalize to modern disks.

4.4 Experiments
4.4.1 Do multiple outstanding requests

solve the positioning-time problem?
Traditional systems attack the positioning-time problem
by sending multiple requests to the disk at once; inter-
nally, an SPTF scheduler can reorder said requests and
reduce positioning costs [28]. Thus, the first question we
address is whether the presence of multiple outstanding
requests solves the positioning-time problem.

In this set of experiments, we vary the number of out-
standing requests to the disk under a randomized write
workload and utilize an in-disk SPTF scheduler. Each ex-
periment varies the span of the workload; a span of the

Span=EntireDisk Span=BlockGroup

20 Total [] Total [J
% 15 Seek H Seek H
£ Rotation [Rotation [
o 10
1S
= 5

0
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Queue Size Queue Size

Figure 5: Track-sized Ranges. The graphs plot the perfor-
mance of range writes under randomized write workloads using the hi-
erarchical range scheduler. The experiments are identical to those de-
scribed in Figure 4, except that range writes are used instead of tradi-
tional writes, the range is set to 100 blocks, just bigger than the track
size of the simulated disk (thus eliminating rotation).

Span=EntireDisk Span=BlockGroup

20 Total [] Total [J
% 15 Seek H Seek H
£ Rotation [Rotation [
o 10 e
£
= 5 -

0 1 1 1 1 1 1
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Queue Size Queue Size

Figure 6: Group-sized Ranges. The graph plots performance
of range writes, as described in Figure 5. The small difference: range
size is set to 4096 blocks (the size of a block group).

entire disk implies the target address for the write was
chosen at random from the disk; a span of a block group
implies the write was chosen from a localized portion of
the disk (from 4096 blocks, akin to a FES cylinder group).
Figure 4 presents our results.

From the graphs, we make three observations. First, at
the left of each graph (with only 1 or 2 outstanding re-
quests), we see the large amount of time spent in seek
and rotation. Range writes will be of particular help here,
potentially reducing request times dramatically. Second,
from the right side of each graph (with 64 outstanding
requests), we observe that positioning times have been
substantially reduced, but not removed altogether. Thus,
flexibility in exact write location as provided by range
writes could help reduce these costs even further. Third,
we see that in comparing the graphs, the span greatly
impacts seek times; workloads with locality reduce seek
costs while still incurring a rotational penalty.

We also note that having a queue depth of two is no
better than having a queue depth of one. Two outstand-
ing requests does not improve performance because in the
steady state, the scheduler is servicing one request while
another is being sent to the disk, thus removing the possi-
bility of choosing the “better” request.

4.4.2 What is the benefit of range writes?

We now wish to investigate how range writes can improve
performance. Figures 5 and 6 presents the results of a set
of experiments that use range writes with a small (track-

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation

167

Queue Size=1 Queue Size=16

Total [] Total []
15 Seek M Seek M
Rotation [Rotation [

0 T T T 1 T T T 1

0% 25% 50% 75%

Percent Reads

100% 0% 25% 50% 75%

Percent Reads

100%

Figure 7: Mixing in Reads. The graphs plot the performance
of range writes to random destinations when there is some percentage
of reads mixed in. We utilize track-sized ranges and write randomly to
locations within a block group. The x-axis varies the percent of reads

from 0% to 100%, and the y-axis plots the average time per operation

(read or write). Finally, the graph on the left has 1 outstanding request
to disk, whereas the graph on the right has 16.

sized) or large (block-group-sized) amount of flexibility.
We again perform random writes to either the entire disk
or to a single block group.

Figure 5 shows how a small amount of flexibility can
greatly improve performance. By specifying track-sized
ranges, all rotational costs are eliminated, leaving only
seek overhead and transfer time. We can also see that
track-sized range writes are most effective when there are
few outstanding requests (the left side of each graph);
when the span is set to a block group, for example, posi-
tioning costs are halved. Finally, we can also see from this
graph that range writes are still of benefit with medium-
to-large disk queues, but the benefit is indeed smaller.

Figure 6 plots the results of the same experiment, how-
ever with more flexibility: range size is now set to the
entire block group. When the span of the experiment is
the entire disk (left graph), this makes little difference;
rotational delay is eliminated. However, the right graph
with a span of a block group shows how range writes can
also reduce seek costs. Each write in this experiment can
be directed to any free spot in the block group; the result
is that there is essentially no positioning overhead, and
almost all time spent in transfer.

4.4.3 What if there are reads in the workload?

We have now seen the benefits of range writes in synthetic
workloads consisting purely of writes. We now include
reads in the workload, and show the diminishing benefit
of range writes in read-dominated workloads. Figure 7
plots the results of our experiments.

From the figures, we observe the expected result that
with an increasing percentage of reads, the benefit of
range writes diminishes. However, we can also see that
for many interesting points in the read/write mix, range
writes could be useful. With a small number of outstand-
ing requests to the disk and a reasonable percentage of
writes, range writes decrease positioning time noticeably.

4.4.4 What is the difference between ECS and HRS?
We next analyze the costs of EC scheduling and HR
scheduling. Most of the work that is done by either is the
estimation of service time for each possible candidate re-
quest; thus, we compare the number of such estimations to
gain insight on the computational costs of each approach.

