
Exploiting Underlying Structure for Detailed Reconstruction of an
Internet-scale Event

Abhishek Kumar
Georgia Institute of Technology

akumar@cc.gatech.edu

Vern Paxson
ICSI

vern@icir.org

Nicholas Weaver
ICSI

nweaver@icsi.berkeley.edu

Abstract
Network “telescopes” that record packets sent to unused blocks

of Internet address space have emerged as an important tool for
observing Internet-scale events such as the spread of worms and
the backscatter from flooding attacks that use spoofed source ad-
dresses. Current telescope analyses produce detailed tabulations
of packet rates, victim population, and evolution over time. While
such cataloging is a crucial first step in studying the telescope ob-
servations, incorporating an understanding of the underlying pro-
cesses generating the observations allows us to construct detailed
inferences about the broader “universe” in which the Internet-
scale activity occurs, greatly enriching and deepening the analysis
in the process.

In this work we apply such an analysis to the propagation of
the Witty worm, a malicious and well-engineered worm that when
released in March 2004 infected more than 12,000 hosts world-
wide in 75 minutes. We show that by carefully exploiting the
structure of the worm, especially its pseudo-random number gen-
eration, from limited and imperfect telescope data we can with
high fidelity: extract the individual rate at which each infectee in-
jected packets into the network prior to loss; correct distortions
in the telescope data due to the worm’s volume overwhelming the
monitor; reveal the worm’s inability to fully reach all of its po-
tential victims; determine the number of disks attached to each
infected machine; compute when each infectee was last booted,
to sub-second accuracy; explore the “who infected whom” infec-
tion tree; uncover that the worm specifically targeted hosts at a
US military base; and pinpoint Patient Zero, the initial point of
infection, i.e., the IP address of the system the attacker used to
unleash Witty.

1 Introduction

Network “telescopes”have recently emerged as important
tools for observing Internet-scale events such as the spread
of worms, the “backscatter” of responses from victims
attacked by a flood of requests with spoofed source ad-
dresses, and incessant “background radiation” consisting
of other anomalous traffic [10, 14, 15]. Telescopes record
packets sent to unused blocks of Internet address space,
with large ones using /8 blocks covering as much as 1/256

of the total address space. During network-wide anomalous
events, such as the propagation of a worm, telescopes can
collect a small yet significant slice of the worm’s entire traf-
fic. Previously, such logs of worm activity have been used
to infer aggregate properties, such as the worm’s infection
rate (number of infected systems), the total scanning rate
(number of worm copies sent per second), and the evolu-
tion of these quantities over time.

The fundamental premise of our work is that by care-
fully considering the underlying structure of the sources
sending traffic to a telescope, we can extract a much more
detailed reconstruction of such events. To this end, we
analyze telescope observations of the Witty worm, a ma-
licious and well-engineered1 worm that spread worldwide
in March 2004 in 75 minutes. We show that it is possible to
reverse-engineer the state of each worm infectee’s Pseudo-
Random Number Generator (PRNG), which then allows us
to recover the full set of actions undertaken by the worm.
This process is greatly complicated by the worm’s use of
periodic reseeding of its PRNG, but we show it is possible
to determine the new seeds, and in the process uncover de-
tailed information about the individual hosts, including ac-
cess bandwidth, up-time, and the number of physical drives
attached. Our analysis also enables inferences about the
network, such as shared bottlenecks and the presence or ab-
sence of losses on the path from infectees to the telescope.
In addition, we uncover details unique to the propagation
of the Witty worm: its failure to scan about 10% of the IP
address space, the fact that it initially targeted a US mili-
tary base, and the identity of Patient Zero — the host the
worm’s author used to release the worm.

Our analysis reveals systematic distortions in the data
collected at telescopes and provides a means to correct this
distortion, leading to more accurate estimates of quantities
such as the worm’s aggregate scan rate during its spread.
It also identifies consequences of the specific topological
placement of telescopes. In addition, detailed data about
hitherto unmeasured quantities that emerges from our anal-
ysis holds promise to aid future worm simulations achieve

Internet Measurement Conference 2005 USENIX Association 351

a degree of realism well beyond today’s abstract models.
The techniques developed in our study, while specific to
the Witty worm, highlight the power of such analysis, and
provide a template for future analysis of similar events.

We organize the paper as follows. § 2 presents back-
ground material: the operation of network telescopes and
related work, the functionality of Witty, and the structure of
linear-congruential PRNGs. In § 3 we provide a roadmap
to the subsequent analysis. We discuss how to reverse-
engineer Witty’s PRNG in § 4, and then use this to estimate
access bandwidth and telescope measurement distortions
in § 5. § 6 presents a technique for extracting the seeds
used by individual infectees upon reseeding their PRNGs,
enabling measurements of each infectee’s system time and
number of attached disks. This section also discusses our
exploration of the possible infector-infectee relationships.
We discuss broader consequences of our study in § 7 and
conclude in § 8.

2 Background

Network Telescopes and Related Work. Network tele-
scopes operate by monitoring unused or mostly-unused
portions of the routed Internet address space, with the
largest able to record traffic sent to /8 address blocks
(16.7M addresses) [10, 22]. The telescope consists of
a monitoring machine that passively records all packets
headed to any of the addresses in the block. Since there
are few or no actual machines using these addresses, traffic
headed there is generally anomalous, and often malicious,
in nature. Examples of traffic observed at network tele-
scopes include port and address scans, “backscatter”from
flooding attacks, misconfigurations, and the worm packets
that are of immediate interest to this work.

The first major study performed using a network tele-
scope was the analysis of backscatter by Moore et al. [14].
This study assessed the prevalence and characteristics of
spoofed-source denial-of-service (DoS) attacks and the
characteristics of the victim machines. The work built on
the observation that most DoS tools that spoof source ad-
dresses pick addresses without a bias towards or against the
telescope’s observational range. The study also inferred
victim behavior by noting that the response to spoofed
packets will depend on the state of the victim, particularly
whether there are services running on the targeted ports.

Telescopes have been the primary tool for understand-
ing the Internet-wide spread of previous worms, begin-
ning with Code Red [2, 20]. Since, for a random-scanning
worm, the worm is as likely to contact a telescope address
as a normal address, we can extrapolate from the telescope
data to compute the worm’s aggregate scanning rate as it
spreads. In addition, from telescope data we can see which
systems were infected, thus estimate the average worm
scanning rate. For high-volume sources, we can also es-

timate a source’s effective bandwidth based on the rate at
which its packets arrive and adjusting for the telescope’s
“gatheringpower”(portion of entire space monitored).

A variation is the distributed telescope, which monitors
a collection of disparate address ranges to create an overall
picture [1, 4]. Although some phenomena [6, 2]) scan uni-
formly, others either have biases in their address selection
[11, 12] or simply exclude some address ranges entirely
[5, 16]. Using a distributed telescope allows more opportu-
nity to observe nonuniform phenomenon, and also reveals
that, even correcting for “local preference” biases present
in some forms of randomized scanning, different telescopes
observe quantitatively different phenomena [4].

The biggest limitation of telescopes is their passive na-
ture, which often limits the information we can gather.
One solution useful for some studies has been active tele-
scopes: changing the telescope logic to either reply with
SYN-ACKs to TCP SYNs in order to capture the resulting
traffic [4], or implementing a more complex state machine
[15] that emulates part of the protocol. These telescopes
can disambiguate scans from different worms that target
the same ports by observing subsequent transactions.

