
Characterizing Unstructured Overlay Topologies
in Modern P2P File-Sharing Systems

Daniel Stutzbach, Reza Rejaie
University of Oregon

{agthorr,reza}@cs.uoregon.edu

Subhabrata Sen
AT&T Labs—Research
sen@research.att.com

Abstract

During recent years, peer-to-peer (P2P) file-sharing sys-
tems have evolved in many ways to accommodate growing
numbers of participating peers. In particular, new features
have changed the properties of the unstructured overlay
topology formed by these peers. Despite their importance,
little is known about the characteristics of these topologies
and their dynamics in modern file-sharing applications.

This paper presents a detailed characterization of P2P
overlay topologies and their dynamics, focusing on the
modern Gnutella network. Using our fast and accurate P2P
crawler, we capture a complete snapshot of the Gnutella
network with more than one million peers in just a few
minutes. Leveraging more than 18,000 recent overlay snap-
shots, we characterize the graph-related properties of indi-
vidual overlay snapshots and overlay dynamics across hun-
dreds of back-to-back snapshots. We show how inaccuracy
in snapshots can lead to erroneous conclusions—such as a
power-law degree distribution. Our results reveal that while
the Gnutella network has dramatically grown and changed
in many ways, it still exhibits the clustering and short path
lengths of a small world network. Furthermore, its overlay
topology is highly resilient to random peer departure and
even systematic attacks. More interestingly, overlay dy-
namics lead to an “onion-like” biased connectivity among
peers where each peer is more likely connected to peers
with higher uptime. Therefore, long-lived peers form a sta-
ble core that ensures reachability among peers despite over-
lay dynamics.

1 Introduction

The Internet has witnessed a rapid growth in the popular-
ity of various Peer-to-Peer (P2P) applications during recent
years. In particular, today’s P2P file-sharing applications
(e.g., FastTrack, eDonkey, Gnutella) are extremely popu-
lar with millions of simultaneous clients and contribute a
significant portion of the total Internet traffic [1, 13, 14].

These applications have changed in many ways to accom-
modate growing numbers of participating peers. In these
applications, participating peers form an overlay which
provides connectivity among the peers to search for de-
sired files. Typically, these overlays are unstructured where
peers select neighbors through a predominantly random
process, contrasting with structured overlays, i.e., dis-
tributed hash tables such as Chord [29] and CAN [22].
Most modern file-sharing networks use a two-tier topol-
ogy where a subset of peers, called ultrapeers, form an
unstructured mesh while other participating peers, called
leaf peers, are connected to the top-level overlay through
one or multiple ultrapeers. More importantly, the overlay
topology is continuously reshaped by both user-driven dy-
namics of peer participation as well as protocol-driven dy-
namics of neighbor selection. In a nutshell, as participating
peers join and leave, they collectively, in a decentralized
fashion, form an unstructured and dynamically changing
overlay topology.

The design and simulation-based evaluation of new
search and replication techniques has received much at-
tention in recent years. These studies often make certain
assumptions about topological characteristics of P2P net-
works (e.g., power-law degree distribution) and usually ig-
nore the dynamic aspects of overlay topologies. However,
little is known about the topological characteristics of pop-
ular P2P file sharing applications, particularly about over-
lay dynamics. An important factor to note is that properties
of unstructured overlay topologies cannot be easily derived
from the neighbor selection mechanisms due to implemen-
tation heterogeneity and dynamic peer participation. With-
out a solid understanding of topological characteristics in
file-sharing applications, the actual performance of the pro-
posed search and replication techniques in practice is un-
known, and cannot be meaningfully simulated.

Accurately characterizing the overlay topology of a large
scale P2P network is challenging [33]. A common ap-
proach is to examine properties of snapshots of the overlay
captured by a topology crawler. However, capturing ac-
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curate snapshots is inherently difficult for two reasons: (i)
the dynamic nature of overlay topologies, and (ii) a non-
negligible fraction of discovered peers in each snapshot are
not directly reachable by the crawler. Furthermore, the ac-
curacy of captured snapshots is difficult to verify due to the
lack of any accurate reference snapshot.

Previous studies that captured P2P overlay topologies
with a crawler either deployed slow crawlers, which in-
evitably lead to significantly distorted snapshots of the
overlay [23], or partially crawled the overlay [24, 18] which
is likely to capture biased (and non-representative) snap-
shots. These studies have not examined the accuracy of
their captured snapshots and only conducted limited anal-
ysis of the overlay topology. More importantly, these few
studies (except [18]) are outdated (more than three years
old) since P2P filesharing applications have significantly
increased in size and incorporated several new topologi-
cal features over the past few years. An interesting recent
study [18] presented a high level characterization of the
two-tier Kazaa overlay topology. However, the study does
not contain detailed graph-related properties of the overlay.
Finally, to our knowledge, the dynamics of unstructured
P2P overlay topologies have not been studied in detail in
any prior work.

We have recently developed a set of measurement tech-
niques and incorporated them into a parallel P2P crawler,
called Cruiser [30]. Cruiser can accurately capture a com-
plete snapshot of the Gnutella network with more than one
million peers in just a few minutes. Its speed is several or-
ders of magnitude faster than any previously reported P2P
crawler and thus its captured snapshots are significantly
more accurate. Capturing snapshots rapidly also allows us
to examine the dynamics of the overlay over a much shorter
time scale, which was not feasible in previous studies. This
paper presents detailed characterizations of both graph-
related properties as well as the dynamics of unstructured
overlay topologies based on recent large-scale and accu-
rate measurements of the Gnutella network.

1.1 Contributions

Using Cruiser, we have captured more than 18,000 snap-
shots of the Gnutella network during the past year. We
use these snapshots to characterize the Gnutella topology
at two levels:

• Graph-related Properties of Individual Snapshots: We
treat individual snapshots of the overlay as graphs and
apply different forms of graph analysis to examine
their properties1.

• Dynamics of the Overlay: We present new method-
ologies to examine the dynamics of the overlay and its
evolution over different timescales.
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Figure 1: Change in network size over months. Vertical
bars show variation within a single day.

We investigate the underlying causes of the observed
properties and dynamics of the overlay topology. To the
extent possible, we conduct our analysis in a generic (i.e.,
Gnutella-independent) fashion to ensure applicability to
other P2P systems. Our main findings can be summarized
as follows:

• In contrast to earlier studies [7, 23, 20], we find that
node degree does not exhibit a power-law distribution.
We show how power-law degree distributions can re-
sult from measurement artifacts.