Assume that the size of a range is .S, and the size of a
track on the disk is 7". Also assume that the disk supports
@ outstanding requests at a given time (i.e., the queue
size). We can thus derive the amount of work that needs
to be performed by each approach. For simplicity, we as-
sume each request is a write of a single block (generaliz-
ing to larger block sizes is straightforward).

For EC scheduling, assuming the full expansion, each
single request in the range-write queue expands into .S re-
quests in the expanded queue. Thus, the amount of work,
W, performed by ECS is:

Wge =5-Q ey

In contrast, HR scheduling takes each range and divides
it into a set of requests, each of which is contained within
a track. Thus, the amount of work performed by HRS is:

Wirn = [2]-Q @

However, HRS need not consider all these possibilities.
Specifically, once the seek time to a track is higher than
the current best seek plus rotate, HRS can stop consider-
ing whether to schedule this and other requests that are
on tracks that are further away. The worst case number
of tracks that must be considered is thus bounded by the
number of tracks one can reach within the time of a revo-
lution plus the time to seek to the nearest track. Thus, the
equation above represents an upper bound on the amount
of work HRS will do.

Even so, the equations make clear why HR schedul-
ing performs much less work than EC scheduling in most
cases. For example, assuming that a file system issues
range writes that roughly match track size (S = T), the
amount of work performed by HRS is roughly). In con-
trast, ECS still performs S - Q work; as track sizes can
be in the thousands, ECS will have to execute a thousand
times more work to achieve equivalent performance.

4.4.5 How many options does ECS need?
Finally, given that EC scheduling cannot consider the full
range of options, we investigate how many options such
a scheduler requires to obtain good performance. To an-
swer this question, we present a simple workload which
repeatedly writes to the same track, and vary the number
of target options it is given. Figure 8 presents the results.
In this experiment, we assume that if there exists only
a single option, it is to the same block of the track; thus,
successive writes to the same block incur a full rotational

168

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

Diminishing Benefits

Time (ms)
o= NWpHpOIO

T T T T 1
2 4 8 16 32
Log (Choices)

- -

Figure 8: The Diminishing Benefits of More Choice. The
figure plots the performance of successive write requests to the same
track. Along the x-axis, we increase the number of choices available for
write targets, and the y-axis plots average write time.

delay. As further options are made available to the sched-
uler, they are equally spaced around the track, maximizing
their performance benefit.

From this figure, we can conclude that ECS does not
necessarily need to consider all possible options within a
range to achieve most of the performance benefit, as ex-
pected. By expanding a entire-track range to just eight
choices that are properly spaced out across the track, most
of the performance benefits can be achieved.

However, this example simplifies that problem quite a
bit. For ranges that are larger than a single track, the
expansion becomes more challenging; exactly how this
should be done remains an open problem.

4.5 Summary

Our study of disk scheduling has revealed a number of
interesting results. First, the overhead of positioning
time cannot be avoided with traditional SPTF scheduling
alone; even with multiple outstanding requests to the disk,
seek and rotational overheads still exist.

Second, range writes can dramatically improve perfor-
mance relative to SPTF scheduling, reducing both rota-
tional and seek costs. To achieve the best performance, a
file system (or other client) should give reasonably large
ranges to the disk: track-sized ranges remove rotational
costs, while larger ranges help to noticeably reduce seek
time. Although range writes are of greatest utility when
there are only a few outstanding writes to the disk, range
writes are still useful when there are many.

Third, the presence of reads in a workload obviously
reduces the overall effect of range writes. However, range
writes can have a noticeable impact even in relatively bal-
anced settings.

Finally, both the EC and HR schedulers perform well,
and thus are possible candidates for use within a disk
that supports range writes. If one is willing to rewrite
the scheduler, HR is the best candidate. However, if one
wishes to use the simpler EC approach, one must do so
carefully: the full expansion of ranges exacts a high com-
putational overhead.

S Integrating Range Writes into

Classic File System Allocation

In this section, we explore the issues a file system must
address in order to incorporate range writes into its allo-
cation policies. We first discuss the issues in a general
setting, and then describe our effort in building a detailed
ext2 file system simulator to explore how these issues can
be tackled in the context of an existing system.

5.1 File System Issues

There are numerous considerations a file system must take
into account when utilizing range writes. Some compli-
cate the file system code, some have performance ramifi-
cations, and some aspects of current file systems simply
make using range writes difficult or impossible. We dis-
cuss these issues here.

5.1.1 Preserving Sequentiality

One problem faced by file systems utilizing range writes is
the loss of exact control over placement of files. However,
as most file systems only have approximate placement as
their main goal (e.g., allocate a file in the same group as
its inode), loss of detailed control is acceptable.

Loss of sequentiality, however, would present a larger
problem. For example, if a file system freely writes blocks
of a file to non-consecutive disk locations, reading back
the file would suffer inordinately poor performance. To
avoid this problem, the file system should present the
disk with larger writes (which the disk will guarantee
are kept together), or restrict ranges of writes to make it
quite likely that the file will end up in sequential or near-
sequential order on disk.

5.1.2 Determining Proper Ranges

Another problem that arises for the file system is deter-
mining the proper range for a request. How much flexibil-
ity is needed by the disk in order to perform well?