In this work we take a different approach for enhancing
the results of telescope measurements: augmenting traces
from a telescope with a detailed analysis of the structure of
the sources sending the packets. One key insight is that the
PRNG used to construct “random”addresses for a worm
can leak the internal state of the PRNG. By combining the
telescope data with our knowledge of the PRNG, we can
then determine the internal state for each copy of the worm
and see how this state evolves over time.

While there have been numerous studies of Internet
worms, these have either focused on detailed analysis of
the worm’s exact workings, beginning with analysis of the
1988 Morris Worm [7, 19], or with aggregate propagation
dynamics [23, 11, 18, 20, 13]. In contrast, our analysis
aims to develop a detailed understanding of the individual
infected hosts and how they interacted with the network.

Datasets. We used traces from two telescopes, operated
by CAIDA [10] and the University of Wisconsin [22]. Both
telescopes monitor /8 blocks of IP addresses. Since each
/8 contains 1/256 of all valid IPv4 addresses, these tele-
scopes see an equivalent fraction of scan traffic addressed
to random destinations picked uniformly from the 32-bit
IP address space. The CAIDA telescope logs every packet
it receives, while the Wisconsin telescope samples the re-
ceived packets at the rate of 1/10. The CAIDA trace [17]
begins at 04:45 AM UTC, running for 75 minutes and total-
ing 45.5M packets. The Wisconsin trace runs from 04:45
AM UTC for 75 minutes, totaling 4.1M packets.

Functionality of the Witty worm. As chroni-
cled by Shannon and Moore [18], an Internet worm
was released on Friday March 19, 2004 at approx-
imately 8:45 PM PST (4:45 AM UTC, March 20).

Internet Measurement Conference 2005 USENIX Association352

1. Seed the PRNG using system time.
2. Send 20,000 copies of self to random destinations.
3. Open a physical disk chosen randomly between 0 & 7.
4. If success:
5. Overwrite a randomly chosen block.
6. Goto line 1.
7. Else:
8. Goto line 2.

Figure 1: Functionality of the Witty worm

Its payload contained the phrase “(ˆ.ˆ) insert
witty message here (ˆ.ˆ)” so it came to be
known as the Witty worm. The worm targeted a buffer
overflow vulnerability in several Internet Security Systems
(ISS) network security products.

The vulnerability exploited was a stack-based overflow
in the ICQ analyzer of these security products. When they
received an ICQ packet, defined as any UDP packet with
source port 4000 and the appropriate ICQ headers, they
copied the packet into a fix ed-sized buffer on the stack
in preparation for further analysis. The products executed
this code path regardless of whether a server was listen-
ing for packets on the particular UDP destination port. In
addition, some products could become infected while they
passively monitored network links promiscuously, because
they would attempt to analyze ICQ packets seen on the link
even though they were not addressed to the local host.

Figure 1 shows a high-level description of the function-
ality of the Witty worm, as revealed by a disassembly [9].
The worm is quite compact, fitting in the first 675 bytes of
a single UDP packet. Upon infecting a host, the worm first
seeds its random number generator with the system time
on the infected machine and then sends 20,000 copies of
itself to random destinations. (These packets have a ran-
domly selected destination port and a randomized amount
of additional padding, but keep the source port fix ed.) Af-
ter sending the 20,000 packets, the worm uses a three-bit
random number to pick a disk via the open system call.
If the call returns successfully, the worm overwrites a ran-
dom block on the chosen disk, reseeds its PRNG, and goes
back to sending 20,000 copies of itself. Otherwise, the
worm jumps directly to the send loop, continuing for an-
other 20,000 copies, without reseeding its PRNG.

The LC PRNG. The Witty worm used a simple
feedback-based pseudo-random number generator (PRNG)
of the form known as linear congruential (LC):

Xi+1 = Xi ∗ a + b mod m (1)

For a given m, picking effective values of a and b re-
quires care lest the resulting sequences lack basic proper-
ties such as uniformity. One common parameterization is:
a = 214, 013, b = 2, 531, 011, m = 232.

With the above values of a, b, m, the LC PRNG gener-
ates a permutation of all the integers in [0, m − 1]. A key
point then is that with knowledge of any Xi, all subsequent

pseudo-random numbers in the sequence can be generated
by repeatedly applying Eqn 1. It is also possible to invert
Eqn 1 to compute Xi if the value of Xi+1 is known:

Xi = (Xi+1 − b) ∗ a−1 mod m (2)

where, for a = 214, 013, a−1 = 3, 115, 528, 533.
Eqns 1 and 2 provide us with the machinery to gener-

ate the entire sequence of random numbers as generated
by an LC PRNG, either forwards or backwards, from any
arbitrary starting point on the sequence. Thus, if we can
extract any Xi, we can compute any other Xi+n, given n.
However, it is important to note that most uses of pseudo-
random numbers, including Witty’s, do not directly expose
any Xi, but rather extract a subset of Xi’s bits and inter-
mingle them with bits from additionally generated pseudo-
random numbers, as detailed below.

3 Overview of our analysis

The first step in our analysis, covered in § 4, is to develop
a way to uncover the state of an infectee’s PRNG. It turns
out that we can do so from the observation of just a sin-
gle packet sent by the infectee and seen at the telescope.
(Note, however, that if recovering the state required observ-
ing consecutive packets, we would likely often still be able
to do so: while the telescopes record on average only one in
256 packets transmitted by an infectee, occasionally — i.e.,
roughly one time out of 256 — they will happen to record
consecutive packets.)

An interesting fact revealed by careful inspection of the
use of pseudo-random numbers by the Witty worm is that
the worm does not manage to scan the entire 32-bit address
space of the Internet, in spite of using a correct implemen-
tation of the PRNG. This analysis also reveals the identity
of a special host that very likely was used to start the worm.

Once we have the crucial ability to determine the state of
an infectee’s PRNG, we can use this state to reproduce the
worm’s exact actions, which then allows us to compare the
resulting generated packets with the actual packets seen at
the telescope. This comparison yields a wealth of informa-
tion about the host generating the packets and the network
the packets traversed. First, we can determine the access
bandwidth of the infectee, i.e., the capacity of the link to
which its network interface connects. In addition, given
this estimate we can explore significant flaws in the tele-
scope observations, namely packet losses due to the finite
bandwidth of the telescope’s inbound link. These losses
cause a systematic underestimation of infectee scan rates,
but we design a mechanism to correct for this bias by cali-
brating against our measurements of the access bandwidth.
We also highlight the impact of network location of tele-
scopes on the observations they collect (§ 5).