• While the Gnutella network has dramatically grown
and changed in many ways, it still exhibits the clus-
tering and the short path lengths of a small world net-
work. Furthermore, its overlay topology is highly re-
silient to random peer departure and even systematic
removal of high-degree peers.

• Long-lived ultrapeers form a stable and densely con-
nected core overlay, providing stable and efficient
connectivity among participating peers despite the
high degree of dynamics in peer participation.

• The longer a peer remains in the overlay, the more
it becomes clustered with other long-lived peers with
similar uptime2. In other words, connectivity within
the core overlay exhibits an “onion-like” bias where
most long-lived peers form a well-connected core, and
a group of peers with shorter uptime form a layer with
a relatively biased connectivity to each other and to
peers with higher uptime (i.e., internal layers).

1.2 Why Examine Gnutella?

eDonkey, FastTrack, and Gnutella are the three most
popular P2P file-sharing applications today, according to
Slyck.com [1], a website which tracks the number of users
for different P2P applications. We elected to first focus on
the Gnutella network due to a number of considerations.

First, a variety of evidence indicates that the Gnutella
network has a large and growing population of active users
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and generates considerable traffic volume. Figure 1 depicts
the average size of the Gnutella network over an eleven
month period ending February 2005, indicating that net-
work size has more than tripled (from 350K to 1.3 million
peers) during our measurement period. We also observed
time-of-day effects in the size of captured snapshots, which
is a good indication of active user participations in the Gnu-
tella network. Also, examination of Internet2 measurement
logs3 reveal that the estimated Gnutella traffic measured on
that network is considerable and growing. For example,
for the 6 week period 10/11/04− 11/21/04, the Gnutella
traffic on Internet2 was estimated to be 79.69 terabytes,
up from 21.52 terabytes for a 6 week period (02/02/04−
03/14/04) earlier that year.

Second, Gnutella, which was the first decentralized P2P
system, has evolved significantly since its inception in
2000. While it is among the most studied P2P networks
in the literature, prior studies are at least 2–3 years old, and
mostly considered the earlier flat-network incarnation. A
detailed measurement study of the modern two-tier Gnu-
tella network is therefore timely and allows us to compare
and contrast the behavior today from the earlier measure-
ment studies, and to gain insights into the behavior and im-
pact of the two-tier, unstructured overlay topologies which
have been adopted by most modern P2P systems.

Third, our choice was also influenced by the fact that
Gnutella is the most popular P2P file-sharing network with
an open and well-documented protocol specification. This
eliminates (or at least significantly reduces) any incompati-
bility error in our measurement that could potentially oc-
cur in other proprietary P2P applications that have been
reverse-engineered, such as FastTrack/Kazaa and eDonkey.

The rest of this paper is organized as follows: Section 2
provides a description of the modern Gnutella P2P over-
lay network and describes the fundamental challenges in
capturing accurate snapshots. We present a brief overview
of our crawler in Section 3. Section 4 presents a detailed
characterization of graph-related properties of individual
snapshots as well as the implications of our findings. In
Section 5, we examine overlay dynamics, their underlying
causes, and their implications on design and evaluation of
P2P applications. Section 6 presents an overview of related
work and Section 7 concludes the paper.

2 Background

To accurately characterize P2P overlay topologies, we need
to capture complete and accurate snapshots. By “snap-
shot”, we refer to a graph that presents all participating
peers (as nodes) and the connections between them (as
edges) at a single instance in time. The most reliable,
and thus common, approach to capture a snapshot is to
crawl the overlay. Given information about a handful of
initial peers, the crawler progressively contacts participat-

ing peers and collects information about their neighbors.
In practice, capturing accurate snapshots is challenging for
two reasons:
(i) The Dynamic Nature of Overlays: Crawlers are not
instantaneous and require time to capture a complete snap-
shot. Because of the dynamic nature of peer participa-
tion and neighbor selection, the longer a crawl takes, the
more changes occur in participating peers and their con-
nections, and the more distorted the captured snapshot be-
comes. More specifically, any connection that is estab-
lished or closed during a crawl (i.e., changing connections)
is likely to be reported only by one end of the connection.
We note that there is no reliable way to accurately resolve
the status of changing peers or changing connections. In
a nutshell, any captured snapshot by a crawler will be dis-
torted, where the degree of distortion is a function of the
crawl duration relative to the rate of change in the overlay.
(ii) Unreachable Peers: A significant portion of discov-
ered peers in each snapshot are not directly reachable since
they have departed, reside behind a firewall, or are over-
loaded [30]. Therefore, information about the edges of the
overlay that are connected between these unreachable peers
will be missing from the captured snapshots.

We argue that sampling a snapshot of unstructured net-
works through partial crawls [24] or passive monitor-
ing [25] is not a reliable technique for an initial character-
ization of the overlay topology for the following reasons:
(i) in the absence of adequate knowledge about the prop-
erties and dynamics of the overlay topology, it is difficult
to collect unbiased samples. For example, partial crawl-
ing of the network can easily result in a snapshot that is
biased towards peers with higher degree; (ii) some graph-
level characteristics of the overlay topology, such as the
mean shortest path between peers (which we discuss in
Subsection 4.2) cannot be accurately derived from partial
snapshots. Because of these reasons, we attempt to cap-
ture snapshots as complete as possible and use them for
our characterizations.

To describe our measurement methodology for address-
ing the above challenges, we provide a brief description
of modern Gnutella as an example of a two-tier P2P file-
sharing application.

2.1 Modern Gnutella

In the original Gnutella protocol, participating peers form
a flat unstructured overlay and use TTL-scoped flooding of
search queries to other peers. This approach has limited
scalability. To improve the scalability of the Gnutella pro-
tocol, most modern Gnutella clients adopt a new overlay
structure along with a new query distribution mechanism
as follows:
(i) Two-tier Overlay: A new generation of popular file-
sharing applications have adopted a two-tier overlay archi-
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Figure 2: Two-tier Topology of Modern Gnutella

