
Onyx: A Protoype Phase Change Memory Storage Array

Ameen Akel Adrian M. Caulfield Todor I. Mollov
Rajesh K. Gupta Steven Swanson

Computer Science and Engineering
University of California, San Diego

Abstract
We describe a prototype high-performance solid-state
drive based on first-generation phase-change memory
(PCM) devices called Onyx. Onyx has a capacity of
10 GB and connects to the host system via PCIe. We
describe the internal architecture of Onyx including the
PCM memory modules we constructed and the FPGA-
based controller that manages them. Onyx can perform
a 4 KB random read in 38 µs and sustain 191K 4 KB
read IO operations per second. A 4 KB write requires
179 µs. We describe our experience tuning the Onyx
system to reduce the cost of wear-leveling and increase
performance. We find that Onyx out-performs a state-
of-the-art flash-based SSD for small writes (< 2 KB) by
between 72 and 120% and for reads of all sizes. In ad-
dition, Onyx incurs 20-51% less CPU overhead per IOP
for small requests. Combined, our results demonstrate
that even first-generation PCM SSDs can out-perform
flash-based arrays for the irregular (and frequently read-
dominated) access patterns that define many of today’s
“killer” storage applications. Next generation PCM de-
vices will widen the performance gap further and set the
stage for PCM becoming a serious flash competitor in
many applications.

1 Introduction
Storage devices based on non-volatile, solid-state mem-
ories are rewriting the rules governing the relationship
between storage devices and the rest of computer sys-
tems. Flash-based SSDs are in the vanguard of this
change, but faster, more reliable, and less idiosyncratic
technologies are on the horizon. Of these advanced non-
volatile memories, phase-change memory (PCM) is the
closest to seeing use in real storage products.

PCM promises increased speed, better scaling, and,
eventually, better density than flash memory. Most im-
portantly, it does not suffer from flash’s crippling inabil-
ity to perform in-place updates of data that, in turn, ne-
cessitate complex management and wear-leveling sys-
tems that increase latency for small requests and, for

high-end PCIe-attached SSDs, increase CPU and power
overheads. The improved performance and reduced
complexity that PCM provides will make it a potent
competitor to flash memory in the coming years.

However, PCM has its own idiosyncrasies and design-
ing a PCM-based storage array will present its own set
of challenges. We have constructed a first-generation
PCM-based SSD called Onyx that allows us to grap-
ple with these issues first hand. Onyx attaches to the
host system via PCIe and applications access it via a
highly-optimized block driver that eliminates most soft-
ware overheads and allows for high concurrency among
accesses. Onyx has a usable capacity of 8 GB with 2 GB
of storage for error correction or other meta data (2 bytes
per 8 byte word).

This paper describes Onyx’s architecture and the
changes we have made to its design to improve perfor-
mance. Onyx can sustain just over 1.1 GB/s for reads,
and its write performance is 34% better than expected
based on the specifications of the PCM components it
contains. Onyx uses start-gap wear leveling [4] and we
explore the effect of different start-gap parameters on
performance. Our results show that Onyx is faster for
small write requests than a state-of-the-art flash-based
SSD, but that the poor write performance of currently-
available PCM limits throughput for large writes. For
reads, Onyx outperforms the flash-based SSD by be-
tween 11 and 430%, depending on access size.

We also demonstrate that PCM reduces CPU over-
heads compared to a flash-based storage array, because
PCM’s simpler interface allows for a simpler driver.
This frees the CPUs to handle more useful computation
and reduces the power overheads of IO as well.

These results show that (assuming PCM scaling pro-
jections hold) PCM-based storage array architectures
will be a competitive alternative to flash-based SSDs.
They will be of particular value in applications, like
high-performance caching systems and key-value stores,
that require high performance reads and small writes.

The remainder of this paper is organized as follows.
Section 2 describes the Onyx hardware and its software



Mem

Ctrl

Mem

Ctrl

Mem

Ctrl

Mem

Ctrl

Start

Gap

Start

Gap

Start

Gap

Start

Gap

Ring (4 GB/s)

DMA

PCIe 1.1 x8 (2 GB/s Full Duplex)

Request 

Queue

1 GB 

PCM

16x 8 KB Buffers

Scoreboard
Tag 0
Tag 1
Tag 2
Tag 3

Brain

...