We next observe that choosing a random disk (line 3 of
Figure 1) consumes another pseudo-random number in ad-

Internet Measurement Conference 2005 USENIX Association 353

rand(){
Note that 32-bit integers obviate the need for
a modulus operation here.
X = X ∗ 214013 + 2531011;
return X; }

srand(seed){ X = seed; }
main(){
1. srand(get tick count());
2. for (i=0; i < 20,000; ++i)
3. dest ip← rand()[0···15]||rand()[0···15];
4. dest port← rand()[0···15];
5. packetsize← 768+rand()[0···8];
6. packetcontents← top of stack;
7. sendto();
8. if(open(physicaldisk, rand()[13···15]))
9. overwrite block(rand()[0···14]||0x4e20);

10. goto 1;
11. else goto 2; }

Figure 2: Pseudocode of the Witty worm

dition to those consumed by each transmitted packet. Ob-
serving such a discontinuity in the sequence of random
numbers in packets from an infectee flags an attempted disk
write and a potential reseeding of the infectee’s PRNG. In
§ 6 we develop a detailed mechanism to detect the value
of the seed at each such reseeding. As the seed at line 1
of Fig. 1 is set to the system time in msec since boot up,
this mechanism allows us to estimate the boot time of in-
dividual infectees just by looking at the sequence of occa-
sional packets received at the telescope. Once we know
the PRNG’s seed, we can precisely determine the random
numbers it generates to synthesize the next 20,000 packets,
and also the three-bit random number it uses next time to
pick a physical disk to open. We can additionally deduce
the success or failure of this open system call by whether
the PRNG state for subsequent packets from the same in-
fectee follow in the same series or not. Thus, this analysis
reveals the number of physical disks on the infectee.

Lastly, knowledge of the seeds also provides access to
the complete list of packets sent by the infectee. This al-
lows us to infer infector-infectee relationships during the
worm’s propagation.

4 Analysis of Witty’s PRNG

The first step in our analysis is to examine a disassembly of
the binary code of the Witty worm [9]. Security researchers
typically publish such disassemblies immediately after the
release of a worm in an attempt to understand the worm’s
behavior and devise suitable countermeasures. Figure 2
shows the detailed pseudocode of the Witty worm as de-
rived from one such disassembly [9]. The rand() function
implements the Linear Congruential PRNG as discussed in
§ 2. In the rest of this section, we use the knowledge of the
pseudocode to develop a technique for deducing the state
of the PRNG at an infectee from any single packet sent by
it. We also describe how as a consequence of the specific

manner in which Witty uses the pseudo-random numbers,
the worm fails to scan the entire IP address space, and also
reveals the identity of Patient Zero.

Breaking the state of the PRNG at the infectee. The
Witty worm constructs “random”destination IP addresses
by concatenating the top 16 bits of two consecutive pseudo
random numbers generated by its PRNG. In our notation,
X[0···15] represents the top 16 bits of the 32 bit number X ,
with bit 0 being the most significant. The destination port
number is constructed by taking the top 16 bits of the next
(third) random number. The packet size2 itself is chosen
by adding the top 9 bits of a fourth random number to 768.
Thus, each packet sent by the Witty worm contains bits
from four consecutive random numbers, corresponding to
lines 3,4 and 5 in Fig. 2. If all 32 bits of any of these num-
bers were known, it would completely specify the state of
the PRNG. But since only some of the bits from each of
these numbers is known, we need to design a mechanism
to retrieve all 32 bits of one of these numbers from the par-
tial information contained in each packet.

To do so, if the first call to rand() returns Xi, then:

dest ip = Xi,[0···15]||Xi+1,[0···15]

dest port = Xi+2,[0···15]

where || is the concatenation operation. Now, we know
that Xi and Xi+1 are related by Eqn 1, and so are Xi+1

and Xi+2. Furthermore, there are only 65,536 (216) possi-
bilities for the lower 16 bits of Xi, and only one of them
is such that when used with Xi,[0···15] (available from the
packet) the next two numbers generated by Eqn 1 have the
same top 16 bits as Xi+1,[0···15] and Xi+2,[0···15], which are
also observed in the received packet. In other words, there
is only one 16-bit number Y that satisfies the following two
equations simultaneously:

Xi+1,[0···15] = (Xi,[0···15]||Y ∗ a mod m)[0···15]

Xi+2,[0···15] = ((Xi,[0···15]||Y ∗a mod m)∗a mod m)[0···15]

For each of the 216 possible values of Y , verifying the first
equality takes one addition and one multiplication.3 Thus
trying all 216 possibilities is fairly inexpensive. For the
small number of possible values of Y that satisfy the first
equation, we try the second equation, and the value Y ∗ that
satisfies both the equations gives us the lower sixteen bits of
Xi (i.e., Xi,[16···31] = Y ∗). In our experiments, we found
that on the average about two of the 216 possible values sat-
isfy the first equation, but there was always a unique value
of Y ∗ that satisfied both the equations.

Why Witty fails to scan the entire address space. The
first and somewhat surprising outcome from investigating
how Witty constructs random destination addresses is the
observation that Witty fails to scan the entire IP address
space. This means that, while Witty spread at a very high

Internet Measurement Conference 2005 USENIX Association354

speed (infecting 12,000 hosts in 75 minutes), due to a subtle
error in its use of pseudo-random numbers about 10% of
vulnerable hosts were never infected with the worm.

To understand this flaw in full detail, we first visit the
motivation for the use of only the top 16 bits of the 32
bit results returned by Witty’s LC PRNG. This was rec-
ommended by Knuth [8], who showed that the high order
bits are “more random” than the lower order bits returned
by the LC PRNG. Indeed, for this very reason, several im-
plementations of the rand() function, including the default
C library of Windows and SunOS, return a 15 bit number,
even though their underlying LC PRNG uses the same pa-
rameters as the Witty worm and produces 32 bit numbers.

However, this advice was taken out of context by the
author of the Witty worm. Knuth’s advice applies when
uniform randomness is the desired property, and is valid
only when a small number of random bits are needed. For
a worm trying to maximize the number of infected hosts,
one reason for using random numbers while selecting des-
tinations is to avoid detection by intrusion detection sys-
tems that readily detect sequential scans. A second reason
is to maintain independence between the portions of the
address-space scanned by individual infectees. Neither of
these reasons actually requires the kind of “good random-
ness”provided by following Knuth’s advice of picking only
the higher order bits.

As discussed in § 2, for specific values of the parameters
a, b and m, the LC PRNG is a permutation PRNG that gen-
erates a permutation of all integers in the range 0 to m − 1.
By the above definition, if the Witty worm were to use the
entire 32 bits of a single output of its LC PRNG as a desti-
nation address, it would eventually generate each possible
32-bit number, hence successfully scanning the entire IP
address space. (This would also of course make it trivial
to recover the PRNG state.) However, the worm’s author
chose to use the concatenation of the top 16 bits of two
consecutive random numbers from its PRNG. With this ac-
tion, the guarantee that each possible 32-bit number will
be generated is lost. In other words, there is no certainty
that the set of 32-bit numbers generated in this manner will
include all integers in the set [0, 232 − 1].