In general, the larger the range given to the disk, the
more positioning time is reduced. The simulation results
presented in Section 4 indicate that track-sized ranges ef-
fectively remove rotational costs while larger sized ranges
(e.g., several thousand blocks) help with seek costs. In
the ideal case, positioning time can be almost entirely re-
moved if the size of the target range matches the span of
the current workload.

Thus, the file system should specify the largest range
that best matches its allocation and layout policy. For ex-
ample, FFS could specify that a write be performed to any
free block within a cylinder group.

5.1.3 Bookkeeping

One major change required of the file system is how it
handles a fundamental problem with range writes which
we refer to as delayed address notification. Specifically,
only as each write completes does the file system know the

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation

169

Empty File System

w15

3 [] No Range

[0)

24 M Range

'_

2

£ 5

> ||l l

2

<C 0 T T
Single-PID Multi-PID

Figure 9: File Create Time (Empty File System). 7hxe
figure plots the average write time during a file create benchmark. The
benchmark creates 1000 4-KB files in the same directory. Range writes
are either used or not, and the files are either created by a single process
or multiple processes. The y-axis plots the average write time of each
write across the 1000 data block writes that occur.

target address of the write. The file system cares about this
result because it is in charge of bookkeeping, and must
record the address in a pertinent structure (e.g., an inode).

In general, this may force two alterations in file sys-
tem allocation. First, the file system must carefully track
outstanding requests to a given region of disk, in order to
avoid sending writes to a full region. However, this mod-
ification should not be substantial.

Second, delayed notification forces an ordering on file
systems, in that the block pointed to must be written be-
fore the block containing the pointer. Although reminis-
cent of soft updates [12], this ordering should be easier to
implement, because the file system will likely not employ
range writes for all structures, as we discuss below.

5.1.4 Inflexible Structures

Finally, while range writes are quite easy to use for cer-
tain block types (e.g., data blocks), other fixed structures
are more problematic. For example, consider inodes in a
standard FFS-like file system. Each inode shares a block
with many others (say 64 per 4-KB block). Writing an in-
ode block to a new location would require the file system
to give each inode a new inode number; doing so neces-
sitates finding every directory in the system that contains
those inode numbers and updating them.

Thus, we believe that range writes will likely be used
at first only for the most flexible of file system structures.
Over time, as file systems become more flexible in their
placement of structures, range writes can more broadly be
applied. Fortunately, modern file systems have more flex-
ible structures; for example, Sun’s ZFS [31], NetApp’s
WAFL [14], and LFS [25] all take a “write-anywhere” ap-
proach for most on-disk structures.

5.2 Incorporating Range Writes into ext2

We now present our experience of incorporating range
writes into a simulation we built of Linux ext2. Alloca-
tion in ext2 (and ext3) derives from classic FFS alloca-
tion [22] but has a number of nuances included over the

1000 a
3 . No Range
Q
T 500 Single PID B Range
0 1 1 1 1 1
1000
[%2]
2 500 Multi PID
('R
0
0 3 6 9 12 15

Mini-Group Number

Figure 10: File Placement. The figure shows how files were
placed per mini-group across two different experiments. In the first, a
single process (PID) created 1000 files; in the second, each file was
created by a different PID. The x-axis plots the mini-group number, and
the y-axis shows the number of files that were placed in the mini-group,

for both range writes and traditional writes.

years to improve performance. We now describe the basic
allocation policies.

When creating a directory, the “Orlov” allocation algo-
rithm is used. In this algorithm, top-level directories are
spread out by searching for the block group with the least
number of subdirectories and an above-average free block
count and free-inode count. Other directories are placed
in a block group meeting a minimum threshold of free in-
odes and data blocks and having a low directory-to-file
ratio. In both cases the parent’s block group is preferred
given that it meets all criteria.

The allocation of data blocks is done by choosing a goal
block and searching for the nearest free block to the goal.
For the first data block in the file the goal is found by
choosing a block in the same group as the inode. The
specific block is chosen by using the PID of the calling
process to select one of 16 start locations within the block
group; we call each of these 16 locations a mini-group
within the greater block group. The desire here is to place
“functionally related” files closer on disk. All subsequent
data block allocations for a given file have the goal set to
the next sequential block.

To utilize range writes, our variant of ext2 tries to fol-
low the basic constraints of the existing ext2 policies. For
example, if the only constraint is that a file is placed
within a block group, than we issue a range write that
specifies the free ranges within that group. If the policy
wishes to place the file within a mini-group, the range
writes issued for that file are similarly constrained. We
also make sure to preserve sequentiality of files. Thus,
once a file’s first block is written to disk, subsequent
blocks are placed contiguously beyond it (when possible).

5.3 Methodology

To investigate ext2 use of range writes, we built a detailed
file system simulator. The simulator implements all of
the policies above (as well as a few others not relevant for
this section) and is built on top of DiskSim. The simulator

170

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

Fuller File Systems

@15
£ [J No Range
E 10 I Range
l_
2
2 5
=
(2]
Z 0
50% 80% 90% 95%
Percent Full

Figure 11: File Create Time (Fuller File System). The
figure plots the average write time during a file create benchmark. The
benchmark creates 1000 4-KB files in the same directory. Range writes
are either used or not, and the files are either created by a single process.
The x-axis varies the fullness of the block group.

presents a file system API, and takes in a trace file which
allows one to exercise the API and thus the file system.
The simulator also implements a simple caching infras-
tructure, and writes to disk happen in a completely un-
ordered and asynchronous fashion (akin to ext2 mounted
asynchronously). We use the same simulated disk as be-
fore (the HP C2247A), set the disk-queue depth to 16, and
utilize HR scheduling.

