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Bloom Filter

• A Bloom filter is a bit-array + k hash functions

• Storing a few bits per element lets the BF stay in 
RAM, even as the elements are too large
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Bloom Filter Lookups & False Positives

• False positives unlikely, 

• No false negatives (no means no)

• Allowing false positives is what keeps the BF small
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Flash

• Bigger & cheaper than RAM, faster than disk
• 8TB of 512B keys needs 16GB of RAM for a ~1% BF
• Flash is a good place to cheaply store large BFs
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Thrashing

• Setting random bits to 1 causes random writes

• OK in RAM, not in Flash 
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Summary of Our Results

• Cascade Filter (CF), a BF replacement opt. for fast 
inserts on Flash

• Our performance
– We do 670,000 inserts/sec (40x of other variants)

– We do 530 lookups/sec (1/3x of other variants)

• We use Quotient Filters (QF) instead of Bloom Filters
– They have better access locality

– You can efficiently merge two QFs into a larger QF (w/ 
same FP rate)

• We use merging techniques to compose multiple QFs 
into a CF
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Thrashing is the Problem

• Every insert, you write to K Flash pages

• Expensive to write to a Flash page

• We can’t do fast insertions without working 
around this issue
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Shaving off K

• Now you only write one block for each insert 
instead of K blocks

• Two-step hash [Canim et. al., 2010]

• This helps a little
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Queue Writes

• This helps a lot [Canim et. al. 2010]
• Buffering gives bit-flips a chance to piggy-back
• How others have cached hashes in Flashes
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We Need Help

• Buffering works when the queue is large

• Small queues insert ~1 element per flash write

• We’re interested in large datasets, and fast 
insertions (i.e., when buffering doesn’t work)

Don't Thrash: How to Cache Your Hash in Flash 10

RAM

Flash



An Important Problem

• Many companies optimize their DBs for large 
data-sets and fast inserts
– Bai-Du Hypertable

– Facebook Cassandra

– Google BigTable

– TokuTek TokuDB

– Yahoo! HBase

– … and more!

• Scaling the trusty Bloom Filter to Flash would be 
a powerful tool for tackling these problems
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Several data structures avoid RWs

• A list of the most common methods

– Buffered Repository Trees

– Cassandra

– Cache Oblivious Look-ahead Arrays

– Log-structured Merge Trees

– …and more

• We can try to adapt the general method many 
of these structures use
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The General Method

• Supports deletes
• Composed of many sorted lists
• We can use this technique to avoid random writes

Don't Thrash: How to Cache Your Hash in Flash 13

RAM
2

Store

7

4 7

1 3 9

5 6 8

2 4 8

1 3 5 6 8 9

Lookup 8

No

No

Found

2 Previously flushed buffers

Buffers are merged to keep
total number of buffers low£ logNéê ùú



Problem: Elements not Bits

• This method is used with sorted lists of 
elements, not Bloom filters

• We need a data structure that
– Supports insert + lookup

– Is as space efficient as a Bloom filter

– Can be merged on Flash like a sorted list of 
elements

– Bonus: supports always-working deletes

– Bonus: faster than BFs
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Our Proposal: Quotient Filters

• Supports insert + lookup

• Compact like a Bloom filter

• Two QFs can be merged into a larger QF

• Supports always-working deletes

• Faster

• We can use this alternative to replace the 
sorted lists of elements in a write-opt. method

Don't Thrash: How to Cache Your Hash in Flash 15



A Quotient Filter

• fingerprints + quotienting to save space

• fingerprint: p-bit hash (p=5)

• Compact, only stores r+MD bits per element
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A Quotient Filter

• False positive: fingerprint collision
• ,                             , or ~1.2x a BF for ~0.1% FP-rate
• Quotient Filters also remain small by allowing false positives
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But Will it Merge?

• Actually, a compact sorted list of integers
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Merge as Integers, Then Insert

• QFs support Plug-n-Play with wrt.-opt. DSes
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Cascade Filter

• Just substitute sorted lists of elements with Quotient 
Filters instead

• Now we have fast insertions and a compact 
representation in Flash

Don't Thrash: How to Cache Your Hash in Flash 20

RAM
QF

Store
QF

QF

QF

£ logNéê ùú



Experimental Setup

• Everything was the same (e.g., cache size)

• Inserted 8.4 billion hashes

• Randomly queried them
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Insertion Throughput
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Lookup Throughput
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Conclusions

• Quotient Filters outperform BFs in RAM

– 3x faster inserts, same lookups

– Support deletes

– Can be dynamically resized

• Cascade Filters outperform BFs in Flash

– All advantages of Quotient Filters (e.g., deletes)

– 40x faster inserts, 1/3x lookups

– CPU bound
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Future Work

• Tweak the CF to handle buffering as well

• Measure real index workloads

• Can a CF help a write-optimized DB?

• There are a lot of exciting boulevards to 
explore
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And That is How…

• …you Don’t Thrash, when you Cache Your 
Hash in Flash

• Thank you for listening, Questions?

– Pablo Montes: pmontes@cs.stonybrook.edu

– Rick Spillane: rick@fsl.cs.sunysb.edu
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Insertion Throughput
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Experimental Setup

• Controls:
– ~Equal DS cache size, BF given benefit of doubt

– Equal RAM in all runs/tests

– BF tests run in steady-state for 4+ hours

– CF tests run for 8.4 billion insertions (~16GB CF)

– Flash partition 60% of Intel X25-Mv2, 90GB

• Machine:
– Quad-core 2.4GHz Xeon E5530 with 8MB cache

– 24GB of RAM (booted with 0.994GB)

– 159.4GB Intel X-25M SSD (second generation)
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Future Work

• Measure CF effectiveness for read-optimized

• Measure real index workloads

• Can a CF help a write-optimized DB?

• Better CPU/GPU optimization

• There are a lot of exciting boulevards to 
explore

Don't Thrash: How to Cache Your Hash in Flash 29