We enumerated Witty’s entire “orbit” and found that
there are 431,554,560 32-bit numbers that can never be
generated. This corresponds to 10.05% of the IP address
space that was never scanned by Witty. On further inves-
tigation, we found these unscanned addresses to be fairly
uniformly distributed over the 32-bit address space of IPv4.
Hence, it is reasonable to assume that approximately the
same fraction of the populated IP address space was missed
by Witty. In other words, even though the portions of
IP address space that are actually used (populated) are
highly clustered, because the addresses that Witty misses
are uniformly distributed over the space of 32-bit integers,
it missed roughly the same fraction of address among the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

%
 in

fe
ct

ed

Time (sec.)

normal victims
doubly scanned victims

unscanned victims

Figure 3: Growth curves for victims whose addresses were
scanned once per orbit, twice per orbit, or not at all.

set of IP addresses in actual use.
Observing that Witty does not visit some addresses at

all, one might ask whether it visits some addresses more
frequently than others. Stated more formally, given that the
period of Witty’s PRNG is 232, it must generate 232 unique
(Xi, Xi+1) pairs, from which it constructs 232 32-bit desti-
nation IP addresses. Since this set of 232 addresses does not
contain the 431,554,560 addresses missed by Witty, it must
contain some repetitions. What is the nature of these rep-
etitions? Interestingly, there are exactly 431,554,560 other
32-bit numbers that occur twice in this set, and no 32-bit
numbers that occur three or more times. This is surprising
because, in general, in lieu of the 431,554,560 missed num-
bers, one would expect some number to be visited twice,
others to be visited thrice and so on. However, the peculiar
structure of the sequence generated by the LC PRNG with
specific parameter values created the situation that exactly
the same number of other addresses were visited twice and
none were visited more frequently.

During the first 75 minutes of the release of the Witty
worm, the CAIDA telescope saw 12,451 unique IP ad-
dresses as infected. Following the above discussion, we
classified these addresses into three classes. There were
10,638 (85.4%) addresses that were scanned just once in
an orbit, i.e., addresses that experienced a normal scan rate.
Another 1,409 addresses (11.3%) were scanned twice in
an orbit, hence experiencing twice the normal growth rate.
A third class of 404 (3.2%) addresses belonged to the set
of addresses never scanned by the worm. At first blush
one might wonder how these latter could possibly appear,
but we can explain their presence as reflecting inclusion in
an initial “hit list” (see below), operating in promiscuous
mode, or aliasing due to multi-homing, NAT or DHCP.

Figure 3 compares the growth curves for the three classes
of addresses. Notice how the worm spreads faster among
the population of machines that experience double the nor-
mal scan rate. 1,000 sec from its release, Witty had infected

Internet Measurement Conference 2005 USENIX Association 355

half of the doubly-scanned addresses that it would infect in
the first 75 min. On the other hand, in the normally-scanned
population, it had only managed to infect about a third of
the total victims that it would infect in 75 min. Later in the
hour, the curve for the doubly-scanned addresses is flat-
ter than that for the normally-scanned ones, indicating that
most of the victims in the doubly-scanned population were
already infected at that point.

The curve for infectees whose source address was never
scanned by Witty is particularly interesting. Twelve of the
never-scanned systems appear in the first 10 seconds of the
worm’s propagation, very strongly suggesting that they are
part of an initial hit-list. This explains the early jump in
the plot: it’s not that such machines are overrepresented
in the hit-list, rather they are underrepresented in the total
infected population, making the hit-list propagation more
significant for this population.

Another class of never-scanned infectees are those pas-
sively monitoring a network link. Because these operate
in promiscuous mode, their “cross section” for becoming
infected is magnified by the address range routed over the
link. On average, these then will become infected much
more rapidly than normal over even doubly-scanned hosts.
We speculate that these infectees constitute the remainder
of the early rise in the appearance of never-scanned sys-
tems. Later, the growth rate of the never-scanned systems
substantially slows, lagging even the single-scanned ad-
dresses. Likely these remaining systems reflect infrequent
aliasing due to multihoming, NAT, or DHCP.

Identifying Patient Zero. Along with “Can all ad-
dresses be reached by scans?”, another question to ask is
“Do all sources indeed travel on the PRNG orbit?” Sur-
prisingly, the answer is No. There is a single Witty source
that consistently fails to follow the orbit. Further inspec-
tion reveals that the source (i) always generates addresses
of the form A.B.A.B rather than A.B.C.D, (ii) does not
randomize the packet size, and (iii) is present near the very
beginning of the trace, but not before the worm itself begins
propagating. That the source fails to follow the orbit clearly
indicates that it is running different code than do all the oth-
ers; that it does not appear prior to the worm’s onset indi-
cates that it is not a background scanner from earlier test-
ing or probing (indeed, it sends valid Witty packets which
could trigger an infection); and that it sends to sources of a
limited form suggests a bug in its structure that went unno-
ticed due to a lack of testing of this particular Witty variant.

We argue that these peculiarities add up to a strong like-
lihood that this unique host reflects Patient Zero, the sys-
tem used by the attacker to seed the worm initially. Patient
Zero was not running the complete Witty worm but rather
a (not fully tested) tool used to launch the worm. To our
knowledge, this represents the first time that Patient Zero
has been identified for a major worm outbreak.4 We have
conveyed the host’s IP address (which corresponds to a Eu-

ropean retail ISP) to law enforcement.
If all Patient Zero did was send packets of the form

A.B.A.B as we observed, then the worm would not have
spread, as we detected no infectees with such addresses.
However, as developed both above in discussing Figure 3
and later in § 6, the evidence is compelling that Patient Zero
first worked through a “hit list”of known-vulnerable hosts
before settling into its ineffective scanning pattern.

5 Bandwidth measurements

An important use of network telescopes lies in inferring the
scanning rate of a worm by extrapolating from the observed
packets rates from individual sources. In this section, we
develop a technique based on our analysis of Witty’s PRNG
to estimate the access bandwidth of individual infectees.
We then identify an obvious source of systematic error in
extrapolation based techniques, namely the bottleneck at
the telescope’s inbound link, and suggest a solution to cor-
rect this error.

Estimating Infectee Access Bandwidth. The access
bandwidth of the population of infected machines is an im-
portant variable in the dynamics of the spread of a worm.
Using the ability to deduce the state of the PRNG at an in-
fectee, we can infer this quantity, as follows. The Witty
worm uses the sendto system call, which is a blocking
system call by default in Windows: the call will not return
till the packet has been successfully written to the buffer of
the network interface. Thus, no worm packets are dropped
either in the kernel or in the buffer of the network interface.
But the network interface can clear out its buffer at most
at its transmission speed. Thus, the use of blocking sys-
tem calls indirectly clocks the rate of packet generation of
the Witty worm to match the maximum transmission band-
width of the network interface on the infectee.

We estimate the access bandwidth of an infectee as fol-
lows. Let Pi and Pj be two packets from the same in-
fectee, received at the telescope at time ti and tj respec-
tively. Using the mechanism developed in § 4 we can
deduce Xi and Xj , the state of the PRNG at the sender
when the two respective packets were sent. Now, we can
simulate the LC PRNG with an initial state of Xi and re-
peatedly apply Eqn 1 till the state advances to Xj . The
number of times Eqn 1 is applied to get from Xi to Xj is
the value of j − i. Since it takes 4 cranks of the PRNG
to construct each packet (lines 3–5, in Fig. 2), the to-
tal number of packets between Pi and Pj is (j − i)/4.
Thus the access bandwidth of the infectee is approximately
average packetsize∗(j−i)/4∗1/(tj−ti). While we can
compute it more precisely, since reproducing the PRNG se-
quence lets us extract the exact size of each intervening
packet sent, for convenience we will often use the average
payload size (1070 bytes including UDP, IP and Ethernet
headers). Thus, the transmission rate can be computed as

Internet Measurement Conference 2005 USENIX Association356

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000 100000 1e+06 1e+07 1e+08 1e+09

R
an

k

Estimated access bandwidth (bits per sec.)

Figure 4: Access bandwidth of Witty infectees estimated
using our technique.