tecture to improve their scalability: a subset of peers, called
ultrapeers, form a top-level overlay while other participat-
ing peers, called leaf peers, are connected to the top-level
overlay through one or multiple ultrapeers (Figure 2). Fast-
Track (or Kazaa), Gnutella, and eDonkey all use some vari-
ation of this model. Those peers that do not implement the
ultrapeer feature, called legacy peers, can only reside in the
top-level overlay and do not accept any leaves. When a
leaf connects to an ultrapeer, it uploads a set of hashes of
its filename keywords to that ultrapeer. This allows the ul-
trapeer to only forward messages to the leaves who might
have matching files. This approach reduces the number of
forwarded messages towards leaf peers which in turn in-
creases the scalability of the network by a constant factor.
Leaf peers never forward messages.
(ii) Dynamic Query: The Gnutella developer community
has adopted a new scheme for query distribution called Dy-
namic Querying [9]. The goal in this scheme is to only
gather enough results to satisfy the user (typically 50 to 200
results). Rather than forwarding a query to all neighbors,
ultrapeers manage the queries for their leaves. Toward this
end, an ultrapeer begins by forwarding a query to a subset
of top-level connections using a low TTL. From that point
on, the query is flooded outward until the TTL expires. The
ultrapeer then waits for the results, and uses the ratio be-
tween the number of results and the estimated number of
visited peers to determine how rare matches are. If matches
are rare (i.e., there are few or no responses), the query is
sent through more connections with a relatively high TTL.
If matches are more common but not sufficient, the query
is sent down a few more connections with a low TTL. This
process is repeated until the desired number of results are
collected or the ultrapeer gives up. Each ultrapeer estimates
the number of visited ultrapeers through each neighbor
based on the following formula:

∑TTL−1
i=0 (d − 1)

i. This
formula assumes that all peers have the same node degree,
d. When Dynamic Querying was introduced, the number
of neighbors each ultrapeer attempts to maintain was in-
creased to allow more fine-grained control with Dynamic
Querying by giving ultrapeers more neighbors to choose
from.

3 Capturing Accurate Snapshots

In this section, we present an overview of our data collec-
tion and post-processing steps.

Cruiser: We have developed a set of measurement tech-
niques into a parallel Gnutella crawler, called Cruiser [30].
While the basic crawling strategy by Cruiser is similar to
other crawlers, it improves the accuracy of captured snap-
shots by significantly increasing the crawling speed (i.e.,
reducing crawl duration) primarily by using the following
techniques: First, Cruiser employs a master-slave architec-
ture in order to achieve a high degree of concurrency and
to effectively utilize available resources on multiple PCs.
Using a master-slave architecture also allows us to deploy
Cruiser in a distributed fashion if Cruiser’s access link be-
comes a bottleneck. The master process coordinates mul-
tiple slave processes that crawl disjoint portions of the net-
work in parallel. Each slave crawler opens hundreds of par-
allel connections, contributing a speed-up of nearly three
orders of magnitude.

Second, Cruiser leverages the two-tier structure of the
modern Gnutella network by only crawling the top-level
peers (i.e., ultrapeers and legacy peers). Since each leaf
must be connected to an ultrapeer, this approach enables
us to capture all the nodes and links of the overlay by con-
tacting a relatively small fraction of all peers. Overall, this
strategy leads to around an 85% reduction in the duration
of a crawl without any loss of information.

These techniques collectively result in a significant in-
crease in crawling speed. Cruiser can capture the Gnu-
tella network with one million peers in around 7 minutes
using six off-the-shelf 1 GHz GNU/Linux boxes in our lab.
Cruiser’s crawling speed is about 140K peers/minute (by
directly contacting 22K peers/minute), This is orders of
magnitude faster than previously reported crawlers (i.e., 2
hours for 30K peers (250/minute) in [23], and 2 minutes for
5K peer (2.5K/minute) in [24]). It is worth clarifying that
while our crawling strategy is aggressive and our crawler
requires considerable local resources, its behavior is not in-
trusive since each top-level peer is contacted only once per
crawl.
Post-Processing: Once information is collected from all
reachable peers, we perform some post-processing to re-
move any obvious inconsistencies that might have been in-
troduced due to changes in the topology during the crawl-
ing period. Specifically, we include edges even if they are
only reported by one peer, and treat a peer as an ultrapeer if
it neighbors with another ultrapeer or has any leaves. Due
to the inconsistencies, we might over-count edges by about
1% and ultrapeers by about 0.5%.
Unreachable Peers: We have carefully examined the ef-
fect of unreachable peers on the accuracy of captured snap-
shots [33]. Previous studies assumed that these unreachable
peers departed the network or are legacy peers that reside
behind a firewall (or NAT), and simply excluded this large
group of unreachable peers from their snapshot. It is impor-
tant to determine what portion of unreachable peers are de-
parted or NATed because each group introduces a different
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Crawl Date Total Nodes Leaves Top-level Unreachable Top-Level Edges
09/27/04 725,120 614,912 110,208 35,796 1,212,772
10/11/04 779,535 662,568 116,967 41,192 1,244,219
10/18/04 806,948 686,719 120,229 36,035 1,331,745
02/02/05 1,031,471 873,130 158,345 39,283 1,964,121

Table 1: Sample Crawl Statistics

error on the snapshot. However, there is no reliable test to
distinguish between departed and firewalled peers because
firewalls can time out or refuse connections depending on
their configuration.

In summary, our investigation revealed that in each
crawl, 30%–38% of discovered peers are unreachable. In
this group, the breakdown is as follows: 2%–3% are de-
parted peers, 15%–24% are firewalled, and the remain-
ing unreachable peers (3%–21%) are either also firewalled
or overwhelmed ultrapeers. However, since Cruiser only
needs to contact either end of an edge, it is able to dis-
cover at least 85%–91% of edges. Since firewalled peers
cannot directly connect together (i.e., cannot be located at
both ends of a missing edge) and they constitute more than
half of the unreachable peers, the actual portion of missing
edges is considerably smaller.
Quantifying Snapshot Accuracy: We rigorously exam-
ined the effect of crawling speed and duration on two di-
mensions of snapshot accuracy: completeness and distor-
tion. Our evaluations [30] revealed that (i) Cruiser captures
nearly all ultrapeers and the pair-wise connections between
them and the majority of connections to leaves; (ii) Both
node distortion and edge distortion in captured snapshots
increases linearly with the crawl duration; and (iii) snap-
shots captured by Cruiser have little distortion. For ex-
ample, we found that two back-to-back snapshots differed
only 4% in their peer populations.
Data Set: We have captured more than 18,000 snapshots
of the Gnutella network during the past eleven months
(Apr. 2004–Feb. 2005) with Cruiser. In particular, we col-
lected back-to-back snapshots for several one-week inter-
vals as well as randomly distributed snapshots during vari-
ous times of the day to ensure that captured snapshots are
representative. In Section 4, we use four of these snapshots
to illustrate graph properties of the overlay topology. In
Section 5, we use sets of hundreds of back-to-back snap-
shots to examine how the overlay topology evolves with
time.