1 GB 

PCM

1 GB 

PCM

1 GB 

PCM

...

//

8x Memory

Controllers

Figure 1: Onyx’s high-level architecture The Onyx
main controller, or brain, allows it track up to 64 in-
flight requests at once. Onyx stripes large requests
across multiple controllers in 4 KB slices.

stack. Section 3 describes how we refined Onyx’s PCM
controller to improve performance and compares Onyx
to an existing PCIe-attached SSD. Finally, Section 4
presents our conclusions.

2 Onyx
This section describes the Onyx storage array. We be-
gin by briefly describing Onyx’s high-level architecture.
Then, we describe the PCM DIMM memory modules
and the controller that provides access to them.

2.1 System overview
Figure 1 shows the high-level organization of Onyx.
The design is based on the Moneta [3] SSD that used
DRAM to emulate next-generation non-volatile memo-
ries. Onyx replaces the DRAM with real PCM, but re-
tains Moneta’s highly-optimized software stack to mini-
mize latency and maximize concurrency. The hardware
includes a “brain” which handles high-level scheduling
and communicates with the banks of PCM via a ring net-
work. The brain contains a scoreboard for tracking out-
standing accesses, a DMA controller, transfer buffers,
and an interface to the ring. The ring connects to eight,
1.25 GB banks of PCM memory.

Onyx connects to the host system via an 8-lane PCIe
1.1 interface that provides a 2 GB/s full-duplex connec-
tion (4 GB/s total). The baseline design supports 64
concurrent, outstanding requests, each identified by a
unique tag. The prototype is implemented on a BEE3
FPGA prototyping system [2] developed as part of the

RAMP project [6]. The system contains four FPGAs
connected in a ring. Each FPGA has two banks of two
DDR2 DIMM slots (four DIMMs per FPGA). Onyx
runs at 250 MHz. More information about the Onyx
system architecture can be found in [3].

2.2 The PCM Module
The PCM devices in Onyx connect to the FPGA via the
DDR2 DIMM sockets and a custom-built memory mod-
ule.

The PCM devices
Onyx uses Micron’s first-generation “P8P” 16 MB

PCM devices (part # NP8P128A13B1760E). The elec-
trical interface and command set they provide is similar
to a NOR flash device with the important difference that
it supports writes of arbitrary data at the byte level as
opposed to separate erase and program operations with
different granularities. Each chip has 16 data lines and
23 address lines, in addition to 5 other signaling pins
(e.g., Write Enable, Output Enable, and Chip Enable).

To perform a read, the controller must place the PCM
devices into Read Array mode and set the address lines
to those of the requested data. After a fixed delay, the
data appears in the chip’s internal buffers. The controller
then clocks out the data onto the data lines.

Onyx uses high-bandwidth Buffered Write operations
for writing. These require the controller to fill the
PCM’s internal write buffer. The controller then in-
structs the PCM to commit the data to the non-volatile
array. The controller detects the successful completion
of the write by polling the PCM’s status register.

Based on datasheet timing, a maximum size, 16 byte,
read requires 314 ns to complete. A maximum size write
(64 bytes) takes 120 µs for arbitrary data (writes of all
zeros are faster). This gives theoretical peak bandwidths
for reads and writes (of random data) of 48.6 MB/s and
0.5 MB/s, respectively, per chip.

Wear out is a concern for PCM devices, and the
datasheet for the P8P devices gives a lifetime of 1 mil-
lion programs per cell. Discussions with the manufac-
turer suggest that this value is not directly comparable
to the lifetime values given for flash devices. The PCM
lifetime estimate is the number of programs per cell be-
fore the first bit error appears in a large population of
devices without ECC. By contrast, flash memory dura-
bility ratings are usually given as the number of pro-
gram/erase cycles until a given ECC scheme will no
longer be able to correct the errors that appear.

