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Abstract—Key to the compression-capability of a data de-
duplication system is the definition of redundancy. Traditionally,
two data items are considered redundant if their underlying
bit-streams are identical. However, this notion of redundancy
is too strict for many applications. For example, for a video
storage platform, two videos encoded in different formats would
be unique at the system level but redundant at the content
level. Intuitively, introducing application-level intelligence in
redundancy detection can yield improved data compression. We
propose ViDeDup (Video De-Duplication), a novel framework
for video de-duplication based on an application-level view of
redundancy. The framework goes beyond duplicate data detection
to similarity-detection, thereby providing application-level knobs
for defining acceptable level of noise during replica detection. Our
results show that by trading CPU for storage, a 45% reduction
in storage space could be achieved, in comparison to 8% yielded
by system level de-duplication for a dataset collected from video
sharing sites on the Web. We also present tradeoff analysis for
various tunable parameters of the system to optimally tune the
system for performance, compression and quality.

I. INTRODUCTION

THE emergence of the internet as a platform has provided
its users new opportunities for data and information

sharing. User generated content in its various forms contributes
to redundancy in Web data. Redundancy in Web data has
been studied extensively in the past [1]. There has been less
focus, however, on exploiting redundancy to reduce storage
cost. With the evolution of large scale datacenter storage and
data-clouds [2], we envision that storage for Web data may
become more centralized in the future. We further envision
the possibility of data-clouds provided by a few prominent
vendors to strength this belief. Storage of this highly redundant
Web data within a single administrative domain would make
inefficient use of storage resources. Even today, in the context
of user data sharing platforms (like YouTube), the challenges
for large-scale, highly redundant Web data storage are high.

Storage for this increasingly centralized Web data can be
optimized by its de-duplication. De-duplication [3] is a method
for eliminating redundant copies of duplicate data and re-
placing them with a pointer to the unique copy. Considering
the prevalent redundancy in Web data and its increasing
centralization, the prospects of storage optimization via de-
duplication are promising.

From the storage perspective, it is important to distinguish here

the case of managed versus the unmanaged redundancy. We
refer to redundancy as managed when the underlying storage-
system is aware of the replicas and replication is performed
for specific goals (e.g., high-availability, performance, QoS
etc.). However, in case of unmanaged redundancy, the storage-
system is unaware of the replicas and their existence does not
specifically contribute towards improved characteristics of the
system. Unmanaged redundancy in large scale storage systems
poses data-management challenges.

In this paper, we address the unmanaged redundancy in
Web data by introducing the notion of application-aware de-
duplication which gauges redundancy in content rather than
at byte-level (which we call system level de-duplication).
We present the design and architecture of ViDeDup∗, an
application-aware video de-duplication system for compress-
ing videos. The framework is novel in introducing the
notion of application-aware de-duplication. It incorporates
application-level intelligence in various stages of the de-
duplication process. This framework in addition provides
similarity-detection, hence providing application-level knobs
for defining acceptable noise during replica detection. Why
would loss ever be tolerated? For video-sharing websites, e.g.
YouTube, the cloud administrator may make such decisions
when storage pressure is highest. The clients of such services
would be aware of such policies. Or there may be classes of
users willing to pay for a better QoS for video retrieval and
request no loss. For users that want free service, they may
have to be willing to suffer some degree of loss (particularly
since the cloud is not storing an authoritative copy, but rather
a version for dissemination).

We implemented a functional prototype of ViDeDup and
exercised its compression capabilities on videos collected from
video sharing websites. We demonstrate that by trading CPU
for storage, ViDeDup can reduce storage by as much as
45% when system level de-duplication only yielded 8% space
savings.

∗Refer to http://videdup.cs.umn.edu for the dataset used in this paper and
examples of video de-duplication.



2

Figure 1. ViDeDup System architecture.

II. SYSTEM ARCHITECTURE

In this section, we describe the detailed system architecture of
ViDeDup. Figure 1 shows the major steps involved in video
de-duplication.