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 100000 1e+06 1e+07 1e+08 1e+09

C
A

ID
A

 te
le

sc
op

e
(b

its
 p

er
 s

ec
.)

Wisconsin telescope (bits per sec.)

Figure 5: Comparison of estimated access bandwidth using
data from two telescopes.

(j−i)∗1070∗8
4(tj−ti)

= 2140 j−i

tj−ti
bits per second.

Figure 4 shows the estimates of access bandwidth of in-
fectees5 that appeared at the CAIDA telescope from 05:01
AM to 06:01 AM UTC (i.e., starting about 15 min after
the worm’s release). The x-axis shows the estimated ac-
cess bandwidth in bps on log scale, and the y-axis shows
the rank of each infectee in increasing order. It is notable
in the figure that about 25% of the infectees have an ac-
cess bandwidth of 10 Mbps while about 50% have a band-
width of 100 Mbps. This corresponds well with the popular
workstation configurations connected to enterprise LANs
(a likely description of a machine running the ISS software
vulnerable to Witty), or to home machines that include an
Ethernet segment connecting to a cable or DSL modem.

We use the second set of observations, collected inde-
pendently at the Wisconsin telescope (located far from the

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000 100000 1e+06 1e+07 1e+08 1e+09

R
an

k

Estimated effective bandwidth (bits per sec.)

Figure 6: Effective bandwidth of Witty infectees.

CAIDA telescope), to test the accuracy of our estimation,
as shown in Figure 5. Each point in the scatter plot rep-
resents a source observed in both datasets, with its x and
y coordinates reflecting the estimates from the Wisconsin
and CAIDA observations, respectively. Most points are lo-
cated very close to the y = x line, signifying close agree-
ment. The small number of points (about 1%) that are sig-
nificantly far from the y = x line merit further investiga-
tion. We believe these reflect NAT effects invalidating our
inferences concerning the amount of data a “single”source
sends during a given interval.

Extrapolation-based estimation of effective band-
width. Previous analyses of telescope data (e.g., [18])
used a simple extrapolation-based technique to estimate the
bandwidth of the infectees. The reasoning is that given a
telescope captures a /8 address block, it should see about
1/256 of the worm traffic. Thus, after computing the pack-
ets per second from individual infectees, one can extrap-
olate this observation by multiplying by 256 to estimate
the total packets sent by the infectee in the correspond-
ing period. Multiplying again by the average packet size
(1070 bytes) gives the extrapolation-based estimate of the
bandwidth of the infectee. Notice that this technique is not
measuring the access bandwidth of the infectee, but rather
the effective bandwidth, i.e., the rate at which packets from
the infectee are actually delivered across the network.

Figure 6 shows the estimated bandwidth of the same
population of infectees, computed using the extrapolation
technique. The effective bandwidth so computed is signif-
icantly lower than the access bandwidth of the entire pop-
ulation. To explore this further, we draw a scatter-plot of
the estimates using both techniques in Fig. 7. Each point
corresponds to the PRNG-estimated access bandwidth (x
axis) and extrapolation-based effective bandwidth (y axis).
The modes at 10 and 100 Mbps in Fig. 4 manifest as clus-
ters of points near the lines x = 107 and x = 108, re-

Internet Measurement Conference 2005 USENIX Association 357

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 10000 100000 1e+06 1e+07 1e+08 1e+09

E
ffe

ct
iv

e
ba

nd
w

id
th

 (
bi

ts
 p

er
 s

ec
.)

Access bandwidth (bits per sec.)

Figure 7: Scatter-plot of estimated bandwidth using the two
techniques.

spectively. As expected, all points lie below the diagonal,
indicating that the effective bandwidth never exceeds the
access bandwidth, and is often lower by a significant factor.
During infections of bandwidth-limited worms, i.e., worms
such as Witty that send fast enough to potentially consume
all of the infectee’s bandwidth, mild to severe congestion,
engendering moderate to significant packet losses, is likely
to occur in various portions of the network.

Another possible reason for observing diminished effec-
tive bandwidth is multiple infectees sharing a bottleneck,
most likely because they reside within the same subnet and
contend for a common uplink. Indeed, this effect is no-
ticeable at /16 granularity. That is, sources exhibiting very
high loss rates (effective bandwidth < 10% of access band-
width) are significantly more likely to reside in /16 prefix es
that include other infectees, than are sources with lower
loss rates (effective > 50% access). For example, only 20%
of the sources exhibiting high loss reside alone in their own
/16, while 50% of those exhibiting lower loss do.

Telescope Fidelity. An important but easy-to-miss fea-
ture of Fig. 7 is that the upper envelope of the points is
not the line y = x but rather y ≈ 0.7x, which shows
up as the upper envelope of the scatter plot lying paral-
lel to, but slightly below, the diagonal. This implies either
a loss rate of nearly 30% for even the best connected in-
fectees, or a systematic error in the observations. Further
investigation immediately reveals the cause of the system-
atic error, namely congestion on the inbound link of the
telescope. Figure 8 plots the packets received during one-
second windows against time from the release of the worm.
There is a clear ramp-up in aggregate packet rate during the
initial 800 seconds after which it settles at approximately
11,000 pkts/sec. For an average packet size of 1,070 bytes,
a rate of 11,000 pkts/sec corresponds to 95 Mbps, nearly
the entire inbound bandwidth of 100 Mbps of the CAIDA

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ac

ke
ts

 p
er

 s
ec

on
d

Time (sec)

Figure 8: Aggregate worm traffic in pkts/sec as actually
logged at the telescope.

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 10000 100000 1e+06 1e+07 1e+08 1e+09

C
A

ID
A

 te
le

sc
op

e
(b

its
 p

er
 s

ec
.)

Wisconsin telescope (bits per sec.)

y=x

Figure 9: Comparison of effective bandwidth as estimated
at the two telescopes.

telescope at that time.6

Fig. 8 suggests that the telescope may not have suffered
any significant losses in the first 800 seconds of the spread
of the worm. We verified this using a scatter-plot similar to
Fig. 7, but only for data collected in the first 600 seconds of
the infection. In that plot, omitted here due to lack of space,
the upper envelope is indeed y = x, indicating that the best
connected infectees were able to send packets unimpeded
across the Internet, as fast as they could generate them.

A key point here is that our ability to determine access
bandwidth allows us to quantify the 30% distortion7 at the
telescope due to its limited capacity. In the absence of this
fine-grained analysis, we would have been limited to not-
ing that the telescope saturated, but without knowing how
much we were therefore missing.

Figure 9 shows a scatter-plot of the estimates of effec-
tive bandwidth as estimated from the observations at the

Internet Measurement Conference 2005 USENIX Association358

CAIDA ≥ Wisc.*1.05 Wisc. ≥CAIDA*1.05
Domains TLD # Domains TLD

53 .edu 64 .net
17 .net 35 .com
7 .jp 9 .edu
5 .nl 7 .cn
5 .com 5 .nl
5 .ca 4 .ru
3 .tw 3 .jp
3 .gov 3 .gov
25 other 19 other

Table 1: Domains with divergent estimates of effective
bandwidth.

two telescopes. We might expect these to agree, with most
points lying close to the y = x line, other than perhaps for
differing losses due to saturation at the telescopes them-
selves, for which we can correct. Instead, we find two
major clusters that lie approximately along y = 1.4x and
y = x/1.2. These lie parallel to the y = x line due to the
logscale on both axes. We see a smaller third cluster be-
low the y = x line, too. These clusters indicate systematic
divergence in the telescope observations, and not simply a
case of one telescope suffering more saturation losses than
the other, which would result in a single line either above
or below y = x.