The PCM DIMM
We use the P8P devices to build PCM memory mod-

ules, or PCM DIMMs (Figure 2). The PCM DIMMs fit
into standard DDR2 DRAM DIMM slots, but they are



Figure 2: The Onyx PCM DIMM The PCM DIMM
contains eight indentical ranks of five chips. Ranks
share data lines, and all chips share address lines.

slightly taller. While they are mechanically compatible
with DDR2 DIMM sockets, and the power and ground
pins are in the same locations, the signaling interface,
and pin assignments are completely different to accom-
modate the P8P’s NOR-like interface and slower speed.

Each PCM DIMM contains 40 PCM devices arranged
into eight ranks of five chips. The chips within each rank
act in concert (much as DRAM chips do in a normal
DIMM) to provide an 80 bit wide interface. Sixty-four
of the bits are data, the remaining 16 are available for
ECC or other meta data. The aggregate capacity of a
single PCM DIMM is 640 MB (512 MB without the
meta data section).

2.3 The PCM DIMM controller
Onyx contains eight PCM DIMM controllers, and each
manages a pair of PCM DIMMs. From the controller’s
perspective the two PCM DIMMs appear as 16 indepen-
dent ranks.

Figure 3 shows the internal architecture of the PCM
DIMM controller. Requests arrive from the ring inter-
face and pass into the wear-leveling module (see be-
low). A scoreboard tracks outstanding requests, an ac-
tive list tracks request ordering, and a request sched-
uler maps requests to available ranks to maximize par-
allelism. Once the scheduler assigns the request to a
rank, the PCM control unit issues low-level commands
to the rank, sends completion notifications back to the
request scheduler, and forwards data (for reads) back to
the ring. The request completion module sends request
completion notifications back to the “brain.”

The PCM DIMM controller can signal that a request
is complete at two points: Late completion occurs when
write to the PCM DIMM is completely finished. Early
completion occurs when all the store data has arrived
at the buffers in the memory controller. Early comple-
tion allows Onyx to hide most of the write latency, but
it raises the possibility of data loss if power fails before
the write to the PCM completes. To guarantee durabil-
ity, the PCM DIMMs include large capacitors that will
supply enough energy to complete the operation. State-

Scoreboard Control

Ring 

Interface

PCM 

DIMM

Start Gap

R
in

g

Request 

Scheduler

Score-

board

Request 

Comple-

tion

PCM 

Control

PCM 

DIMM

Address FIFO

Request 
Completion FIFO

Data FIFO

Data FIFO

PCM 
Request 

FIFO

PCM 
Response 

FIFO

Active 

List

Figure 3: The PCM DIMM controller Requests origi-
nate in the Request Scheduler. The Request Completion
module generates completion signals.

of-the-art flash-based SSDs routinely use early comple-
tion to reduce write latency. With early completion, the
peak bandwidth per PCM DIMM pair is 156 MB/s for
reads and 47.1 MB/s for writes.

To avoid uneven wear, the Onyx controller incorpo-
rates the first real-system implementation of the start-
gap wear leveling [4] scheme. Start-gap works by
slowly rotating the mapping between storage addresses
and physical 4 KB rows of PCM memory. The key pa-
rameter in the start-gap scheme is the “gap write inter-
val,” G. If the PCM memory contains R rows, then af-
ter R × G writes, start-gap will have shifted all the ad-
dresses by 1 row (i.e., if address a initially corresponded
to physical memory row p, a will now refer to physical
row p + 1). By default, we use a gap write interval of
128. We discuss tuning this parameter in Section 3.

3 Onyx performance
This section evaluates the raw performance of Onyx
using a combination of microbenchmarks and simple
database workloads. We also compare its performance
to a state-of-the-art flash-based SSD from FusionIO and
the original Moneta storage array.