5.4 Results
5.4.1 Small-File Creation on Empty File Systems

We first show how flexible data block placement can im-
prove performance. For this set of experiments, we simply
create a large number of small files in a single directory.
Thus, the file system should create these files in a single
block group, when there is space. For this experiment, we
assume that the block group is empty to start.

Figure 9 shows the performance of small-file alloca-
tion both with and without range writes. When coming
from a single process, using range writes does not help
much, as all file data are created within the same mini-
group and indeed are placed contiguously on disk. How-
ever, when coming from different processes, we can see
the benefits of using range writes. Because these file allo-
cations get spread across multiple mini-groups within the
block group, the flexibility of range writes helps reduce
seek and rotation time substantially.

We also wish to ensure that our range-aware file system
makes similar placement decisions within the confines of
the ext2 allocation policies. Thus, Figure 10 presents the
breakdowns of which mini-group each file was placed in.
As one can see from the figure, the placement decisions of
range writes, in both the single-process and multi-process
experiments, closely follow that of the traditional ext2.
Thus, although the fine-grained control of file placement
is governed by the disk, the coarse-grained control of file
placement is as desired.

Traditional ext2 with Range Writes

Untar 143.0 123.1
PostMark 29.9 22.2
Andrew 23.2 23.4

Table 2: File System Workloads. Each row plots the perfor-
mance (in seconds) of a simulated workload. In the left column, results
represent the time taken to run the workload on our simulated standard
ext2, whereas on the right, the time to run the workload on ext2 with
range writes is presented. Three workloads are employed: untar, which
unpacks the Linux source tree; PostMark, which emulates the workload
of an email server (by creating, accessing, and deleting files), using its
default settings; and the modified Andrew benchmark, which emulates
typical user behavior. The simulations were driven by file-system-level
traces of the given workloads which were then played back against our
simulated file system.

5.4.2 Small-File Creation on Fuller File Systems

We now move to a case where the block group has data
in it to begin. This set of experiments varies the fullness
of the block group and runs the same small-file creation
benchmark (focusing on the single-PID case). Figure 11
plots the results.

From the figure, we can see that by the time a block
group is 50% full, range writes improve performance over
classic writes by roughly 20%. This improvement stays
roughly constant as the block group fills, even as the aver-
age write time of both approaches increases. We can also
see the effect of fullness on range writes: with fewer op-
tions (as the block group fills), it is roughly 70% slower
than it was with an empty block group.

5.4.3 Real Workloads

The first two synthetic benchmarks focused on file cre-
ation in empty or partially-full file systems, demonstrat-
ing some of the benefits of range writes. We now simulate
the performance of an application-level workload. Specif-
ically, we focus on three workloads: untar, which unpacks
the Linux source tree, PostMark [19], which simulates the
workload of an email server, and the modified Andrew
Benchmark [15], which emulates typical user behavior.
Table 2 presents the results.

We make the following two observations. First, for
workloads that have significant write components (un-
tar, PostMark), range writes boost performance (a 16%
speedup for untar and roughly 35% for PostMark). Sec-
ond, for workloads that are less I/O intensive (Andrew),
range writes do not make much difference.

5.5 Summary

Integrating range writes into file system allocation has
proven promising. As desired, range writes can improve
performance during file creation while following the con-
straints of the higher-level file system policies. As much
of write activity is to newly created files [4, 33], we be-
lieve our range-write variant of ext2 will be effective in

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation

171

practice. Further, although limited to data blocks, our ap-
proach is useful because traffic is often dominated by data
(and not metadata) writes.

Of course, there is much left to explore. For example,
partial-file overwrites present an interesting scenario. For
best performance, one should issue a range write even for
previously allocated data; thus, overwritten data may be
allocated to a new location on the disk. Unfortunately,
this strategy can potentially destroy the sequentiality of
later reads and should be performed with care. We leave
this and many other workload scenarios to future work.

6 Case Study: Log Skipping

We now present a case study that employs range writes
to improve journal update performance. Specifically, we
show how a journaling file system (Linux ext3 in this
case) can readily use range writes to more flexibly choose
where each log update should be placed on disk. By do-
ing so, a journaling file system can avoid the rotations that
occur when performing many synchronous writes to the
journal and thus greatly improve performance.

Whereas the previous section employed simulation to
study the benefits of range writes, we now utilize a pro-
totype implementation. Doing so presents an innate prob-
lem: how do we experiment with range writes in a real
system, when no disk (yet) supports range writes? To
remedy this dilemma, we develop a software layer, Bark,
that emulates a disk with range writes for this specific ap-
plication. Our approach suggests a method to build accep-
tance of new technology: first via software prototype (to
demonstrate potential) and later via actual hardware (to
realize the full benefits).