4 Overlay Graph Properties

The two-tier overlay topology in modern Gnutella (as well
as other unstructured P2P networks) consists of ultrapeers
that form a “spaghetti-like” top-level overlay and a large
group of leaf peers that are connected to the top-level

Implementation: LimeWire BearShare Other
Percentage: 74%–77% 19%–20% 4%–6%

Table 2: Distribution of Implementation

through multiple ultrapeers. We treat individual snapshots
of the overlay as graphs and apply different forms of graph
analysis to examine their properties. We pay special atten-
tion to the top-level overlay since it is the core component
of the topology. Throughout our analysis, we compare our
findings with similar results reported in previous studies.
However, it is important to note that we are unable to de-
termine whether the reported differences (or similarities)
are due to changes in the Gnutella network or due to inac-
curacy in the captured snapshots of previous studies.

Table 1 presents summary information of four sample
snapshots after post-processing. The results in this section
are primarily from the snapshots in Table 1. However, we
have examined many other snapshots and observed similar
trends and behaviors. Therefore, we believe the presented
results are representative. Presenting different angles of the
same subset of snapshots allows us to conduct cross com-
parisons and also relate various findings.

In this section, we explore the node degree distribution in
Subsection 4.1, the reachability and pairwise distance prop-
erties of the overlay in Subsection 4.2, small world charac-
teristics in Subsection 4.3, and the resilience of the overlay
in Subsection 4.4.
Implementation Heterogeneity: The open nature of the
Gnutella protocol has led to several known (and possibly
many unknown) implementations. It is important to de-
termine the distribution of different implementations (and
configurations) among participating peers since their de-
sign choices directly affect the overall properties of the
overlay topology. This will help us explain some of the
observed properties of the overlay. Table 2 presents the dis-
tribution of different implementations across discovered ul-
trapeers. This table shows that a clear majority of contacted
ultrapeers use the LimeWire implementation. We also dis-
covered that a majority of LimeWire ultrapeers (around
94%) use the most recent version of the software available
at the time of the crawl. These results reveal that while het-
erogeneity exists, nearly all Gnutella users run LimeWire
or BearShare.

We are particularly interested in the number of connec-
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Figure 3: Different angles of the top-level degree distribution in Gnutella topology

tions that are used by each implementation since this design
choice directly affects the degree distribution of the overall
topology. This information can be obtained from available
LimeWire source code. However, not all implementations
are open, and users can always change the source code of
open implementations. Thus, we need to collect this infor-
mation from running ultrapeers in action.

Our measurements reveal that LimeWire’s and Bear-
Share’s ultrapeer implementations prefer to serve 30 and 45
leaves, respectively, whereas both try to maintain around 30
neighbors in the top-level overlay.

4.1 Node Degree Distributions

The introduction of the two-tier architecture in the over-
lay topology along with the distinction between ultrapeers
and leaf peers in the modern Gnutella protocol demands
a close examination of the different degree distributions
among different group of peers.
Node Degree in the Top-Level Overlay: Previous studies
reported that the distribution of node degree in the Gnu-
tella network exhibited a power-law distribution [23, 2, 7]
and later changed to a two-segment power-law distribu-
tion [20, 23]. To verify this property for the modern Gnu-
tella network, Figure 3(a) depicts the distribution of node
degree among all peers (both unreachable and reachable)
in the top-level overlay for the four sample snapshots pre-
sented in Table 1. This distribution has a spike around
30 and does not follow a power-law4. A key question is
to what extent this difference in degree distribution is due
to the change in the overlay structure versus error in cap-
tured snapshots by earlier studies. To examine this ques-
tion, we captured a distorted snapshot by a slow crawler5

which is similar to the 50-connection crawler used in an
earlier study [23]. Figure 4(a) depicts the degree distribu-
tion based on this distorted snapshot, which is significantly
more similar to a two-piece power-law distribution6. If we
further slow down the crawling speed, the resulting snap-
shots contains a higher degree of edge distortion, and the
derived degree distribution looks more similar to a single-

piece power-law distribution, the result reported by earlier
studies [2, 7]. To a slow crawler, peers with long uptimes
appear as high degree because many short-lived peers re-
port them as neighbors. However, this is a mischaracter-
ization since these short-lived peers are not all present at
the same time. More importantly, this finding demonstrates
that using distorted snapshots that are captured by slow
crawlers can easily lead to incorrect characterizations of
P2P overlays.

Because we were unable to contact every top-level peer,
the distribution in Figure 3(a) is biased slightly low since
it does not include all edges. To address this problem, we
split the data into Figures 3(b) and 3(c), which depict the
neighbor degree distribution for reachable and unreachable
peers, respectively. The data in Figure 3(b) is unbiased
since we contacted each peer successfully, i.e., we discov-
ered every edge connected to these peers. The spike around
a degree of 30 is more pronounced in this figure. Fig-
ure 3(c) presents the observed degree distribution for un-
reachable top-level peers (i.e., overloaded or NATed). This
distribution is biased low since we cannot observe the con-
nections between pairs of these peers. In this data, a much
greater fraction of peers have an observed degree below 30.
Many of these peers probably have a true degree closer to
30, with the true distribution likely similar to that in Fig-
ure 3(b).

The degree distribution among contacted top-level peers
has two distinct segments around a spike in degree of 30,
resulting from LimeWire and BearShare’s behavior of at-
tempting to maintain 30 neighbors. The peers with higher
degree represent other implementations that try to main-
tain a higher node degree or the rare user who has modi-
fied their client software. The peers with lower degree are
peers which have not yet established 30 connections. In
other words, the observed degree for these peers is tempo-
rary. They are in a state of flux, working on opening more
connections to increase their degree. To verify this hypoth-
esis, we plot the mean degree of peers as a function of their
uptime in Figure 5. The standard deviation for these mea-
surements is quite large (around 7 − 13), indicating high
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variability. When peers first arrive, they quickly establish
several connections. However, since node churn is high,
they are constantly losing connections and establishing new
ones. As time passes, long-lived peers gradually accumu-
late stable connections to other long-lived peers. We further
explore this issue in Section 5 when we examine overlay
dynamics.
Node Degree For Leaves: To characterize properties of
the two-tier topology, we have examined the degree distri-
bution between the top-level overlay and leaves, and vice
versa. Figure 4(b) presents the degree distribution of con-
nections from ultrapeers to leaf peers. Distinct spikes at 30,
45 and 75 degree are visible. The first two spikes are due to
the corresponding parameters used in LimeWire and Bear-
Share implementations, respectively. The third spike is due
to a less common implementation. This figure shows that a
significant minority of ultrapeers are connected to less than
30 leaf peers, which indicates availability in the system to
accommodate more leaf peers.

