In Search of I/O-Optimal
Recovery from Disk Failures

Osama Khan and Randal Burns, Johns Hopkins University
James Plank, University of Tennessee
Cheng Huang, Microsoft Research

The Quest for Reliability

How do we ensure data reliability
Replication (easy but inefficient)
Erasure Coding (complex but efficient)

Storage space was a relatively expensive
resource

MDS codes used to achieve optimal

storage efficiency for a given fault
tolerance

Times (& workloads) change...

Emergence of workloads/scenarios where
recovery dictates overall I/O performance
System updates
Deep archival stores

A traditional k-of-n MDS code would
require k I/Os to recover from a single
failure

Can we do better than k I/Os?

Our Approach

Existing approaches use matrix inversion

Represents one possible solution, not necessarily
the one with the lowest I/O cost

We have come up with a new way to
recover lost data which minimizes the
number of I/Os needed for recovery

Its computationally intensive, though all common
failure scenarios can be computed apriori

Applicable to any matrix based erasure code

Decoding equations

* Collection of bits in the codeword whose
corresponding rows in the Generator matrix
sum to zero

> We can decode any one bit as long as the
remaining bits in that equation are not lost

.

~

E
i

0

+
*

=)
ge—

2

2 k 2
5 data C, > Ei
bits

G" = Generator Matrix “Codeword:”
n bits

SESRCRS,
SISIIE,

|
gl gl B} ASIiS] IS

\

|

=
]

0

a

* {D,, D,, C,} is a decoding equation

Algorithm

Finds a decoding equation for each failed bit
while minimizing the number of total
elements accessed

Enumerate all decoding equations and for
each f.eF, determine set E;

Fis set of failed bits
E. is set of decoding equations which include f;

Goal: Select one equation e; from each E,
such that |Ue| s minimized

Algorithm(contd.)

Finding all such e; is NP-Hard but we can

convert equations into a directed

weighted graph and find the shortest path
Pruning makes it feasible to solve for practical
values of |F| and |E]

Cumulative record of
| D, | equations applied so far

| D |
) : An edge for each
C, 00110001 : equation in E;
C
Cs

Level i

©C O O R O R O K
a

Bitstring representation of
decoding equation {D,, D,, C,}

Failure Example

G" = Generator Matrix

SEEIE
]
B

2 C()
3 1=
k G, >
data C, Ei
bits
“Codeword:”
n bits

F={D, D} ,sof,=Dyand f; = D,

Eq

E,

€0,0=10101000
€01 = 10010010
€2 = 10011101
€03 =10100111

€10= 01010100
€11~ 01101110
€12~ 01100001
€13=01011011

. D _

Y
Recovery options
for f,

Recovery options
for f;

Directed Graph

from E,

l

€.

1010100072

1001001072 .

fI’Om E1

11101110

11111100

11111110

11110011

11111111

Comparison

— CRS w=8

— CRS w=7

— CRS w=6

— CRS w=5

— CRS w=4

— CRS w=3

— Liber8tion

— Liberation

— Blaum-Roth

)) *
— Even-Odd

*
— RDP

L -) - R
>0 o0 —~ —~ \O

POPI9IN SHH Y%

* Results similar to existing work

Looking for I/O-Optimal Recovery
beyond MDS codes..

* So we have found a way to make recovery
/O of matrix based MDS codes optimal

> How about non-MDS codes?

» Can we achieve better recovery I/O
performance at the cost of lower storage
efficiency?

* Replication and MDS codes seem to be
the two extrema in this tradeoff

GRID codes

GRID codes allow two (or more) erasure
codes to be applied to the same data, each in
its own dimension

To achieve low recovery |/O coupled with
high fault tolerance, we use
Weaver codes: recovery |/O independent of stripe
size
STAR codes: builds up redundancy

All single failures can be recovered in the
Weaver dimension

GRID(Weaver, STAR)

Weaver

STAR
>
= = . e =\
\V. S — S — D Dl e

[
Ny

Ejdisk with parity Ej disk with data and parity

Storage efficiency vs recovery |/O

1/Os for # disks Storage Fault

recovery accessed efficiency | tolerance
GRID(S,W(2,2)) 4 3 31.25% |
GRID(S,W(3,3)) 6 3 31.25% |5
GRID(S,W(2,4)) 7 4 20.8% 19

1/Os for # disks Storage Fault

recovery accessed efficiency tolerance
RS(20,31) 20 20 60.6% I
RS(30,45) 30 30 66.6% |5

RS(30,49) 30 30 61.2% 19

Future Work & Open Questions...

We conjecture that there is a
fundamental tradeoff between storage
efficiency and recovery 1/O

Formal relationship?

Programmatic search of generator
matrices with optimal recovery |/O
schedules

Large search space but reasonably sized
systems (100 disks?) may be a feasible option

Thank you!