6.1 Motivation

The primary problem that we address in this section is
how to improve the performance of synchronous writes
to a log or journal. Thus, it is important to understand the
sequence of operations that occur when the log is updated.

A journaling system writes a number of blocks to the
log; these writes occur whenever an application explicitly
forces the data or after certain timing intervals. First, the
system writes a descriptor block, containing information
about the log entry, and the actual data to the log. After
this write, the file system waits for the descriptor blocks
and data to reach the disk and then issues a synchronous
commit block to the log; the file system must wait until
the first write completes before issuing the commit block
in case a crash occurs.

In an ideal world, since all of the writes to the log
are sequential, the writes would achieve sequential band-
width. Unfortunately, in a traditional journaling system,
the writes do not. Because there is a non-zero time elapsed
since the previous block was written, and because the disk
keeps rotating at a constant speed, the commit block can-

Linux ext3

Journaling Layer

Journal Traffic

Write-Ahead Log

Checkpoint
Traffic

Ta Tb Te

skipipcd skipipch | |

Write-Ahead Region

ski;|pcd

Figure 12: Bark-itecture. The figure illustrates how a file sys-
tem can be mounted upon Bark to improve journal write performance.
All journal traffic is directed through Bark, which picks a skip distance
based on think time and the position of the last write to disk. Bark per-

forms this optimization transparently, thus improving the performance

of journal writes with no change to the file system above. In the spe-
cific example shown, the file system has committed three transactions to
disk: Ta, Th, and Tc. Bark, using its performance model, has spread the
transactions across the physical disk, leaving empty spaces (denoted as
“skipped”) in the write-ahead region.

not be written immediately. The sectors that need to be
written have already passed under the disk head and thus
arotation is incurred to write the commit block.

Our approach is to transform the write-ahead log of a
journaling file system into a more flexible write-ahead
region. Instead of issuing a transaction to the journal
in the location directly following the previous transac-
tion, we instead allow the transaction to be written to the
next rotationally-closest location. This has the effect of
spreading transactions throughout the region with small
distances between them, but improves performance by
minimizing rotation.

Our approach derives from previous work in database
management systems by Gallagher et al. [11]. Therein,
the authors describe a simple dynamic approach that con-
tinually adjusts the distance to skip in a log write to re-
duce rotation. Perhaps due to the brief description of their
algorithm, we found it challenging to successfully repro-
duce their results. Instead, we decided on a different ap-
proach, first building a detailed performance model of the
log region of the disk and then using that to decide how to
best place writes to reduce rotational costs. The details of
our approach, described below, are based on our previous
work in building the disk mimic [23].

We now discuss how we implement write-ahead re-
gions in our prototype system. The biggest challenge to
overcome is the lack of range writes in the disk. We de-
scribe our software layer, Bark, which builds a model of
the performance contours of the log (hence the name) and
uses it to issue writes to the journal so as to reduce rota-
tional overheads. We then describe our experiments with
the Linux ext3 journal mounted on top of Bark.

172

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

w/o Bark w/Bark Null
50.7 42.1 38.8
44.2 273 254

Uncached
Cached

Table 3: Bark Performance. Each row of the table plots the
overall performance (in seconds) of TPC-B in three different settings:
without Bark, with Bark, and on a “null” journal that reports success
for writes without performing disk 1/0 (the null journal represents the
best possible improvement possible by using Bark). The first row reports
performance of a cold run, where table reads go to disk. The second row
reports performance when the table is in cache (i.e., only writes go to
disk). Experiments were run upon a Sun Ultra20 with 1 GB of memory
and two Hitachi Deskstar 7K80 drives. The average of three runs is
reported; there was little deviation in the results.

6.2 Log-Performance Modeling

Bark is a layer that sits between the file system and disk
and redirects journal writes so as to reduce rotational over-
head. To do so, Bark builds a performance model of the
log a priori and uses it to decide where best to write the
next log write.

Our approach builds on our previous work that mea-
sures the request time between all possible pairs of disk
addresses in order to perform disk scheduling [23]. Our
problem here is simpler: Bark must simply predict where
to place the next write in order to reduce rotation.

To make this prediction, Bark performs measurements
of the cost of writes to the portion of the disk of interest,
varying both the distance between writes (the “skip” size)
and think time between requests. The data is stored in a
table and made available to Bark at runtime.

For the results reported in this paper, we created a disk
profile by keeping a fixed write size of 4 KB (the size of
a block), and varying the think time from 0 ms to 80 ms
in intervals of 50 microseconds, and the skip size from
0 KB to 600 KB in intervals of 512 bytes. To gain con-
fidence each experiment was repeated multiple times and
the average of the write times was taken.

6.3 From Models to Software

With the performance model in place, we developed Bark
as a software pseudo-device that is positioned between
the file system journaling code and the disk. Bark thus
presents itself to the journaling code as if it were a typi-
cal disk of a given size S. Underneath, Bark transparently
utilizes more disk space (say 2 - S) in order to commit
journal writes to disk in a rotationally-optimal manner, as
dictated by the performance model. Figure 12 depicts this
software architecture.

At runtime, Bark receives a write request and must de-
cide exactly where to place it on disk. Given the time
elapsed since the last request completed, Bark looks up
the required skip distance in the prediction table and uses
it to decide where to issue the current write.