In Figure 4(c), we present the degree of connectivity for
leaf peers. This result reveals that most leaf peers connect
to three ultrapeers or fewer (the behavior of LimeWire), a
small fraction of leaves connect to several ultrapeers, and a
few leaves (< 0.02%) connect to an extremely large num-
ber of ultrapeers (100–3000).
Implications of High Degree Peers: We observed a few

outlier peers with an unusually high degree of connectiv-
ity in all degree distributions in this subsection. The main
incentive for these peers is to reduce their mean distance
to other peers. To quantify the benefit of this approach,
Figure 6(a) presents the mean distance to other peers as
a function of node degree, averaged across peers with the
same degree. We show this for both the top-level overlay
and across all peers. This figure shows that the mean path
to participating peers exponentially decreases with degree.
In other words, there are steeply diminishing returns from
increasing degree as a way of decreasing distance to other
peers.

Turning our attention to the effects of high-degree peers
on the overlay, for scoped flood-based querying, the traffic
these nodes must handle is proportional to their degree for
leaves and proportional to the square of their degree for ul-
trapeers. Note that high-degree ultrapeers may not be able,
or may not choose, to route all of the traffic between their
neighbors. Thus, they may not actually provide as much
connectivity as they appear to, affecting the performance
of the overlay.

During our analysis, we discovered around 20 ultrapeers
(all on the same /24 subnet) with an extremely high de-
gree (between 2500 to 3500) in our snapshots. These high-
degree peers are widely visible throughout the overlay,
and thus receive a significant portion of exchanged queries
among other peers. We directly connected to these high de-
gree peers and found they do not actually forward any traf-
fic7. We removed these inactive high degree peers from our
snapshots when considering path lengths since their pres-
ence would artificially improve the apparent connectivity
of the overlay.

4.2 Reachability

The degree distribution suggests the overlay topology
might have a low diameter, given the moderately high de-
gree of most peers. To explore the distances between peers
in more detail, we examine two equally important prop-
erties of overlay topologies that express the reachability
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Figure 7: Different angles on path lengths

of queries throughout the overlay: (i) the reachability of
flood-based queries, and (ii) the pairwise distance between
arbitrary pairs of peers.
Reachability of Flood-Based Query: Figure 6(b) depicts
the mean number of newly visited peers and its cumulative
value as a function of TTL, averaged across top-level peers
in a single snapshot. The shape of this figure is similar to
the result that was reported by Lv et al. (Figure 3 in [20])
which was captured in October 2000, with a significantly
smaller number of peers (less than 5000). Both results in-
dicate that the number of newly visited peers exponentially
grows with increasing TTL up to a certain threshold and
has diminishing returns afterwards. This illustrates that the
dramatic growth of network size has been effectively bal-
anced by the introduction of ultrapeers and an increase in
node degree. Thus, while the network has changed in many
ways, the percentage (but not absolute number) of newly
reached peers per TTL has remained relatively stable. Fig-
ure 6(b) also shows the number of newly visited peers pre-
dicted by the Dynamic Querying formula (assuming a node
degree of 30), which we presented in Section 2.1. This re-
sult indicates that the formula closely predicts the number
of newly visited peers for TTL values less than 5. Beyond
5, the query has almost completely saturated the network.

Figure 6(c) shows a different angle of reachability for the

same snapshot by presenting the Cumulative Distribution
Function (CDF) of the number of visited peers from top-
level peers for different TTL values. This figure shows the
distribution of reachability for flood-based queries among
participating peers. We use a logarithmic x-scale to mag-
nify the left part of the figure for lower TTL values. The
figure illustrates two interesting points: First, the total num-
ber of visited peers using a TTL of n is almost always an
order of magnitude higher compared to using a TTL of
(n − 1). In other words, TTL is the primary determinant
of the mean number of newly visited peers independent of
a peer’s location. Second, the distribution of newly vis-
ited peers for each TTL is not uniform among all peers.
As TTL increases, this distribution becomes more skewed
(considering the logarithmic scale for x axis). This is a di-
rect effect of node degree. More specifically, if a peer or
one of its neighbors has a very high degree, its flood-based
query reaches a proportionally larger number of peers.
Pair-wise Distance: Figure 7(a) shows the distribution of
shortest-path lengths in terms of overlay hops among all
pairs of top-level peers from four snapshots. Ripeanu et
al. [23] presented a similar distribution for the shortest-
path length based on snapshots that were collected between
November 2000 and June 2001 with 30,000 peers. Com-
paring these results reveals two differences: (i) the pairwise
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path between peers over the modern Gnutella topology
is significantly more homogeneous in length, with shorter
mean value compared with a few years ago. More specif-
ically, the old snapshot shows 40% and 50% of all paths
having a length of 4 and 5 hops whereas our results show a
surprising 60% of all paths having a length of 4. (ii) the
results from our snapshots are nearly identical; whereas
in [23], there is considerable variance from one crawl to an-
other. In summary, the path lengths have become shorter,
more homogeneous, and more stable.
Effect of Two-Tier Topology: To examine the effect of the
two-tier overlay topology on path length, we also plot the
path length between all peers (including leaves) in 7(b). If
each leaf had only one ultrapeer, the distribution of path
length between leaves would look just like the top-level
path lengths (Figure 7(a)), but right-shifted by two. How-
ever, since each leaf peer has multiple parents, the path
length distribution between leaves (and thus for all peers)
has a more subtle relationship with Figure 7(a). Comparing
Figures 7(a) and 7(b) shows us the cost introduced by using
a two-tier overlay. In the top-level, most paths are of length
4. Among leaves, we see that around 50% of paths are of
length 5 and the other 50% are of length 6. Thus, getting
to and from the top-level overlay introduces an increase of
1 to 2 overlay hops.
Eccentricity: The longest observed path in these four
snapshots was 12 hops, however the vast majority (99.5%)
of paths have a length of 5 hops or less. To further ex-
plore the longest paths in the topology, we examined the
distribution of eccentricity in the top-level overlay. The ec-
centricity of a peer is the distance from that peer to the
most distant other peer. More formally, given the func-
tion P (i, j) that returns the shortest path distance between
nodes i and j, the eccentricity, Ei of node i is defined as
follows: Ei = max(P (i, j), ∀j). Figure 7(c) shows the
distribution of eccentricity in four topology snapshots. This
figure shows that the distribution of eccentricity is rather
homogeneous and low which is an indication that the over-
lay graph is a relatively balanced and well-connected mesh,
rather than a chain of multiple groups of peers.