A. Video Signature Generation

The de-duplication framework needs a mechanism for compar-
ing videos. Time efficient video-comparison is done on a com-
pact representation of the video, called the video-signature.
Various techniques have been proposed in the past [4]. From
the proposed schemes, we chose Ordinal signature [5] to
construct video-signatures. Ordinal signature is a function of
both the color and spatial-temporal distribution of intensities of
video and hence is robust to changes in resolution and display
formats of the compared videos. Also, ordinal signatures are
computationally efficient to compute and compare, thereby
meeting the needs of our framework.

In the ordinal signature scheme, the original video is first
down-sampled at a uniform rate of Ts frames/second to make
the signature robust to different frame rates. Each keyframe
is extracted and divided into m = Nx × Ny blocks, which
are then sorted based on their average gray-level intensity.
Summarizing, the ordinal video signature (S) is a feature
vector in Zn×m space such that

S = {S1, S2, S3, ..., Sn},
Si = {(r1, r2, ..., rm) | I(r1) ≤ ... ≤ I(rm)} (1)

where (r1, ..., rm) is a permutation of (1, ...,m), I(ri) is the
average gray-level intensity of the ri block, m is the number
of blocks in each extracted keyframe of the video and n equals
total number of key frames in the down-sampled video.

B. Video Segmentation

It is intuitive that the comparison of complete video-sequences
would ignore similar videos differing in only a smaller
number of frames (due to minor video editing like prefix-
ing/suffixing/infixing or chopped-length videos). Hence it is
crucial to partition the video signatures into segments and
compare them for similarity instead of complete sequences.
However, picking the optimal segment size is difficult [3]. In
our implementation, we segment the video signatures stati-
cally for ease of implementation. Compared video-sequence
signatures are divided into segments of uniform size which
are then compared for a match to identify redundant segments
among videos. More specifically, the video signature matrix
S ∈ Zn×m (defined in Equation 1) is divided into bn/kc
segments, Si, (Si ∈ Zk×m), each containing k m-dimensional

ordinal feature vector (except the last which contains n%k
feature vectors that are stored as is during de-duplication).
Comparison of video-sequences is done on segment basis as
described next in Section II-C.

C. Video Sequence Comparison

In our prototyped system, we use a 2-phase video comparison
scheme based on the ordinal signature, as described in [5].
This scheme is primarily for localizing a short query clip
in a long target video. We adapted this algorithm so that it
can find sub-sequence similarity between compared videos
based on segments. The coarse comparison between two video
sequences is based on the Sequence Shape Similarity (SSS)
metric [5].

1) Sequence Shape Similarity (SSS) Metric: SSS measures
the distance between the ordinal signatures of the com-
pared video sequences. Let SX = {X1, X2, . . . , XM} and
SY = {Y1, Y2, . . . , YN} denote the ordinal signatures of the
compared video sequences X and Y respectively. Signature of
video sequence X and Y are segmented statically into uniform
segments, Si

X , and Sj
Y respectively, each of size k such that,

Si
X = {Xi×k+1, . . . , Xi×k+k}, 0 ≤ i < bM/kc (2)

Sj
Y = {Yj×k+1, . . . , Yj×k+k}, 0 ≤ j < bN/kc. (3)

The SSS metric for comparison between ith segment of
SX(= Si

X) and jth segment of SY (= Sj
Y ) is defined as,

SSS(Si
X , S

j
Y ) =∑k

l=1 I(d(Xi×k+l, Yj×k+l) ≤ εframe-threshold)/k
(4)

where, d(.) = L1 distance metric defined on the ordinal
measure, and I(x) equals 1 if x is true; and zero otherwise.
εframe-threshold is the predefined distance threshold to ac-
count for possible noise added due to temporal resampling,
and inherent minor differences between the compared videos.
Two segments, Si

X and Sj
Y are regarded as similar if,

SSS(Si
X , S

j
Y ) ≥ Tsegment-threshold (5)

2) Video Similarity score: Based on the SSS metric computed
above, each pair of compared videos is assigned a similarity
score (SS). SS measures the similarity between the compared
videos X , Y as

SS(X,Y ) = (
(| SX ∩ SY |)

(| SX |)
+

(| SY ∩ SX |)
(| SY |)

)/2 (6)
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where | SX ∩ SY | equals number of similar segments as
measured by Equation 5 and | SX |, | SY | represent number
of segments in video sequences X and Y , respectively.