Two issues arise in the Bark implementation. The first

CDF of Write Times
% 100% = —
S 80% -
g
xr 60% -
S 40% 4
§ 20% - W?th Bark
3] without Bark
o 0% T T T T T 1
0 1 2 3 4 5 6

Time (ms)
Figure 13: Write Costs. The figure plots the cumulative distribu-
tion of write request times during TPC-B. Two lines are plotted: the first
shows the cost of writes through Bark, whereas the second shows costs
without. The data is taken from a “cached” run as described above.

is the management of free space in the log. Bark keeps a
data structure to track which blocks are free in the journal
and thus candidates for fast writes. The main challenge
for Bark is detecting when a previously-used block be-
comes free. Bark achieves this by monitoring overwrites
by the journaling layer; when a block is overwritten in
the logical journal, Bark frees the corresponding physical
block to which it had been mapped.

The second issue is support for recovery. Journals are
not write-only devices. In particular, during recovery, the
file system reads pending transactions from the journal in
order to replay them to the file system proper and thus re-
cover the file system to a consistent state. To enable this
recovery without file system modification, Bark would
need to record a small bit of extra information with each
set of contiguous writes, specifically the address in the
logical address space to which this write was destined.
Doing so would enable Bark to scan the write-ahead re-
gion during recovery and reconstruct the logical address
space, and thus allows recovery to proceed without any
change to the file system code. However, we have not yet
fully implemented this feature (early experience suggests
it will be straightforward).

6.4 Results

We now measure the performance of unmodified Linux
ext3 running on top of Bark. For this set of experiments,
we mount the ext3 journal on Bark and let all other check-
point traffic go to disk directly.

For a workload, we wished to find an application that
stressed journal write performance. Thus, we chose to run
an implementation of the classic transactional benchmark
TPC-B. TPC-B performs a series of debits and credits to a
simple set of database tables. Because TPC-B forces data
to disk frequently, it induces a great deal of synchronous
1/O traffic to the ext3 journal.

Table 3 plots the performance of TPC-B on Linux ext3
in three separate scenarios. In the first, the unmodified tra-
ditional journaling approach is used; in the second, Bark
is used underneath the journal; in the third, we implement

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation

173

a fast “null” journal which simply returns success when
given a write without doing any work. This last option
serves as an upper-bound on performance improvements
realized through more efficient journaling.

Note also that each row varies whether table reads go
to disk (uncached) or are found in memory (cached). In
the cached runs, most table reads hit in memory (and thus
disk traffic is dominated by writes). By measuring per-
formance in the uncached scenario, we can determine the
utility of our approach in scenarios where there are reads
present in the workload; the cached workload stresses
write performance and thus presents a best-case for Bark
under TPC-B.

From the graph, we can see that Bark greatly im-
proves the overall runtime of TPC-B; Bark achieves a
20% speedup in the uncached case and over 61% in the
cached run. Both of these approach the optimal time as
measured by the “null” case. Thus, beyond the simula-
tion results presented in previous sections, Bark shows
that range writes can work well in the real world as well.

Figure 13 sheds some light on this improvement in
performance. Therein we plot the cumulative distribu-
tion of journal-write times across all requests during the
cached run. When using Bark, most journal writes com-
plete quickly, as they have been rotationally well placed
through our simple skipping mechanism. In contrast,
writes to the journal without Bark take much longer on
average, and are spread across the rotational spectrum of
the disk drive.

6.5 Discussion

We learned a number of important lessons from our im-
plementation of log skipping using range writes. First,
we see that range writes are also useful for a file system
journal. Under certain workloads, journaling can induce
a large rotational cost; freedom to place transactions to a
free spot in the journal can greatly improve performance.

Second, with read traffic present, the improvement seen
by Bark is lessened but still quite noticeable. Thus, even
with reads (in the uncached case, they comprise roughly
one-third of the traffic to the main file system), flexible
writes to the journal improve performance.

Finally, we should note that we chose to incorporate
flexible writes underneath the file system in the simplest
possible way, without changing the file system implemen-
tation at all. If range writes actually existed within the
disk, the Bark layer would be much simpler: it would is-
sue the range writes to disk instead of using a model to
find the next fast location to write to. A different approach
would be to modify the file system code and change the
journaling layer to support range writes directly, some-
thing we plan to do in future work.

7 Conclusions

We have presented a small but important change to the
storage interface, known as range writes. By allowing the
file system to express flexibility in the exact write loca-
tion, the disk is free to make better decisions for write
targets and thus improve performance.

We believe that the key element of range writes is their
evolutionary nature; there is a clear path from the disk of
today without range writes to the disk of tomorrow with
them. This fact is crucial for established industries, where
change is fraught with many complications, both practical
and technical; for example, consider object-based drives,
which have taken roughly a decade to begin to come to
market [13].

Interestingly, the world of storage may be in the midst
of a revolution as solid-state devices become more of a
marketplace reality. Fortunately, we believe that range
writes are still quite useful in this and other new envi-
ronments. By letting the storage system take responsibil-
ity for low-level placement decisions, range writes enable
high performance through device-specific optimizations.
Further, range writes naturally support functionality such
as wear-leveling, and thus may also help increase device
lifetime while reducing internal complexity.