To analyze this effect, we took all of the sources with
an effective bandwidth estimate from both telescopes of
more than 10 Mbps. We resolved each of these to domain
names via reverse DNS lookups, taking the domain of the
responding nameserver if no PTR record existed. We then
selected a representative for each of the unique second-
level domains present among these, totaling 900. Of these,
only 29 domains had estimates at the two telescopes that
agreed within 5% after correcting for systematic telescope
loss. For 423 domains, the corrected estimates at CAIDA
exceeded those at Wisconsin by 5% or more, while the
remaining 448 had estimates at Wisconsin that exceeded
CAIDA’s by 5% or more.

Table 1 lists the top-level domains for the unique second-
level domains that demonstrated ≥ 5% divergence in es-
timated effective bandwidth. Owing to its connection to
Internet-2, the CAIDA telescope saw packets from .edu
with significantly fewer losses than the Wisconsin tele-
scope, which in turn had a better reachability from hosts in
the .net and .com domains. Clearly, telescopes are not
“ideal”devices, with perfectly balanced connectivity to the
rest of the Internet, as implicitly assumed by extrapolation-
based techniques. Rather, what a telescope sees during an
event of large enough volume to saturate high-capacity In-
ternet links is dictated by its specific location on the Inter-
net topology. This finding complements that of [4], which
found that the (low-volume) background radiation seen at
different telescopes likewise varies significantly with loca-

tion, beyond just the bias of some malware to prefer nearby
addresses when scanning.

6 Deducing the seed

Cracking the seeds — System uptime. We now de-
scribe how we can use the telescope observations to de-
duce the exact values of the seeds used to (re)initialize
Witty’s PRNG. Recall from Fig. 2 that the Witty worm at-
tempts to open a disk after every 20,000 packets, and re-
seeds its PRNG on success. To get a seed with reason-
able local entropy, Witty uses the value returned by the
Get Tick Count system call, a counter set to zero at
boot time and incremented every millisecond.

In § 4 we have developed the capability to reverse-
engineer the state of the PRNG at an infectee from packets
received at the telescope. Additionally, Eqns 1 and 2 give
us the ability to crank the PRNG forwards and backwards
to determine the state at preceding and successive packets.
Now, for a packet received at the telescope, if we could
identify the precise number of calls to the function rand
between the reseeding of the PRNG and the generation of
the packet, simply cranking the PRNG backwards the same
number of steps would reveal the value of the seed. The dif-
ficulty here is that for a given packet we do not know which
“generation”it is since the PRNG was seeded. (Recall that
we only see a few of every thousand packets sent.) We thus
have to resort to a more circuitous technique.

We split the description of our approach into two parts:
a technique for identifying a small range in the orbit (per-
mutation sequence) of the PRNG where the seed must lie,
and a geometric algorithm for finding the seeds from this
candidate set.

Identifying a limited range within which the seed
must lie. Figure 10 shows a graphical view of our tech-
nique for restricting the range where the seed can poten-
tially lie. Figure 10(a) shows the sequence of packets as
generated at the infectee. The straight line at the top of
the figure represents the permutation-space of the PRNG,
i.e., the sequence of numbers X0, X1, · · · , X232

−1 as gen-
erated by the PRNG. The second horizontal line in the mid-
dle of the figure represents a small section of this sequence,
blown-up to show the individual numbers in the sequence
as ticks on the horizontal line. Notice how each packet
consumes exactly four random numbers, represented by the
small arcs straddling four ticks.

Only a small fraction of packets generated at the infectee
reach the telescope. Figure 10(b) shows four such pack-
ets. By cranking forward from the PRNG’s state at the
first packet until the PRNG reaches the state at the second
packet, we can determine the precise number of calls to the
rand function in the intervening period. In other words,
if we start from the state corresponding to the first packet
and apply Eqn 1 repeatedly, we will eventually (though see

Internet Measurement Conference 2005 USENIX Association 359

X 0 X 232

Permutation Space

Seed

20,000 packets

Failed Disk Write

20,000 packets

(a) Sequence of packets generated at the
infectee.

X 0 X 232

Permutation Space

Pkt Pkt PktPkt

4x 4y
4z+1

(b) Packets seen at the telescope. Notice
how packets immediately before or after a
failed disk-write are separated by 4z + 1

cranks of the PRNG rather than 4z.

X 0 X 232

Permutation Space

First
Pkt after
Reseeding

Translate back by 20,000

Translate back by 40,000

Translate back by 60,000

(c) Translating these special intervals back by
multiples of 20,000 gives bounds on where the
seed can lie.

Figure 10: Restricting the range where potential seeds can lie.

below) reach the state corresponding to the second packet,
and counting the number of times Eqn 1 was applied gives
us the precise number of random numbers generated be-
tween the departure of these two packets from the infectee.
Note that since each packet consumes four random num-
bers (the inner loop of lines 2–7 in Fig. 2), the number of
random numbers will be a multiple of four.

However, sometimes we find the state for a packet re-
ceived at the telescope does not lie within a reasonable
number of steps (300,000 calls to the PRNG) from the state
of the preceding packet from the same infectee. This signi-
fies a potential reseeding event: the worm finished its batch
of 20,000 packets and attempted to open a disk to overwrite
a random block. Recall that there are two possibilities: the
random disk picked by the worm exists, in which case it
overwrites a random block and (regardless of the success
of that attempted overwrite) reseeds the PRNG, jumping
to an arbitrary location in the permutation space (control
flowing through lines 8→9→10→1→2 in Fig. 2); or the
disk does not exist, in which case the worm continues for
another 20,000 packets without reseeding (control flowing
through lines 8→11→2 in Fig. 2). Note that in either case
the worm consumes a random number in picking the disk.

Thus, every time the worm finishes a batch of 20,000
packets, we will see a discontinuity in the usual pattern of
4z random numbers between observed packets. We will
instead either find that the packets correspond to 4z + 1
random numbers between them (disk open failed, no re-
seeding); or that they have no discernible correspondence
(disk open succeeded, PRNG reseeded and now generating
from a different point in the permutation space).

This gives us the ability to identify intervals within
which either failed disk writes occurred, or reseeding
events occurred. Consider the interval straddled by the first
failed disk write after a successful reseeding. Since the
worm attempts disk writes every 20,000 packets, this inter-
val translated back by 20,000 packets (80,000 calls to the

PRNG) must straddle the seed. In other words, the begin-
ning of this special interval must lie no more than 20,000
packets away from the reseeding event, and its end must lie
no less than that distance away. This gives us upper and
lower bounds on where the reseeding must have occurred.
A key point is that these bounds are in addition to the
bounds we obtain from observing that the worm reseeded.
Similarly, if the worm fails at its next disk write attempt
too, the interval straddling that failed write, when trans-
lated backwards by 40,000 packets (160,000 calls to the
PRNG), gives us another pair of lower and upper bounds
on where the seed must lie. Continuing this chain of rea-
soning, we can find multiple upper and lower bounds. We
then take the max of all lower bounds and the min of all
upper bounds to get the tightest bounds, per Figure 10(c).