4.3 Small World

Recent studies have shown that many biological and man-
made graphs (e.g., collaborations among actors, the electri-
cal grid, and the WWW graph) exhibit “small world” prop-
erties. In these graphs, the mean pairwise distance between
nodes is small and nodes are highly clustered compared to
random graphs with the same number of vertices and edges.
A study by Jovanovic et al. [12] in November–December
2000 concluded that the Gnutella network exhibits small
world properties as well. Our goal is to verify to what
extent recent top-level topologies of the Gnutella network
still exhibit small world properties despite growth in over-

Graph Lactual Lrandom Cactual Crandom

New Gnutella 4.17–4.23 3.75 0.018 0.00038
Old Gnutella 3.30–4.42 3.66 0.02 0.002

Movie Actors 3.65 2.99 0.79 0.00027
Power Grid 18.7 12.4 0.08 0.005
C. Elegans 2.65 2.25 0.28 0.05

Table 3: Small World Characteristics

lay population, an increase in node degree, and changes
in overlay structure. The clustering coefficient of a graph,
Cactual, represents how frequently each node’s neighbors
are also neighbors, and is defined as follows [35]:

C(i) =
D(i)

Dmax(i)
, Cactual =

∑
i C(i)

|V |

D(i), Dmax(i) and |V | denote the number of edges be-
tween neighbors of node i, the maximum possible edges
between neighbors of node i, and the number of vertices in
the graph, respectively. For example, if node A has 3 neigh-
bors, they could have at most 3 edges between them, so
Dmax(A) = 3. If only two of them are connected together,
that’s one edge and we have D(A) = 1 and C(A) = 1

3 .
C(i) is not defined for nodes with fewer than 2 neighbors.
Thus, we simply exclude these nodes from the computa-
tion of Cactual. Table 3 presents ranges for the clustering
coefficient (Cactual) and mean path length (Lactual) for the
Gnutella snapshots from Table 1 as well as the mean values
from four random graphs with the same number of vertices
and edges (i.e., Crandom and Lrandom). Because comput-
ing the true mean path lengths (Lrandom) is computation-
ally expensive for large graphs, we used the mean of 500
sample paths selected uniformly at random. We also in-
clude the information presented by Jovanovic et al. [12]
and three classic small world graphs [35].

A graph is loosely identified as a small world when its
mean path length is close to random graphs with the same
number of edge and vertices, but its clustering coefficient is
orders of magnitude larger than the corresponding random
graph (i.e., Lactual and Lrandom are close, but Cactual is
orders of magnitude larger than Crandom). All three classic
small world graphs in the table exhibit variants of these
conditions. Snapshots of modern Gnutella clearly satisfy
these conditions which means that modern Gnutella still
exhibits small world properties.

Comparing the clustering coefficient between modern
Gnutella and old Gnutella shows that modern Gnutella has
less clustering. A plausible explanation is the increased
size, which provides the opportunity for more diverse con-
nectivity to other peers. A high clustering coefficient im-
plies a larger fraction of redundant messages in flood-based
querying. The observed clustering could be a result of fac-
tors like peer bootstrapping, the peer discovery mechanism,
and overlay dynamics. Further analysis is needed to better

Internet Measurement Conference 2005  USENIX Association 57



0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

R
em

ai
ni

ng
no

de
s

in
la

rg
es

t
co

nn
ec

te
d

co
m

po
ne

nt
(%

)

Precentage of nodes removed

Figure 8: Fraction of remaining nodes in the largest con-
nected component as a function of the percentage of orig-
inal nodes removed for the 9/27, 10/11, and 10/18 snap-
shots. The top (overlapped) lines and the bottom three lines
present random and pathological node removal scenarios,
respectively.

understand the underlying causes. Section 5 shows how
peer churn is one factor that contributes to clustering.

4.4 Resilience

We also examine the resilience in different snapshots of the
Gnutella overlay topology using two different types of node
removal: (i) random removal, and (ii) pathologically re-
moving the highest-degree nodes first. An early study [24]
conducted the same analysis on Gnutella based on a par-
tial topology snapshot, finding that the overlay is resilient
to random departures, but under pathological node removal
quickly becomes very fragmented (after removing just 4%
of nodes).

Figure 8 depicts the fraction of remaining nodes in the
topology which remain still connected in both the random
and pathological node removal. This figure clearly shows
the Gnutella overlay is not only extremely robust to random
peer removals, but it also exhibits high resilience to patho-
logical node removal. Even after removing 85% of peers
randomly, 90% of the remaining nodes are still connected.
For the pathological case, after removing the 50% of peers
with the highest-degree, 75% of the remaining nodes re-
main connected. There are two possible factors contribut-
ing to this difference with earlier results [24]: (i) the higher
median node degree of most nodes in modern Gnutella, and
(ii) a non-negligible number of missing nodes and edges in
the partial snapshot of the earlier study. Our result implies
that complex overlay construction algorithms (e.g., [36])
are not always a necessary prerequisite for ensuring re-
silience in unstructured overlays.

5 Overlay Dynamics

In Section 4, we characterized the graph-related properties
of individual snapshots of the overlay topology. However,

in practice the overlay topology is inherently dynamic since
connections (i.e., edges) are constantly changing. These
dynamics can significantly affect the main functionality of
the overlay which is to provide connectivity and efficiently
route the messages (e.g., queries, responses) among par-
ticipating peers. Characterizing overlay dynamics enables
us to examine their impact on performance of P2P appli-
cations. For example, a query or response message can be
routed differently or even dropped as a result of changes in
the edges of the overlay. To our knowledge, aggregate dy-
namics of unstructured P2P overlay have not been studied.
There are two basic causes for observed dynamics in the
overlay topology as follows:

• Dynamics of Peer Participation: When a peer joins (or
departs) the network, it establishes (or tears down) its
connections to other participating peers in the overlay.
Therefore, these changes in overlay edges are user-
driven8.

• Dynamics of Neighbor Selection: Two existing peers
in the overlay may establish a new (or tear down an
existing) connection between them. Such a change in
edges is not triggered by users and thus considered
protocol-driven.

Note that the user-driven dynamics of peer participation
are likely to exhibit similar heavy-tailed distributions in dif-
ferent P2P applications [31, 28]. Therefore, characteriza-
tion of user-driven dynamics in the overlay provides a use-
ful insight for design of other Gnutella-like unstructured
P2P overlays.