We believe there are numerous interesting future paths
for range writes, as we have alluded to throughout the pa-
per. The corollary operation, range reads, presents new
challenges but may realize new benefits. Integration into
RAID systems introduces intriguing problems as well; for
example, parity-based schemes often assume a fixed off-
set placement of blocks within a stripe across drives. An
elegant approach to adding range writes into RAIDs may
well pave the way for acceptance of this technology into
the higher end of the storage system arena.

Finding the right interface between two systems is al-
ways challenging. Too much change, and there will be no
adoption; too little change, and there is no significant ben-
efit. We believe range writes present a happy medium: a
small interface change with large performance gains.

Acknowledgments

We thank the members of our research group for their in-
sightful comments. We would also like to thank our shep-
herd Phil Levis and the anonymous reviewers for their ex-
cellent feedback and comments, all of which helped to
greatly improve this paper.

This work is supported by the National Science Foun-
dation under the following grants: CCF-0621487, CNS-
0509474, CCR-0133456, as well as by generous dona-
tions from Network Appliance and Sun Microsystems.

Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors
and do not necessarily reflect the views of NSF or other
institutions.

174

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

References

(1]

2

—

(3

—_—

[4

—

(5

—

[6

—_

(7]

[8

—_—

[9

—

[10]

[11]

[12]

Dave Anderson. OSD
www.snia.org/events/past/developer2005/
0507_v1_DBA_SNIA_OSD.pdf, 2005.

Dave Anderson, Jim Dykes, and Erik Riedel. More Than
an Interface: SCSI vs. ATA. In Proceedings of the 2nd
USENIX Symposium on File and Storage Technologies
(FAST ’03), San Francisco, California, April 2003.

Thomas E. Anderson, Brian N. Bershad, Edward D. La-
zowska, and Henry M. Levy. Scheduler Activations: Ef-
fective Kernel Support for the User-Level Management
of Parallelism. In Proceedings of the 13th ACM Sympo-
sium on Operating Systems Principles (SOSP ’91), Pacific
Grove, California, October 1991.

Mary Baker, John Hartman, Martin Kupfer, Ken Shirriff,
and John Ousterhout. Measurements of a Distributed File
System. In Proceedings of the 13th ACM Symposium on
Operating Systems Principles (SOSP ’91), pages 198-212,
Pacific Grove, California, October 1991.

John S. Bucy and Gregory R. Ganger. The DiskSim Simu-
lation Environment Version 3.0 Reference Manual. Tech-
nical Report CMU-CS-03-102, Carnegie Mellon Univer-
sity, January 2003.

Drives.

Harry Chambers. My Way or the Highway: The Micro-
management Survival Guide. Berrett-Koehler Publishers,
2004.

Chia Chao, Robert English, David Jacobson, Alexander
Stepanov, and John Wilkes. Mime: a high performance
parallel storage device with strong recovery guarantees.
Technical Report HPL-CSP-92-9revl, HP Laboratories,
November 1992.

Wiebren de Jonge, M. Frans Kaashoek, and Wilson C.
Hsieh. The Logical Disk: A New Approach to Improv-
ing File Systems. In Proceedings of the 14th ACM Sympo-
sium on Operating Systems Principles (SOSP ’93), pages
15-28, Asheville, North Carolina, December 1993.

Zoran Dimitrijevic, Raju Rangaswami, and Edward
Chang. Design and Implementation of Semi-preemptible
I0. In Proceedings of the 2nd USENIX Symposium on File
and Storage Technologies (FAST ’03), pages 145—158, San
Francisco, California, April 2003.

Robert M. English and Alexander A. Stepanov. Loge: A
Self-Organizing Disk Controller. In Proceedings of the
USENIX Winter Technical Conference (USENIX Winter
'92), pages 237-252, San Francisco, California, January
1992.

Bill Gallagher, Dean Jacobs, and Anno Langen. A
High-performance, Transactional Filestore for Application
Servers. In Proceedings of the 2005 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD
'05), pages 868—872, Baltimore, Maryland, June 2005.

Gregory R. Ganger and Yale N. Patt. Metadata Update Per-
formance in File Systems. In Proceedings of the 1st Sym-
posium on Operating Systems Design and Implementation
(OSDI " 94), pages 49-60, Monterey, California, November
1994.

[13]

[14]

[15]

(16

—_

(17]

(18]

[19

—

[20]

[21

—

[22

—

[23

—_—

[24

—_

[25]

[26

—_

Garth A. Gibson, David Rochberg, Jim Zelenka, David F.
Nagle, Khalil Amiri, Fay W. Chang, Eugene M. Fein-
berg, Howard Gobioff, Chen Lee, Berend Ozceri, and Erik
Riedel. File server scaling with network-attached secure
disks. In Proceedings of the 1997 Joint International Con-
ference on Measurement and Modeling of Computer Sys-
tems (SIGMETRICS/PERFORMANCE °97), pages 272—
284, Seattle, Washington, June 1997.

Dave Hitz, James Lau, and Michael Malcolm. File Sys-
tem Design for an NFS File Server Appliance. In Proceed-
ings of the USENIX Winter Technical Conference (USENIX
Winter '94), San Francisco, California, January 1994.

J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Per-
formance in a Distributed File System. ACM Transactions
on Computer Systems, 6(1), February 1988.