A geometric algorithm to detect the seeds. Given this
procedure, for each reseeding event we can find a limited
range of potential in the permutation space wherein the new
seed must lie. (I.e., the possible seeds are consecutive over
a range in the permutation space of the consecutive 32-bit
random numbers as produced by the LC PRNG; they are
not consecutive 32-bit integers.) Note, however, that this
may still include hundreds or thousands of candidates, scat-
tered over the full range of 32-bit integers.

Which is the correct one? We proceed by leveraging
two key points: (i) for most sources we can find numer-
ous reseeding events, and (ii) the actual seeds at each event
are strongly related to one another by the amount of time
that elapsed between the events, since the seeds are clock
readings. Regarding this second point, recall that the seeds
are read off a counter that tracks the number of millisec-
onds since system boot-up. Clearly, this value increases
linearly with time. So if we observe two reseeding events
with timestamps (at the telescope) of t1 and t2, with cor-
responding seeds S1 and S2, then because clocks progress
linearly with time, (S2 − S1) ≈ (t2 − t1). In other words,
if the infectee reseeded twice, then the value of the seeds

Internet Measurement Conference 2005 USENIX Association360

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50

Nu
mb

er
of

ho
sts

Uptime (days)

Figure 11: Number of infectees with a system uptime of
the given number of days.

must differ by approximately the same amount as the differ-
ence in milliseconds in the timestamps of the two packets
seen immediately after these reseedings at the telescope.
Extending this reasoning to k reseeding events, we get
(Sj − Si) ≈ (tj − ti), ∀i, j : 1 ≤ i, j ≤ k. This implies
that the k points (ti, Si) should (approximately) lie along
a straight line with slope 1 (angle of 45◦) when plotting
potential seed value against time.

We now describe a geometric algorithm to detect such
a set of points in a 2-dimensional plane. The key obser-
vation is that when k points lie close to a straight line of
a given slope, then looking from any one of these points
along that slope, the remaining points should appear clus-
tered in a very narrow band. More formally, if we project
an angular beam of width δ from any one of these points,
then the remaining points should lie within the beam, for
reasonably small values of δ. On the other hand, other, ran-
domly scattered points on the plane will see a very small
number of other points in the beam projected from them.

The algorithm follows directly from this observation. It
proceeds in iterations. Within an iteration, we project a
beam of width δ = arctan 0.1 ≈ 0.1 along the 45◦ line
from each point in the plane. The point is assigned a score
equal to the number of other points that lie in its beam. Ac-
tual seeds are likely to get a high score because they would
all lie roughly along a 45◦ line. At the end of the iteration,
all points with a score smaller than some threshold (say
k/2) are discarded. Repeating this process in subsequent
iterations quickly eliminates all but the k seeds, which keep
supporting high scores for each other in all iterations.

We find this algorithm highly effective given enough re-
seeding events. Figure 11 presents the results of the com-
putation of system uptime of 784 machines in the infectee
population. These infectees were chosen from the set that
contributed enough packets to allow us to use our mech-
anism for estimating the seed. Since the counter used by
Witty to reseed its PRNG is only 32 bits wide, it will wrap-
around every 232 milliseconds, which is approximately
49.7 days. The results could potentially be distorted due
to this effect (but see below).

There is a clear domination of short-lived machines, with
approximately 47% having uptimes of less than fi ve days.
On the other hand, there are just fi ve machines that had an

uptime of more than 40 days. The sharp drop-off above
40 days leads us to conclude that the effects due to the
wrapping-around of the counter are negligible.

The highest number of machines were booted on the
same day as the spread of the worm. There are prominent
troughs during the weekends — recall that the worm was
released on a Friday evening Pacific Time, so the nearest
weekend had passed 5 days previously — and heightened
activity during the working days.

One feature that stands out is the presence of two modes,
one at 29 days and the second at 36/37 days. On further in-
vestigation, we found that the machines in the first mode
all belonged to a set of 135 infectees from the same /16
address block, and traceroutes revealed they were situated
at a single US military installation. Similarly, machines in
the second mode belonged to a group of 81 infectees from
another /16 address block, belonging to an educational in-
stitution. However, while machines in the second group ap-
peared at the telescope one-by-one throughout the infection
period, 110 of the 135 machines in the first group appeared
at the telescope within 10 seconds of Witty’s onset. Since
such a fast spread is not feasible by random scanning of the
address space, the authors of [18] concluded that these ma-
chines were either part of a hit-list or were already compro-
mised and under the control of the attacker. Because we can
fit the actions of these infectees with running the full Witty
code, including PRNG reseeding patterns that match the
process of overwriting disk blocks, this provides evidence
that these machines were not specially controlled by the at-
tacker (unlike the Patient Zero machine), and thus we con-
clude that they likely constitute a hit-list. (We investigated
an alternate explanation that instead these machines were
passively monitoring large address regions and hence were
infected much more quickly, but can discount this possi-
bility because a “lineage”analysis reveals that a significant
number of the machines did not receive any infection pack-
ets on even their entire local /16 prior to their own scanning
activity arriving at the telescope. Additionally, these sys-
tems’ IP addresses also suggest local monitors, rather than
a collection of global monitors on a large address space.)
Returning then to the fact that these machines were all re-
booted exactly 29 days before the onset of the worm, we
speculate that the reboot was due to a facility-wide system
upgrade; perhaps the installation of system software such
as Microsoft updates (a critical update had been released
on Feb. 10, about 10 days before the simultaneous system
reboots), or perhaps the installation of the vulnerable ISS
products themselves. We might then speculate that the at-
tacker knew about the ISS installation at the site (thus en-
abling them to construct a hit-list), which, along with the
attacker’s rapid construction of the worm indicating they
likely knew about the vulnerability in advance [21], sug-
gests that the attacker was an ISS “insider.”

Number of disks. Once we can recover the seed used at

Internet Measurement Conference 2005 USENIX Association 361

Number of Disks 1 2 3 4 5 6 7
Number of Infectees 52 32 12 2 2 0 0

Table 2: Disk counts of 100 infectees.

the beginning of a sequence of packets, we can use its value
as an anchor to mark off the precise subsequent actions of
the worm. Recall from Fig. 2 that the worm generates ex-
actly 20,000 packets in its inner loop, using 80,000 random
numbers in the process. After exiting the inner loop, the
worm uses three bits from the next random number to de-
cide which physical disk it will attempt to open. Starting
from the seed, this is exactly the 80,001th number in the
sequence generated by the PRNG. Thus, knowledge of the
seed tells us exactly which disk the worm attempts to open.
Furthermore, as discussed above we can tell whether this
attempt succeeded based on whether the worm reseeds af-
ter the attempt. We can therefore estimate the number of
disks on the infectee, based on which of the attempts for
drives in the range 0 to 7 lead to a successful return from
the open system call. Table 2 shows the number of disks
for 100 infectees, calculated using this approach. The ma-
jority of infectees had just one or two disks, while we find
a few with up to fi ve disks. Since the installation of end-
system fire wall software was a prerequisite for infection by
Witty, the infectee population is more likely to contain pro-
duction servers with multiple disks.