D. Clustering

At the completion of coarse-comparison phase, we obtain a
similarity matrix (SM ) such that,

SM ∈ RN×N and SM(i, j) =

{
SS(i, j) if i 6= j

1 if i = j
(7)

where N =Total Number of videos.

Note that SM(i, j) is a symmetric square matrix as SS(i, j) =
SS(j, i). Next, videos are clustered based on their similarity
score. To cluster the videos, we need a distance matrix, DM ,
instead of similarity matrix, SM . Distance matrix DM can
be obtained as,

DM = (11T –SM) (8)

where 1 is an N -dimensional vector of all ones. The videos
are now clustered using the K-MEANS clustering algorithm
based on DM . The optimal value for the number of clusters
in the dataset was determined using gap statistics [11].

E. Centroid Selection

In ViDeDup, we store the highest perceptual-quality (de-
fined in Section II-E2) representative video, that we call the
centroid-video, of the cluster in its entirety. Similar segments
of other videos can then be derived from the centroid-video’s
segments in a lossless manner using the standard video trans-
formations like down-sampling video-sequence, down-scaling
video-frames etc. This centroid-based segment storage and
indexing deviates from the traditional scheme for segment
based de-duplication (e.g., LBFS [12]) which stores all of
the unique data segments in a segment-pool. The segment
allocation and indexing scheme in these systems does not
differentiate which of the two duplicate segments actually gets
stored in the system. This is because the segments are identical
and hence the choice is immaterial. However, in the case of
video de-duplication, this choice is not so trivial! Storing the
higher perceptual quality video segment instead of its lower
quality correspondent, would allow lossless regeneration of
both the segments but not vice versa.

1) Centroid Selection: Once the videos are partitioned into
disjoint clusters, a centroid-video is chosen for each cluster.
Informally, the centroid-video is the representative of the
cluster and is the video which is most like the others. The
clustering algorithm returns a virtual-centroid which may not
necessarily map to a physical data-point (i.e., the video) in
the cluster. It might be intuitive to pick the video closest to
the virtual-centroid as the centroid of the cluster. But as we

discussed earlier, lossless reconstruction of remaining videos
of the cluster when compressed w.r.t the centroid might not be
possible, as the chosen centroid-video may not necessarily be
of the highest quality. On the other hand, merely selecting the
video with highest quality as the centroid would compromise
on compression as it might not be the best representative of
the set. Hence, there is a tradeoff between the compression and
the quality of compressed videos. The centroid-selection algo-
rithm (Algorithm 1) balances this tradeoff by minimizing the
compression-ratio and maximizing the quality of compression
for each cluster.

In the pseudocode, RelPerceptualQual(vi, V ) com-
putes the perceptual quality index (quality[vi] ∈ [0, 1]) for
video vi relative to the videos of cluster V (Line 1-2). The
gain-factor (f ) is computed for each video vi considering vi as
the centroid (Line 4-7). The gain-factor is defined as the ratio
of the relative perceptual quality of the video (= quality[vi])
and the average dissimilarity of video vi with the remaining
videos of cluster (= distance, computed from DM as defined
in Equation 8). The chosen centroid maximizes the gain-factor
(Line 8), hence balancing the tradeoff. Sorting ensures that
video with highest perceptual-quality is selected in case the
gain-factor for two videos is the same.

2) Perceptual Video Quality : The centroid selection
algorithm discussed above, needs to objectively
quantify the perceptual quality of the video
(RelPerceptualQual(vi, V )) relative to the cluster.
Objective video quality assessment is a topic of active
research. In our implementation, we use heuristics to simplify
the quality assessment. A video with higher frame rate and
higher spatial resolution is regarded as of quality higher than
others. However, other techniques for no-reference quality
assessment, like those presented in [9], may yield better
results. Exploration of these techniques is left as future work.