Hai Huang, Wanda Hung, and Kang G. Shin. FS2: dy-
namic data replication in free disk space for improving
disk performance and energy consumption. In Proceed-
ings of the 20th ACM Symposium on Operating Systems
Principles (SOSP ’05), pages 263-276, Brighton, United
Kingdom, October 2005.

L. Huang and T. Chiueh. Implementation of a Rotation-
Latency-Sensitive Disk Scheduler. Technical Report
ECSL-TR81, SUNY, Stony Brook, March 2000.

D. M. Jacobson and J. Wilkes. Disk Scheduling Algo-
rithms Based on Rotational Position. Technical Report
HPL-CSP-91-7, Hewlett Packard Laboratories, 1991.

Jeffrey Katcher. PostMark: A New File System Bench-
mark. Technical Report TR-3022, Network Appliance
Inc., October 1997.

T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H.
Summer. One-level Storage System. /RE Transactions on
Electronic Computers, EC-11:223-235, April 1962.

Charles M. Kozierok. Overview and History of the SCSI
Interface. http://www.pcguide.com/ref/hdd/if/scsi/over-
c.html, 2001.

Marshall K. McKusick, William N. Joy, Sam J. Leffler, and
Robert S. Fabry. A Fast File System for UNIX. ACM
Transactions on Computer Systems, 2(3):181-197, August
1984.

Florentina I. Popovici, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Robust, Portable I/O Schedul-
ing with the Disk Mimic. In Proceedings of the USENIX
Annual Technical Conference (USENIX ’03), pages 297—
310, San Antonio, Texas, June 2003.

Peter M. Ridge and Gary Field. The Book of SCSI 2/E. No
Starch, June 2000.

Mendel Rosenblum and John Ousterhout. The Design and
Implementation of a Log-Structured File System. ACM
Transactions on Computer Systems, 10(1):26-52, Febru-
ary 1992.

Chris Ruemmler and John Wilkes. An Introduction to Disk
Drive Modeling. IEEE Computer, 27(3):17-28, March
1994.

USENIX Association

8th USENIX Symposium on Operating Systems Design and Implementation

175

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

Jiri Schindler, John Linwood Griffin, Christopher R.
Lumb, and Gregory R. Ganger. Track-aligned Extents:
Matching Access Patterns to Disk Drive Characteristics.
In Proceedings of the 1st USENIX Symposium on File and
Storage Technologies (FAST '02), Monterey, California,
January 2002.

Margo Seltzer, Peter Chen, and John Ousterhout. Disk
Scheduling Revisited. In Proceedings of the USENIX
Winter Technical Conference (USENIX Winter *90), pages
313-324, Washington, D.C, January 1990.

Margo Seltzer, Keith A. Smith, Hari Balakrishnan, Jacque-
line Chang, Sara McMains, and Venkata Padmanabhan.
File System Logging versus Clustering: A Performance
Comparison. In Proceedings of the USENIX Annual Tech-
nical Conference (USENIX "95), pages 249-264, New Or-
leans, Louisiana, January 1995.

Muthian Sivathanu, Lakshmi N. Bairavasundaram, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Life or Death at Block Level. In Proceedings of the 6th
Symposium on Operating Systems Design and Implemen-
tation (OSDI’04), pages 379-394, San Francisco, Califor-
nia, December 2004.

Sun Microsystems. ZFS: The last word in file systems.
www.sun.com/2004-0914/feature/, 2006.

Nisha Talagala, Remzi H. Arpaci-Dusseau, and Dave Pat-
terson. Microbenchmark-based Extraction of Local and
Global Disk Characteristics. Technical Report CSD-99-
1063, University of California, Berkeley, 1999.

Werner Vogels. File system usage in Windows NT 4.0.
In Proceedings of the 17th ACM Symposium on Operat-
ing Systems Principles (SOSP ’99), pages 93—109, Kiawah
Island Resort, South Carolina, December 1999.

Randy Wang, Thomas E. Anderson, and David A. Patter-
son. Virtual Log-Based File Systems for a Programmable
Disk. In Proceedings of the 3rd Symposium on Operat-
ing Systems Design and Implementation (OSDI ’99), New
Orleans, Louisiana, February 1999.

Ralph O. Weber. SCSI Architecture Model - 3 (SAM-
3). http://www.t10.org/ftp/t10/drafts/sam3/sam3r14.pdf,
September 2004.

B. L. Worthington, G. R. Ganger, and Y. N. Patt. Schedul-
ing Algorithms for Modern Disk Drives. In Proceedings of
the 1994 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS "94),
pages 241-251, Nashville, Tennessee, May 1994.

Bruce L. Worthington, Greg R. Ganger, Yale N. Patt, and
John Wilkes. On-Line Extraction of SCSI Disk Drive
Parameters. In Proceedings of the 1995 ACM SIGMET-
RICS Conference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS ’95), pages 146-156, Ot-
tawa, Canada, May 1995.

X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishna-
murthy, and T. E. Anderson. Trading Capacity for Perfor-
mance in a Disk Array. In Proceedings of the 4th Sym-
posium on Operating Systems Design and Implementation
(OSDI ’00), San Diego, California, October 2000.

176

8th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