In this section, we characterize the dynamics of the Gnu-
tella network. More specifically, we want to investigate (i)
whether a subset of participating peers form a relatively
stable core for the overlay, (ii) what properties (such as
size, diameter, degree of connectivity or clustering) this sta-
ble core exhibits, and (iii) what underlying factors con-
tribute to the formation and properties of such a stable
core.
Methodology: Our main goal is to determine whether ob-
served dynamics (i.e., the rate of change in the edges of
the overlay) are different at various regions of the overlay.
We primarily focus on the top-level overlay in our analysis,
because leaf nodes do not forward traffic and therefore do
not provide meaningful connectivity between peers. One
key issue is to define a core region for the “spaghetti-like”
overlay. We use the following methodology to identify and
characterize any potentially stable core for the overlay. In-
tuitively, if the overlay has a stable core, it must contain the
long-lived peers of the overlay. Therefore, to identify the
stable core of the overlay at any point of time, we select
the subset of participating peers who have been part of the
overlay for at least τ minutes, i.e., all peers whose uptime
is longer than a threshold τ . We call this subset of peers
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Figure 10: Different angles of connectivity with the stable core

the stable peers, or SP (τ), and only focus on this subset
in our analysis. However, by changing τ , we can control
the minimum uptime of selected peers and thus the relative
stability and size of SP (τ).

To conduct this analysis, we use several slices of our
dataset where each slice is a period of 48 hours of con-
tinuous back-to-back topology snapshots, with hundreds of
snapshots per slice. Let’s consider the last captured snap-
shot over each 48 hour period as a reference snapshot. Any
peer in the reference snapshot must have joined the overlay
either before or during our measurement period. By look-
ing back through the snapshots, we can determine (with
accuracy of a few minutes) the arrival time of all peers
that joined during the measurement period. For those peers
that were present for the entire measurement period, we
can conclude that their uptime is at least 48 hours. Hav-
ing this information, we can annotate all peers in the ref-
erence snapshot with their uptime information. Figure 9(a)
depicts the CCDF of uptime among existing peers in the
reference snapshot for several slices (Figure 9(b) presents
the initial part of the same graph). In essence, this fig-
ure presents the distribution of uptime among participating
peers in steady state, implying that the size of SP (τ) expo-
nentially decreases with τ . This is more visible over longer

time scales. Furthermore, this also implies that the total
number of possible connections within SP (τ) dramatically
decreases with τ .

Internal Connectivity Within the Stable Core: To study
different angles of connectivity among ultrapeers within
SP (τ), we focus only on the connections of the overlay
where both end points are inside SP (τ), i.e., we remove all
edges to peers outside SP (τ). We call this the stable core
overlay or SC(τ). The first question is: whether SC(τ) is
fully connected? Figure 10(a) depicts the fraction of ultra-
peers within SC(τ) that are in the largest connected com-
ponent, as a function of τ . This figure clearly demonstrates
that while the fraction of connected peers slightly decreases
with τ over long times scales, a significant majority (86%–
94%) of peers within SC(τ) remain fully connected. The
minor drop in the percentage of connected peers is due to
exponential decrease in number of peers within SC(τ),
which in turn reduces the number of edges among peers,
and thus affects the opportunity for pairwise connectivity.
The second question is: how clustered and dense is the con-
nected portion of the core overlay? Figure 10(b) shows the
diameter and characteristic (mean) path length among fully
connected peers in the stable core overlay. Interestingly,
both the mean path length and the diameter of the stable
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core overlay remain relatively stable as τ increases, despite
the dramatic drop in number of edges. Furthermore, the
mean path length for the stable core overlay, even when it
has a very small population (only 10% of top-level peers
for τ=45h), is around 5 hops, very close to the mean path
length for the entire top-level overlay (4.17–4.23 from the
first row of Table 3). Finally, Figure 10(c) depicts the evo-
lution of the clustering coefficient for the stable core over-
lay as τ increases, along with the clustering coefficient for
the entire top-level overlay in the reference snapshot. This
figure shows two important points: (i) peers within the sta-
ble core overlay are more clustered together than the entire
top-level overlay on average, and, more importantly, (ii)
connectivity among peers within the stable core overlay be-
comes increasingly more clustered with τ . This latter point
implies that the longer a peer remains in the overlay, the
more likely it establishes connections to peers with equal
or higher uptimes, i.e., the more biased its connectivity be-
comes toward peers with higher uptime. Since connections
for all participating peers exhibit the same behavior, con-
nectivity of the overlay exhibits a biased “onion-like” lay-
ering where peers with similar uptime (a layer) have a ten-
dency to be connected to peers with the same or higher
uptime (internal layers of the onion). Since the size of
SP (τ) decreases with τ , this means that internal layers are
both smaller and more clustered.
External Connectivity to/from the Stable Core: To
quantify the connectivity between SC(τ) and the rest of the
overlay we examined whether peers within SC(τ) have a
higher tendency to connect to each other rather than peers
outside the core. To quantify any potential tendency, we
calculate the ratio of internal edges to the total number of
edges and compare that with the same ratio for a randomly
generated graph with the same number of nodes, same de-
gree distribution among nodes, and same number of edges.
For a fair comparison, we present the notion of a half edge
for a graph as follows: we cut the edge Eij between two
nodes i and j, and define HalfEdge(i, j) as the half of
Eij that is connected to node i. Then, the ratio of internal
to total half-edges can be calculated as follows:

R =

∑
i∈SC

∑
j∈SC

HalfEdge(i,j)
∑

i∈SC

∑
allj

HalfEdge(i,j)

Figure 9(c) depicts (Rg − Rr)/Rr as a function of τ
where Rg and Rr denote the value of R for several snap-
shots and their corresponding randomly generated graphs,
respectively. This figure demonstrates that the longer a peer
remains in the network, its connectivity becomes more bi-
ased towards peers with the same or higher uptime. This
is another evidence that peers exhibit an onion-like biased
connectivity and the degree of such bias increases with up-
time.
Implications of Stable and Layered Core Overlay: The
connectivity of the core overlay implies that all peers within

the core do not depend on peers outside the core for reach-
ability. In other words, the core overlay provides a stable
and efficient backbone for the entire top-level overlay that
ensures connectivity among all participating peers despite
the high rate of dynamics among peers outside the core.