3.1 Raw performance
Figure 4 measures the bandwidth for random reads,
writes, and a combination of 50% reads/writes for a
range of access sizes. We collected the data with
XDD [7] (a flexible IO workload generator) using 16
threads. The data show that for large requests, Onyx can
sustain over 1.1 GB/s for reads and 470 MB/s for writes
with early completion notifications. The read bandwidth
matches projections using the datasheet latencies in Sec-



Read

0.5 2 8 32 128 512

B
an

dw
id

th
 (

M
B

/s
)

0

500

1000

1500

2000

2500

3000

Write

Random Request Size (KB)

0.5 2 8 32 128 512

Moneta
Onyx−Early
Onyx−Late
FusionIO 50% Read, 50% Write

0.5 2 8 32 128 512

Figure 4: Onyx basic IO performance For reads and small writes, Onyx consistently out-performs FusionIO, but
for large writes FusionIO’s greater internal bandwidth leads to better performance. With early write completion,
Onyx’s write performance improves for both small and large requests.

tion 2.2, but the write bandwidth exceeds these projec-
tions by 34%.

The graphs compare the performance differences be-
tween early and late write completion for both write-
only and mixed workloads. Early completion improves
write performance by between 32% for large requests
and 174% for small requests. We use early completion
in the remainder of the paper.

The graphs also compare Onyx’s performance to that
of an 80 GB FusionIO ioDrive [1] and the Moneta SSD.
For reads, Onyx consistently outperforms the ioDrive,
and the gap is especially wide for small requests: For
512 byte requests – Onyx can sustain 478K IOPS com-
pared to the ioDrive’s 90K IOPS. We believe the im-
proved performance is due in large part to absence of a
complex flash translation layer (FTL) in Onyx. The FTL
adds software overhead to each access to the ioDrive,
limiting throughput on small requests.

For writes, Onyx outperforms the ioDrive small re-
quests (because of smaller per-operation overheads) but
is slower for large requests. The ioDrive’s aggregate
write bandwidth is higher than Onyx’s: A single flash
die can sustain programming rates of between 5 and
10 MB/s. Analyzing our ioDrive and its datasheet sug-
gests that it contains 96 flash dies for a total of at least
480 MB/s. Each of the eight PCM controllers in Onyx
can sustain no more than 47.1 MB/s, or 340 MB/s in ag-
gregate. Next generation PCM devices will sustain up to
3.76 MB/s per chip, and should allow an Onyx-like sys-
tem to outperform the ioDrive. Increasing the number
of PCM DIMM controllers in Onyx would likely also
improve performance.

The results for Moneta provide a projection for
Onyx’s performance with future-generations of PCM.
Faster PCM devices will roughly double read perfor-

BTree HashTable

T
xn

s 
/ s

ec
 (

x1
0e

3)

0
1
2
3
4
5
6
7

Onyx
FusionIO
Moneta

Figure 5: BDB Benchmark Results Onyx outperforms
the ioDrive for the hash table version of BerkeleyDB but
under-performs for the b-tree.

mance and increase write performance by between 5 and
6×.

We use BerkeleyDB to compare application-level per-
formance on Onyx and the ioDrive. Figure 5 contains
results for a pair of BerkeleyDB benchmarks that use a
hash table or B-tree to store the database tables. Our
BerkeleyDB configuration includes full transaction sup-
port and performs synchronous IO. The workload trans-
actionally swaps the values associated with two keys in
the database. For each storage device we use the num-
ber of threads that maximizes throughput (one for Fu-
sionIO, four for Onyx, and two for Moneta). The perfor-
mance for Onyx compared to the ioDrive is mixed: For
the hash table, Onyx outperforms the ioDrive by 21%,
but for B-tree, the ioDrive delivers 48% greater opera-
tions per second. We are still investigating the reason
for this variability.

3.2 CPU overhead
A less obvious advantage of Onyx over the ioDrive is
the reduction in CPU overhead. The ioDrive’s complex



driver plays an important role in managing the flash ar-
ray, and that requires substantial CPU resources for each
IO operation. For small requests, this means that a sys-
tem with Onyx spends between 20-51% less CPU time
performing IO operations. This has two effects: First,
it frees up CPUs for other, more useful work. Sec-
ond, it reduces the overall energy requirement of the
storage system, improving efficiency and/or offsetting
the increased energy cost of writing to PCM memory.
More broadly, reduced CPU overhead and energy con-
sumption combined with increased performance mean
that Onyx-like arrays will significantly alter what con-
stitutes a balanced computing system at both the server
and cluster levels.

