
Don’t Thrash:
How to Cache

Your Hash
in Flash

M.A. Bender, M. Farach-Colton, R. Johnson,
B.C. Kuszmaul, D. Medjedovic, P. Montes,

P. Shetty, R. P. Spillane, E. Zadok

Stony Brook U., Rutgers U., MIT, TokuTek

Bloom Filter

• A Bloom filter is a bit-array + k hash functions

• Storing a few bits per element lets the BF stay in
RAM, even as the elements are too large

Don't Thrash: How to Cache Your Hash in Flash 2

A B

0 1 0 1 1

Elements stored
in the Bloom filter

Bit-array

Each element is hashed
To K positions in the
bit-array. Here k=2

Cache (e.g., RAM)

Store

Bloom Filter Lookups & False Positives

• False positives unlikely,

• No false negatives (no means no)

• Allowing false positives is what keeps the BF small

Don't Thrash: How to Cache Your Hash in Flash 3

A B

0 1 0 1 1B

pFP x() » 1- ekn/m()
k

D A Clookup

B h1(D)[] = 0

B h2(D)[] =1
False positive
(C was never inserted)

Flash

• Bigger & cheaper than RAM, faster than disk
• 8TB of 512B keys needs 16GB of RAM for a ~1% BF
• Flash is a good place to cheaply store large BFs

Don't Thrash: How to Cache Your Hash in Flash 4

RAM

A B

0 1 0 1 1

Flash

Store

B

Thrashing

• Setting random bits to 1 causes random writes

• OK in RAM, not in Flash

Don't Thrash: How to Cache Your Hash in Flash 5

0 1 0 1 1

Flash

B

C
Random writes

Summary of Our Results

• Cascade Filter (CF), a BF replacement opt. for fast
inserts on Flash

• Our performance
– We do 670,000 inserts/sec (40x of other variants)

– We do 530 lookups/sec (1/3x of other variants)

• We use Quotient Filters (QF) instead of Bloom Filters
– They have better access locality

– You can efficiently merge two QFs into a larger QF (w/
same FP rate)

• We use merging techniques to compose multiple QFs
into a CF

Don't Thrash: How to Cache Your Hash in Flash 6

Thrashing is the Problem

• Every insert, you write to K Flash pages

• Expensive to write to a Flash page

• We can’t do fast insertions without working
around this issue

Don't Thrash: How to Cache Your Hash in Flash 7

Random Writes

K

C

Flash

Shaving off K

• Now you only write one block for each insert
instead of K blocks

• Two-step hash [Canim et. al., 2010]

• This helps a little

Don't Thrash: How to Cache Your Hash in Flash 8

Now just one
random write, not K

K
C

Flash

Queue Writes

• This helps a lot [Canim et. al. 2010]
• Buffering gives bit-flips a chance to piggy-back
• How others have cached hashes in Flashes

Don't Thrash: How to Cache Your Hash in Flash 9

RAM
1 33

1 1 0 1 1

Flash

B

4

B A D

0 1 We write 5 bits with
only 2 flash writes

We Need Help

• Buffering works when the queue is large

• Small queues insert ~1 element per flash write

• We’re interested in large datasets, and fast
insertions (i.e., when buffering doesn’t work)

Don't Thrash: How to Cache Your Hash in Flash 10

RAM

Flash

An Important Problem

• Many companies optimize their DBs for large
data-sets and fast inserts
– Bai-Du Hypertable

– Facebook Cassandra

– Google BigTable

– TokuTek TokuDB

– Yahoo! HBase

– … and more!

• Scaling the trusty Bloom Filter to Flash would be
a powerful tool for tackling these problems

Don't Thrash: How to Cache Your Hash in Flash 11

Several data structures avoid RWs

• A list of the most common methods

– Buffered Repository Trees

– Cassandra

– Cache Oblivious Look-ahead Arrays

– Log-structured Merge Trees

– …and more

• We can try to adapt the general method many
of these structures use

Don't Thrash: How to Cache Your Hash in Flash 12

The General Method

• Supports deletes
• Composed of many sorted lists
• We can use this technique to avoid random writes

Don't Thrash: How to Cache Your Hash in Flash 13

RAM
2

Store

7

4 7

1 3 9

5 6 8

2 4 8

1 3 5 6 8 9

Lookup 8

No

No

Found

2 Previously flushed buffers

Buffers are merged to keep
total number of buffers low£ logNéê ùú

Problem: Elements not Bits

• This method is used with sorted lists of
elements, not Bloom filters

• We need a data structure that
– Supports insert + lookup

– Is as space efficient as a Bloom filter

– Can be merged on Flash like a sorted list of
elements

– Bonus: supports always-working deletes

– Bonus: faster than BFs

Don't Thrash: How to Cache Your Hash in Flash 14

Our Proposal: Quotient Filters

• Supports insert + lookup

• Compact like a Bloom filter

• Two QFs can be merged into a larger QF

• Supports always-working deletes

• Faster

• We can use this alternative to replace the
sorted lists of elements in a write-opt. method