Algorithm 1: Centroid Computation for the given Cluster
input : Cluster V = (v1, v2, ..., vN ),

Distance Matrix DM = [dij ]N×N
output: Index k of the Centroid video vk
begin

1 foreach vi ∈ V do
2 quality[vi] ← RelPerceptualQual(vi, V )

end
3 Sort V descending based on quality[vi]
4 foreach vi ∈ V do

5 distance ←
∑N

j=1 dij

N
6 if (distance == 0) then f [vi]← Infinity

7 else f [vi]← quality[vi]
distance

end
8 k ← {min(i) | f [vi] ≥ f [vj ], ∀vi, vj ∈ V }
9 return k

end
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F. Video Segment Indexing and referencing

After the cluster’s centroid-video is chosen, the remaining
videos in the cluster are de-duped w.r.t the centroid. The seg-
mented video-sequences of remaining videos of the cluster are
compared at each coarsely matched location in centroid-video
(as computed previously in Section II-C) and are aligned to
the best match using Needleman-Wunsch sequence alignment
algorithm [6]. Based on this, the segment-index table is built
which records the segment offsets in the centroid-video (for
the matched segments) and/or the compared video (for the
unique segments).

III. EVALUATION

We selected 12 queries chosen to retrieve the most popular
videos on YouTube, to form our dataset and downloaded the
videos returned by the search engine. Our dataset contains
1017 videos (over 90 hours), totaling nearly 15.81 GB. The
downloaded videos were in .flv, .mp4 or .3gp formats. The
dataset is heterogeneous w.r.t its encoding characteristics like
frame resolution (varying from 140x96 to 854x480) and
frame rate (varying from 10 fps to 59.75 fps), exercising the
various design aspects of the de-duplication framework. We
implemented the functional prototype of ViDeDup in Matlab.
The video codec library, FFmpeg, was used for performing
video-processing tasks such as extracting frames from video,
encoding video from frames etc. Performance characteristics
of ViDeDup were measured on Intel Core 2 Duo CPU of
2.26GHz with 4GB DDR2 System Memory and 500 GB disk.

A. Comparison with System Level De-duplication

We use the system level de-duplication simulator, used in [8],
to compare ViDeDup’s compression ratio with system level
de-duplication. Table I and Table II describe the configuration
of the two systems. ViDeDup yielded a compression ratio of
0.55 in comparison to 0.92 for system level de-duplication.
The overall compression ratio of 0.55 for the dataset yielded
space savings of 45% (or 7.1 GB).

Parameter name Parameter value
Video-Signature
Scheme’s parameter

Down-sampling frequency, TS = 10 fps.
Number of blocks per frame,

Nx ×Ny = 4× 4

Signature comparison
algorithm’s parameters

Coarse comparison threshold, T1 = 0.5
segment size = 400 frames

Signature matching threshold,
εframe-threshold = 2

segment matching threshold
Tsegment-threshold = 0.8

Number of Clusters (K) 100

Table I
CONFIGURABLE PARAMETERS OF VIDEDUP ALONG WITH THEIR

RESPECTIVE INITIALIZATION VALUES.

Parameter Name Parameter Value
Segmentation mode Variable sized segments
Range for variable segment size 4096 to 16384 bytes
Fingerprint computation function SHA-1 hash
Size of sliding window for segmentation 32 bytes
Segment compression method (to
harness intra-segment redundancy)

Ziv-Lempel

Table II
CONFIGURATION PARAMETERS FOR SYSTEM LEVEL DE-DUPLICATION

SIMULATOR

B. Relationship between Compression Ratio and Quality

We use video quality assessment algorithm presented in [10]
for computing the quality of compressed video in compar-
ison to its uncompressed counterpart. Figure 2 shows the
relationship between the compression ratio and quality of
compression. For the overall compression ration of 0.55, the
mean and median quality (Figure 3) of the compressed videos
was measured to be 0.8416 and 0.8798 respectively, with a
standard deviation of 0.1802. Above, quality index > 0.75 is
considered to be visually undetectable.