Exploration of infection graph. Knowledge of the pre-
cise seeds allows us to reconstruct the complete list of pack-
ets sent by each infectee. Additionally, the large size of our
telescope allows us to detect an infectee within the first few
seconds (few hundred packets) of its infection. Therefore
if an infectee is first seen at a time T , we can inspect the list
of packets sent by all other infectees active within a short
preceding interval, say (T − 10 sec, T), to see which sent a
packet to the new infectee, and thus is the infectee’s likely
“infector.” to select the most likely “infector”.

The probability of more than one infectee sending a
worm packet to the same new infectee at the time of its
infection is quite low. With about 11,000 pkts/sec seen at
a telescope with 1/256 of the entire Internet address space,
and suffering 30% losses due to congestion (§ 5), the ag-
gregate scanning rate of the worm comes out to around
256 ·11, 000/0.7 ≈ 4 ·106 pkts/sec. With more than 4 ·109

addresses to scan, the probability that more than one in-
fectee scans the same address within the same 10 second
interval is around 1%.

Figure 12 shows scan packets from infected sources that
targeted other infectees seen at the telescope. The x-
coordinate gives tscan, the packet’s estimated sending time,
and the y-coordinate gives the difference between tinfection,
the time when the target infectee first appeared at the tele-
scope, and tscan. A small positive value of tinfection − tscan

raises strong suspicions that the given scan packet is re-

-1000

-100

-10

0

10

100

1000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t in
fe

ct
io

n-
t s

ca
n

(s
ec

.)

tscan (sec.)

Figure 12: Scans from infectees, targeted to other victims.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

N
um

be
r

of
 s

ca
ns

tinfection-tscan (sec.)

Figure 13: Number of scans in 10 second buckets.

sponsible for infecting the given target. Negative values
mean the target was already infected, while larger positive
values imply the scan failed to infect the target for some
reason — it was lost,8 or blocked due to the random desti-
nation port it used, or simply the target was not connected
to the Internet at that time. (Note that the asymptotic curves
at the top and bottom correspond to truncation effects re-
flecting the upper and lower bounds on infection times.)

The clusters at extreme values of tinfection − tscan in Fig-
ure 12 mask a very sharp additional cluster, even using the
log-scaling. This lies in the region 0 < tinfection−tscan ≤ 10.
In Figure 13, we plot the number of scans in 10 second
buckets against tinfection − tscan. The very central sharp peak
corresponds to the interval 0-to-10 seconds — a clear mark
of the dispatch of a successful scan closely followed by
the appearance of the victim at the telescope. We plan
to continue our investigation of infector-infectee relation-
ships, hoping to produce an extensive “lineage”of infection
chains for use in models of worm propagation.

Internet Measurement Conference 2005 USENIX Association362

7 Discussion

While we have focused on the Witty worm in this pa-
per, the key idea is much broader. Our analysis demon-
strates the potential richness of information embedded in
network telescope observations, ready to be revealed if we
can frame a precise model of the underlying processes gen-
erating the observations. Here we discuss the breadth and
limitations of our analysis, and examine general insights
beyond the specific instance of the Witty worm.

Candidates for similar analysis. The binary code of
all Internet worms is available by definition, making them
candidates for disassembly and analysis. Similarly, copies
of many scanning and flooding tools have been captured by
white hat researchers, and traces observed at telescopes of
probing or attack traffic (or backscatter) from the operation
of such tools provide candidates for similar analysis. A pre-
liminary assessment we performed of ten well-known DoS
attack tools revealed that six of them use simple PRNGs
with unsophisticated seeds, while the other four use no ran-
dom number generation at all. Even with limited knowl-
edge of the operation of such tools, we should in principle
be able to analyze logs of their attack traffic or backscat-
ter with a similar intent of reconstructing the sequence of
events in the automation of the attack, potentially leading
to information about the attacking hosts, their interaction
with the network, and other forensic clues.

Diversity of PRNGs. Our analysis was greatly facili-
tated by the use of a linear congruential PRNG by Witty’s
author. Reverse-engineering the state of a more complex
PRNG could be much more difficult. In the extreme, a
worm using a cryptographically strong hash function with
a well-chosen key as its PRNG would greatly resist such
reverse engineering. However, there are several practical
reasons that support the likelihood of many attackers using
simpler PRNGs.

Implementing good PRNGs is a complicated task [8],
especially when constrained by limits on code size and the
difficulty of incorporating linkable libraries. Large-scale
worms benefit greatly from as self-contained a design as
possible, with few dependencies on platform support, to
maximize the set of potential victims. Worms have also
proven difficult to fully debug — virtually all large-scale
worms have exhibited significant bugs — which likewise
argues for keeping components as simple as possible. His-
torically, worm authors have struggled to implement even
the LC PRNG correctly. The initial version of Code Red
failed to seed the PRNG with any entropy, leading to all
copies of the worm scanning exactly the same sequence of
addresses [2]. Slammer’s PRNG implementation had three
serious errors, one where the author used a value of the pa-
rameter b in the LC equation (Eqn. 1) that was larger than
the correct value by 1 due to an incorrect 2’s complement
conversion, another where this value was subtracted from

instead of added to the term aXi in Eqn 1, and finally the
(mis)use of an OR instruction rather than XOR to clear a
key register [11]. In addition, sources of local entropy at
hosts are often limited to a few system variables, compli-
cating the task of seeding the PRNG in a fashion strong
enough to resist analysis. Thus it is conceivable that worm
authors will have difficulty implementing bug-free, com-
pact versions of sophisticated PRNGs.

In addition, today’s worm authors have little incentive
to implement a complex PRNG. As long as their goals are
confined to effectively scanning the IP address space and
maximizing the worm’s infection rate, simple PRNGs suf-
fice. Hiding one’s tracks while releasing a worm can al-
ready be accomplished by using a chain of compromised
victims as stepping stones. Indeed, the fact that Witty’s au-
thor left Patient Zero running with a separate program for
spreading the worm was purely a mistake on his/her part.
As discussed earlier, the code it ran scanned a very small
subset of the IP address space, and did not manage to pro-
duce even one infection during scanning.

Thus, there are significant factors that may lead to the
continued use by worms of simple PRNGs such as LC,
which, along with the availability of disassembled code,
will facilitate the development of structural models of
worm behavior to use in conjunction with telescope obser-
vations for detailed reconstructions.

General observations from this work. Our study has
leveraged the special conditions produced by a worm’s re-
lease to measure numerous features of its victim population
and the network over which it spread. While specific esti-
mation tricks developed in this paper might not apply to
other telescope observations in a “cookbook”manner, the
insight that telescope observations carry rich information
that can be heavily mined armed with a sufficiently detailed
model of the underlying source processes is of major sig-
nificance for the future study of such data.

Understanding the structure of the scanning techniques
used by worms (and empirical data on hitherto unmeasured
quantities such as distribution of access bandwidth) can be
crucial for developing correct models of their spread — a
case made for example by our observation of the doubly-
scanned and never-scanned portions of the address space,
and their multi-factored impact on the worm’s growth.

Finally, we would emphasize that the extraction of the
features we have assessed was a labor-intensive process.
Indeed, for many of them we did not initially apprehend
even the possibility of analyzing them. This highlights not
only the difficulty of such a forensic undertaking, but also
its serendipitous nature. The latter holds promise that ob-
servations of other Internet-scale events in the future, even
those of significantly different details or nature, will likely
remain open to the possibility of such analysis.

Internet Measurement Conference 2005 USENIX Association 363

Internet Measurement Conference 2005 USENIX Association364