Don't Thrash: How to Cache Your Hash in Flash 15

A Quotient Filter

• fingerprints + quotienting to save space

• fingerprint: p-bit hash (p=5)

• Compact, only stores r+MD bits per element

Don't Thrash: How to Cache Your Hash in Flash 16

A B

101 000 110 000r-bit array
r=3

h(A)=00:101 h(B)=10:110

00 01 10 11

address:identity
Q[10]=110

2 or 3 MD bits
per element

A Quotient Filter

• False positive: fingerprint collision
• , , or ~1.2x a BF for ~0.1% FP-rate
• Quotient Filters also remain small by allowing false positives

Don't Thrash: How to Cache Your Hash in Flash 17

A B

101 000 110 111r-bit array
r=3

h(B)=10:110

00 01 10 11

A C E

D h(D)=10:111

h(C)=01:010

h(E)=10:110 False positive
(E was never inserted)

Soft collision
(push D to the side, use a
few MD bits to remember)

pFP x() £a 1
2r

size =a-1 r+MD()2q

h(A)=00:101

But Will it Merge?

• Actually, a compact sorted list of integers

Don't Thrash: How to Cache Your Hash in Flash 18

A B

101 000 110 111r-bit array
r=3

00 01 10 11

D

00:101=5 10:110=22 10:111=23

Merge as Integers, Then Insert

• QFs support Plug-n-Play with wrt.-opt. DSes

Don't Thrash: How to Cache Your Hash in Flash 19

00

00:101=5 10:110=22
001:01=5

00 01 00 00 00 10r-bit array
r=2

101:10=22

000 001 010 011 100

11 00

101 110 111

10:111=23
101:11=23A B C

101

01

000

10

111

11

000

00

000

01

000

10

110

11

000r-bit arrays
r=3

Cascade Filter

• Just substitute sorted lists of elements with Quotient
Filters instead

• Now we have fast insertions and a compact
representation in Flash

Don't Thrash: How to Cache Your Hash in Flash 20

RAM
QF

Store
QF

QF

QF

£ logNéê ùú

Experimental Setup

• Everything was the same (e.g., cache size)

• Inserted 8.4 billion hashes

• Randomly queried them

Don't Thrash: How to Cache Your Hash in Flash 21

Insertion Throughput

Don't Thrash: How to Cache Your Hash in Flash 22

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

8E+09

9E+09

0 2000 4000 6000 8000 10000 12000 14000

Large Merges

Thruput much higher:
40x higher than BBF

3000x higher than BF

Seconds

N
u

m
b

er
 o

f
Fi

n
ge

rp
ri

n
ts

 I
n

se
rt

ed Peak append
thruput: 8.4MB/S

Lookup Throughput

Don't Thrash: How to Cache Your Hash in Flash 23

1

10

100

1000

10000

CF Traditional BF Elevator BF

530 lkus/sec

1600 lkus/sec 1600 lkus/sec

Lo
o

ku
p

 T
h

ro
u

gh
p

u
t

1/3x

Conclusions

• Quotient Filters outperform BFs in RAM

– 3x faster inserts, same lookups

– Support deletes

– Can be dynamically resized

• Cascade Filters outperform BFs in Flash

– All advantages of Quotient Filters (e.g., deletes)

– 40x faster inserts, 1/3x lookups

– CPU bound

Don't Thrash: How to Cache Your Hash in Flash 24

Future Work

• Tweak the CF to handle buffering as well

• Measure real index workloads

• Can a CF help a write-optimized DB?

• There are a lot of exciting boulevards to
explore

Don't Thrash: How to Cache Your Hash in Flash 25

And That is How…

• …you Don’t Thrash, when you Cache Your
Hash in Flash

• Thank you for listening, Questions?

– Pablo Montes: pmontes@cs.stonybrook.edu

– Rick Spillane: rick@fsl.cs.sunysb.edu

Don't Thrash: How to Cache Your Hash in Flash 26

mailto:pmontes@cs.stonybrook.edu
mailto:rick@fsl.cs.sunysb.edu

Insertion Throughput

Don't Thrash: How to Cache Your Hash in Flash 27

1

10

100

1000

10000

100000

1000000

CF Traditional BF Elevator BF

670,000 ins/sec

200 ins/sec

17000 ins/sec

In
se

rt
io

n
 T

h
ro

u
gh

p
u

t

40x

3000x

Experimental Setup

• Controls:
– ~Equal DS cache size, BF given benefit of doubt

– Equal RAM in all runs/tests

– BF tests run in steady-state for 4+ hours

– CF tests run for 8.4 billion insertions (~16GB CF)

– Flash partition 60% of Intel X25-Mv2, 90GB

• Machine:
– Quad-core 2.4GHz Xeon E5530 with 8MB cache

– 24GB of RAM (booted with 0.994GB)

– 159.4GB Intel X-25M SSD (second generation)

Don't Thrash: How to Cache Your Hash in Flash 28

Future Work

• Measure CF effectiveness for read-optimized

• Measure real index workloads

• Can a CF help a write-optimized DB?

• Better CPU/GPU optimization

• There are a lot of exciting boulevards to
explore

Don't Thrash: How to Cache Your Hash in Flash 29