Figure 2. Compression Ratio plotted as a function of Quality of compressed
video in ViDeDup

From the graph (Figure 2) it is evident that the compression
ratio is directly related to the quality of compressed con-
tent i.e., higher the compression ratio (or lower the space
savings), higher the quality. This however may not be true
in individual cases. For example, from the graph it can
be seen that there exist videos V1, V2 in the dataset such
that compression_ratio(V1) > compression_ratio(V2) but
Q(V1) < Q(V2). This happens when

1) There are false positives returned by the video compar-
ison algorithm. This is analogous to hash collision in
system level de-duplication. As ViDeDup targets dupli-
cate and near-duplicate detection at the content level,
replica detection via hash comparison is not possible.

2) The metadata characteristics (like frames/second and
resolution) of centroid video were more closely related
to V2 than V1. This can happen when there is no single
video whose metadata characteristics are superior to all
remaining videos of cluster.
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We next look at the histogram plot (Figure 3) of the compres-
sion ratio and quality of compressed videos, to determine their
distribution over the dataset. The histogram plot for quality of
compressed videos is right skewed indicating that, most of the
videos maintained high quality after compression. Another key
insight is that the number of videos which have compression
ratio in the interval [0.1, 0.9] is relatively small. This insightful
observation can be utilized to optimize the performance of the
de-duplication framework, by favoring larger segment sizes.

Figure 3. Histogram plot for the Compression ratio and Quality of
compressed video

C. De-duplication Rate

Although ViDeDup has not yet been optimized for per-
formance, we do report its performance characteristics for
three principal operations, viz.: video-signature computation,
pairwise video-comparison and video-reconstruction from its
index. Ordinal-signature computation time depends on the
number of keyframes in the video-sequence and keyframe
characteristics (like resolution and number of blocks). For
keyframe characteristics listed in Table I, the prototype could
compute signatures at 3.66×102 frames/sec. Even though this
number is towards the lower end, the performance impact is
not significant as it is a one time operation and the signature
of different videos can be computed in parallel. Pairwise
video-comparison is performed by comparing signature vector
of keyframes in segments. The prototype could compare
the signature vector at ∼ 2.88 × 106 frames/sec. Finally,
video reconstruction throughput, from its unique (belonging
to the original non-deduped video) and non-unique segments
(belonging to the centroid-video), could be performed at 104

frames/sec.

The most compute-intensive step in ViDeDup is the pairwise
video comparison. For our dataset of 1017 videos, this in-
volved

(
1017
2

)
pairwise video-comparisons which translated

to 400 ×
(
9721
2

) † pairwise signature-vector comparisons for
the configuration listed in Table I, taking ∼ 2 hours when
compared at the rate of 2.88 × 106 frame-comparisons per
second. There are many known techniques for improving the
performance of video comparisons [7]. Exploration of these
techniques is left as future work.

†9721 equals the total number of signature segments of all videos in the
dataset and multiplication by 400 is to account for segment size.

IV. CONCLUSION AND FUTURE WORK

Data de-duplication is a powerful technique for reducing the
storage needs of large scale storage systems. We presented the
design of ViDeDup, a novel video de-duplication framework
with an application-level view of redundancy. The frame-
work generalizes the definition of redundancy by provid-
ing application-level knobs to define the acceptable level of
noise in replica detection, thereby going beyond duplicate-
detection to similarity-detection. We explored the potential
of application-aware data de-duplication in compressing the
data and analyzed the tradeoffs of performance, compression
and quality as controlled by various tunable parameters of
the system. From the experiments on live data downloaded
from video-sharing Websites, our results demonstrate that
application-aware de-duplication can reduce the storage by as
much as 45% at a non-perceptual loss in quality, while system
level de-duplication yielded only 8% storage savings.

Through our future work we would like to address the
scalability challenges of the system through distributed im-
plementation of framework. Also exploration of techniques
to handle false-positives during video-comparison in a time-
efficient and scalable manner is an interesting research prob-
lem. Through our research, we have merely scratched the
surface of application-aware de-duplication and demonstrated
its tremendous potential in reducing the storage needs of data-
clouds.
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