3.3 Wear-leveling
The start-gap wear leveling scheme that Onyx uses re-
quires the memory controller to periodically copy a
row of memory from one location to another. Recent
work [5] has defined the “line vulnerability factor” as
the number of writes that might go to an address before
start-gap remaps it. The factor is the product R×G de-
scribed in Section 2. Smaller gap write intervals result
in lower vulnerability factors, but also introduce over-
head in the form of the extra PCM accesses required to
rotate the data to match the new addresses

Figure 6 measures these effects. The horizontal axis
varies the gap write interval. The left hand vertical axis
measures sustained bandwidth for 4 KB writes, while
the right hand vertical axis measures write latency. The
impact on latency is smaller than on bandwidth because
it is usually possible to hide the latency of shifting the
gap.

By default, Onyx uses a gap write interval of 128,
which gives a line vulnerability factor of 32 million. The
manufacture rates our devices for 1 million writes before
the first error occurs, so it is possible that a pathologi-
cal access pattern could cause significant damage to one
row. However, recent work [5] describes how to vary the
interval dynamically to prevent this. In addition, break-
ing each bank of PCM into multiple start-gap domains
would further reduce the vulnerability factor. We are
considering these and other changes to improve wear-
leveling in a future version of Onyx.

4 Conclusion
Onyx provides a glimpse into the future of solid-state
drives and identifies some of challenges designers will
face as they incorporate novel, non-volatile memories
into storage systems. Our experience designing and
using Onyx shows that PCM can provide good perfor-
mance, but that several challenges remain. In particular,

Start Gap Write Interval

4 8 16 32 64 128 Off

B
an

dw
id

th
 (

M
B

/s
)

0

50

100

150

200

Start Gap Write Interval

La
te

nc
y 

(u
s)

0

50

100

150

200

250

Bandwidth
Latency

Figure 6: Start-gap’s impact As the gap write intervals
grows, wear leveling overhead drops and bandwidth in-
creases.

the poor write performance of individual PCM devices
limits overall write performance for Moneta. As manu-
facturers work toward solving that problem, we will also
need to refine the PCM controller design to exploit more
parallelism.

Despite these challenges, Onyx shows that phase-
change memory has a potentially bright future as a stor-
age technology. For emerging data-intensive applica-
tions that require large amount of irregular IO (e.g., large
graph computations), PCM-based SSDs can already out-
perform their flash-based counterparts. As performance
and density improves, the benefits they can offer will
only increase.

Acknowledgements
This work was supported, in part, by financial and
equipment donations from Micron Inc. In particular, we
would like to thank Clifford Smith, Mark Leinwander,
Sean Eilert, and Brian Bradford for their technical guid-
ance in designing the PCM DIMM.

References
[1] http://www.fusionio.com/.
[2] http://www.beecube.com/platform.html.
[3] A. M. Caulfield, A. De, J. Coburn, T. Mollov, R. Gupta,

and S. Swanson. Moneta: A high-performance storage
array architecture for next-generation, non-volatile mem-
ories. In Proceedings of The 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, 2010.

[4] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan,
L. Lastras, and B. Abali. Enhancing lifetime and secu-
rity of pcm-based main memory with start-gap wear lev-
eling. In MICRO 42: Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 14–23, New York, NY, USA, 2009. ACM.

[5] M. K. Qureshi, A. Seznec, L. A. Lastras, and M. M.
Franceschini. Practical and secure pcm systems by on-
line detection of malicious write streams. In High Perfor-
mance Computer Architecture (HPCA), 2011 IEEE 17th
International Symposium on, pages 478 –489, feb. 2011.

[6] The ramp project. http://ramp.eecs.berkeley.edu/index.php.
[7] Xdd version 6.5. http://www.ioperformance.com/.