5.1 Examining Underlying Causes

A key question is: how does this onion-like layered con-
nectivity form in the overlay in an unintentional and un-
coordinated fashion? To address this issue, we quantify
the contribution of user-driven and protocol-driven dynam-
ics in changes of the edges of the overlay. We can distin-
guish protocol-driven versus user-driven changes in edges
between two snapshots of the overlay as follows: if at least
one of the endpoints for a changing edge has arrived (or de-
parted) between two snapshots, that change is user-driven.
Otherwise, a changing edge is considered protocol-driven.
To answer the above question, we examine a 48-hour slice
of back-to-back snapshots from 10/14/2004 to 10/16/2004,
using the first snapshot as a reference. Given a slice, we
can detect new or missing edges in any snapshot compared
to the reference snapshot, for peers in both snapshots. Let
δp− and δu− (δp+ and δu+) denote the normalized ratio
of missing (and new) edges in a snapshot due to protocol-
driven (p) and user-driven (u) causes, normalized by the
number of edges in the reference snapshot. Figure 11(a)
and 11(b) depict δ

−
=δp−+δu− and δ+=δp++δu+ for back-

to-back snapshots for the slice under investigation. Each
figure also depicts the breakdown of changes in edges into
two groups: protocol-driven and user-driven changes. Note
that δp and δu are by definition cumulative. The left graph
(δ

−
) shows that around 20% and 30% of edges in the over-

lay are removed due to protocol-driven and user-driven fac-
tors during the first 100 minutes, respectively. After this pe-
riod, almost all removed edges are due to departing peers.
Similarly, from the right graph, many edges are added dur-
ing the first 100 minutes due to both protocol-driven fac-
tors and the arrival of new peers. After this period, almost
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Figure 11: Contribution of user- and protocol-driven dy-
namics in variations of edges in the overlay
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all new edges involve a newly arriving peer. These results
shows two important points: First, each peer may establish
and tear down many connections to other peers during the
initial 100 minutes of its uptime. But peers with higher up-
time (i.e., peers inside SC(τ) for τ ≥ 100 min), maintain
their connections to their remaining long-lived neighbors,
and only add (or drop) connections to arriving (or depart-
ing) peers. This behavior appears to explain the formation
of the biased onion-like layering in connectivity within the
overlay. Second, user-driven dynamics are the dominant
factor in long-term changes of the overlay. Since dynamics
of peer participations exhibit similar dynamics in different
P2P systems [31], other Gnutella-like overlays are likely to
show similar behavior. We plan to conduct further investi-
gations to better understand the underlying dynamics that
contribute to this behavior.

6 Related Work

As listed throughout this paper, there are a handful of prior
studies on characterizing peer-to-peer overlay topologies in
file-sharing applications [23, 2, 20, 12]. These studies are
more than three years old, did not verify the accuracy of
their captured snapshots, and conducted only limited anal-
ysis. A recent study [18] used both passive measurement
and active probing of 900 super nodes to study behavior
of the Kaaza overlay. They have mostly focused on the
number of observed connections (within the top-level over-
lay and from the top-level overlay to leaf nodes) and their
evolution with time. However they have not examined de-
tailed graph-related properties of the overlay, or collective
dynamics of the entire overlay topology, both of which are
investigated in this paper.

There has been a wealth of measurement research on
other properties of peer-to-peer systems. These studies
cover several topics: (i) file characteristics [6, 17, 3, 19],
(ii) transfer characteristics [10, 17], (iii) peer character-
istics [25, 24], (vi) query characteristics [26, 3, 16, 4],
and (v) comparisons of different implementations [15, 11].
Since they explore different aspects of peer-to-peer net-
works, these studies complement our work. There have
also been several modeling and simulation-based studies
on improvement of search in Gnutella-like P2P networks
[5, 38, 37, 27]. Our characterization can be directly used
by these studies as a reference for comparison of suggested
topology models, and our captured overlay snapshots can
be used for trace-driven simulation of their proposed search
mechanisms.

Finally, the research studies on characterization of the
Internet topology (e.g., [8]) and network topology genera-
tors (e.g., [34]) are closely related to our work. However,
these studies focus on the Internet topology rather than an
overlay topology. We plan to conduct further characteri-
zation of the Gnutella topology by applying some of the

suggested graph analysis in these studies to the Gnutella
overlay topology.

7 Conclusions

In this paper, using Gnutella, we presented the first detailed
characterization of an unstructured two-tier overlay topol-
ogy that is typical of modern popular P2P systems, based
on accurate and complete snapshots. We described fun-
damental challenges in capturing accurate snapshots, and
demonstrated that inaccurate snapshots can lead to erro-
neous conclusions—such as a power-law degree distribu-
tion. We characterized the graph-related properties of in-
dividual snapshots, the dynamics of the overlay topology
across different time scales, and investigated the underly-
ing causes and implications. Our main findings are sum-
marized in Section 1.1.

This study developed essential insights into the behav-
ior of overlay topologies which are necessary to improve
the design and evaluation of peer-to-peer file-sharing ap-
plications. The existence of a stable well-connected core
of long-lived peers suggests that there may be benefits in
terms of increasing search resilience in the face ofd the
overlay dynamics, by biasing/directing the search towards
longer lived peers and therefore towards this core. It may
also be useful to cache indexes or content at long-lived
peers in order to reduce load on the stable core, especially if
the biased forwarding of queries is adopted. For example,
the idea of one-hop replication [21], intended for power-
law topologies, can be changed to a probabilistic one-hop
replication biased towards peers with longer uptime.

We are continuing this work along a number of direc-
tions. We are actively monitoring the Gnutella network
and plan to further examine the dynamics of peer partic-
ipation over short time scales, explore any longer term
trends in the topology, and observe variations in several
key properties (e.g., small-world coefficient, degree distri-
bution, and mean pairwise distance) with time. We are ap-
plying our techniques to develop characterizations of the
eDonkey/Overnet and BitTorrent P2P networks in ongoing
work.
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Notes
1An earlier version of our work on graph-related properties of Gnutella

appeared as an extended abstract in SIGMETRICS 2005 [32].
2Throughout this paper, by “uptime” we mean the time that has elapsed

since the peer has arrived.
3http://netflow.internet2.edu/weekly/
4The degree distribution for all the presented results is limited to 500,

which includes all but a handful of peers with larger degree that are dis-
cussed later.

5To reduce the crawling speed, we simply limited the degree of con-
currency (i.e., number of parallel connections) to 60 in Cruiser.

6To properly compare these snapshots with different sizes, the y-axis
in Figure 4(a) was normalized by number of peers in the snapshot

7To our surprise, it appears that these peers monitor exchanged mes-
sages among other participating peers. They could be trying to locate
copyright infringement among Gnutella users or collecting ratings infor-
mation to measure which songs consumers might like to buy.

8Note that Gnutella does not run as a daemon. Therefore, peer ar-
rival/departure is a reliable indication of user action. We are mindful that
dynamic IP addresses could force some peers to leave and rejoin the net-
work with a new address. However, this does not affect our analysis since
we examine the effect of each departure/arrival event on the overlay dy-
namics.
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